C O N T E N I D O

Aclaraciones
Citas
1. Introducción
2. Zenón, Eudoxio y Arquímedes
3. Descartes
4. Fermat
5. Pascal
6. Newton
7. Leibniz
8. Los Bernoulli
9. Euler
10. Lagrange
11. Laplace
12. Monge y Fourier
13. Poncelet
14. Gauss
15. Cauchy
16. Lobatchewsky
17. Abel
18. Jacobi
19. Hamilton
20. Galois
21. Silvester
22. Weierstrass y Sonja Kowalewsky
23. Boole
24. Hermite
25. Kronecker
26. Riemann
27. Kummer y Dedekind
28. Poincaré
29. Cantor

Bajar Parte 1
Bajar Parte 2
Bajar Parte 3


Capítulo Decimoctavo
EL GRAN ALGORISTA

JACOBI

Hay una tendencia cada vez más pronunciada en el Análisis moderno a sustituir el cálculo por las ideas; de todos modos existen ciertas ramas de las matemáticas donde el cálculo conserva sus derechos.

P. G. Lejeune Dirichlet

El apellido Jacobi aparece frecuentemente en la Ciencia, no siempre refiriéndose al mismo individuo. En el año 1840 un Jacobi muy famoso, M. H. tuvo un hermano relativamente obscuro, C. G. J., cuya reputación era insignificante al lado de la de M. H. Luego la situación se invirtió: C. G. J. es inmortal, mientras que M. H. va hundiéndose rápidamente en la oscuridad del limbo. M. H. adquirió fama como fundador de la galvanoplastía, charlatanismo que estuvo de moda. La fama de C. G. J., mucho más limitada pero mucho más honda, se basa en la Matemática. Durante su vida el matemático fue siempre confundido con su hermano más famoso, o, todavía peor, felicitado por su involuntario parentesco con el charlatán sinceramente engañado. Al fin C. G. J. no pudo resistir más: "Perdón, señora, contestó a una entusiasta admiradora de M. H. que le felicitaba por tener un hermano tan distinguido, pero yo soy mi hermano". En otra ocasión C. G. J. replicó malhumorado,: "Yo no soy su hermano, él es mi hermano".

Carl Gustav Jacob Jacobi nació en Postdam, Prusia, Alemania, el 10 de diciembre de 1804, siendo el segundo hijo de un próspero banquero, Simón Jacobi, y de su mujer (cuyo apellido era Lehmann). Fueron cuatro hermanos, tres varones, Moritz, Carl y Eduard, y una. mujer Therese. El primer maestro de Carlos fue uno de sus tíos maternos, quien enseñó al muchacho las lenguas clásicas y Matemáticas, preparándolo para que ingresara en el Instituto de Postdam, en 1816, cuando tenía 12 años. Desde el principio Jacobi dio pruebas de poseer una "mente universal", según declaró el Rector del Instituto cuando el muchacho salió de él en 1821 para ingresar en la Universidad de Berlín. Como Gauss, Jacobi pudo haber logrado una gran reputación en filología, si no le hubiera atraído más fuertemente la Matemática. Habiendo observado que el muchacho tenía genio matemático, el maestro (Heinrich Bauer) dejó que Jacobi trabajara como quisiera, después de una prolongada reyerta en la que Jacobi se reveló, negándose a aprender la Matemática de memoria y siguiendo reglas.

El desarrollo matemático de Jacobi ofrece en ciertos respectos un curioso paralelo con el de su gran rival Abel. Jacobi también leía a los maestros; las obras de Euler y Lagrange le enseñaron Álgebra y Cálculo y le hicieron conocer la teoría de números. Esta precoz autoinstrucción iba a dar a la primera obra sobresaliente de Jacobi, sobre funciones elípticas, su dirección definida, y Euler, el maestro de los recursos ingeniosos, encontró en Jacobi su brillante sucesor. Por su aguda capacidad para tratar problemas de Álgebra, Euler y Jacobi no han tenido rival, como no sea el genio matemático hindú Srinivasa Ramanujan, en nuestro propio siglo. Abel también trataba las fórmulas como un maestro, cuando así deseaba, pero su genio fue más filosófico, menos formal que el de Jacobi. Abel está más cerca de Gauss, al insistir acerca del rigor, que lo estaba Jacobi, pues aunque éste no carecía de rigor, su inspiración parece haber sido más formalista que rigorista.

Abel tenía dos años más que Jacobi. Sin saber que Abel había abordado el estudio de la ecuación general de quinto grado, en 1820, Jacobi, en el mismo año, intentó una solución, reduciendo la ecuación general de quinto grado a la forma

y demostrando que la solución de esta ecuación podía ser deducida de la de una cierta ecuación de décimo grado. Aunque el intento quedó abortado, enseñó a Jacobi una buena cantidad de Álgebra, y constituyó un paso de importancia en su educación matemática. Pero no parece que se le ocurriera, como se le ocurrió a Abel, que la ecuación general de quinto grado no se podía resolver algebraicamente. Esta falta de imaginación o de visión, o como queramos llamarla, por parte de Jacobi es típica de la diferencia entre él y Abel. Jacobi, que tenía una mente objetiva magnífica y cuyo corazón no albergaba celos de ninguna clase dijo, refiriéndose a una de las obras maestras de Abel: "Está por encima de mis elogios y por encima de mis propias obras".

Los estudios de Jacobi en Berlín duraron desde abril de 1821 hasta mayo de 1825. Durante los primeros dos años dedicó su tiempo igualmente a la filosofía, a la filología y a la Matemática. En el seminario filológico Jacobi atrajo la atención de P. A. Boeckh, un renombrado humanista que había publicado, entre otras obras, una excelente edición de Pindaro. Boeckh, felizmente para las Matemáticas, fue incapaz de atraer a su notable discípulo a los estudios clásicos para que constituyeran la disciplina de toda su vida. En Matemática poco era lo que se ofrecía para un estudiante ambicioso, y Jacobi continuó su estudio privado de maestros. Las conferencias universitarias de temas matemáticos eran consideradas por Jacobi como pura charlatanería. En este punto Jacobi era hasta grosero, aunque sabía ser cortés como un buen palaciego cuando quería lograr que algún amigo matemático consiguiera una posición digna de sus méritos.

Mientras Jacobi estaba dedicado a la labor de hacer de sí mismo un matemático, Abel ya había iniciado el camino que habría de conducir a Jacobi a la fama. Abel había escrito a Holmboë el 4 de agosto de 1823, comunicándole que estaba trabajando en las funciones elípticas: "Esta pequeña obra, como recordarás, se ocupa de las inversas de las trascendentes elípticas, y he demostrado alguna cosa [que parece] imposible. He solicitado a Degen que lea tan pronto como pueda desde el principio al fin esta obra, pero no puede encontrar la falsa conclusión ni comprender donde está el error; Dios sabe como voy a salir de esto". Por una curiosa coincidencia Jacobi dirigía su actividad a la Matemática casi precisamente en la época en que Abel escribía esto. La diferencia de dos años en la edad de estos jóvenes (Abel tenía 21 y Jacobi 19) tiene más importancia que dos décadas cuando se llega a la madurez. Abel había partido veloz, pero Jacobi, sin saber que tenía un competidor en la carrera, pronto le alcanzó. La primera gran obra de Jacobi tuvo lugar en el campo cultivado por Abel de las funciones elípticas. Antes de continuar esta descripción haremos un resumen de su atareada vida.

Habiendo decidido dedicarse a la Matemática, Jacobi escribió a su tío Lehmann, refiriéndose a la labor que había emprendido: "El enorme monumento que las obras de Euler, Lagrange y Laplace han levantado exige la fuerza más prodigiosa y el pensamiento más profundo si se desea penetrar en su naturaleza interna, y no simplemente examinarlo superficialmente. Para dominar este monumento colosal y no ser vencido por él se precisa un esfuerzo que no permite reposo ni paz hasta llegar a la cima y contemplar la obra en su integridad. Sólo entonces, cuando se ha comprendido su espíritu, es posible trabajar en paz para completar sus detalles".

Con esta declaración de consciente esclavitud Jacobi llega a ser uno de los más extraordinarios trabajadores en la historia de la Matemática. A un amigo tímido, que se queja de que la obra científica es agotadora y que pone en peligro la salud del cuerpo, Jacobi contesta:

"Es natural. Seguramente que he puesto algunas veces en peligro mi salud por exceso de trabajo, pero ¿qué importa? únicamente las coles carecen de nervios y de pesadumbres. ¿Y qué beneficio sacan de su perfecto bienestar?"

En agosto de 1825 Jacobi recibió su título de doctor en filosofía por una disertación sobre las fracciones simples y problemas afines. No necesitamos explicar la naturaleza de esta cuestión, que no tiene gran interés y puede encontrarse expuesta en el segundo curso de Álgebra o de Cálculo integral. Aunque Jacobi trató el caso general de su problema y mostró un ingenio considerable para resolver fórmulas, no puede decirse que la disertación tuviera gran originalidad, o permitiera suponer el soberbio talento del autor. Al mismo tiempo que obtenía su título de doctor en filosofía, Jacobi terminó su aprendizaje para la función docente.

Después de obtener su título Jacobi pronunció conferencias en la Universidad de Berlín sobre las aplicaciones del Cálculo a las superficies curvas y a las curvas alabeadas, (curvas determinadas por las intersecciones de superficies). Ya de estas primeras conferencias puede deducirse que Jacobi era un maestro innato. Más tarde, cuando comenzó a desarrollar sus propias ideas con una velocidad sorprendente, llegó a ser el maestro matemático más inspirado de su época.

Jacobi parece haber sido el primer matemático que en una Universidad condujo a los estudiantes a la investigación, haciéndoles conocer los últimos descubrimientos y dejando a los jóvenes que vislumbraran la elaboración de los nuevos temas que se presentaban ante ellos. Creía que si un individuo se sumerge en agua helada, aprende a nadar o se ahoga. Muchos estudiosos no intentan resolver nada por su propia cuenta hasta que no han dominado todas las cuestiones relativas al problema y conocen la labor realizada por los otros autores. El resultado es que pocos adquieren la capacidad de trabajar con independencia. Jacobi combatió esta erudición dilatoria, desconfiando de los jóvenes que no se lanzan a hacer algo hasta que creen conocer todo lo hecho, y al referirse a esto solía decir: "Vuestro padre no se habría casado ni vosotros estaríais aquí ahora si él hubiera insistido en conocer a todas las mujeres del mundo antes de casarse con una".

Toda la vida de Jacobi estuvo dedicada a la enseñanza y a la investigación, salvo un desagradable paréntesis a que luego nos referiremos, aparte también de los viajes que emprendió para asistir a reuniones científicas en Inglaterra y en el continente o las forzadas vacaciones para recuperar la salud perdida después de un exceso de trabajo.

El talento de Jacobi como maestro le aseguró una posición en la Universidad de Königsberg, en 1826, después de haber permanecido durante seis meses en un cargo semejante en la de Berlín. Un año más tarde, algunos resultados que Jacobi publicó sobre la teoría de números (la reciprocidad cúbica; véase el capítulo sobre Gauss) provocó la admiración de Gauss. Como éste no era un hombre que se emocionara fácilmente, el Ministro de Educación pronto tuvo conocimiento de la obra de Jacobi, y lo colocó a la cabeza de sus colegas para el cargo de profesor asistente, cuando el joven tenía 23 años. Como es natural, los hombres que habían sido pretendientes protestaron contra el ascenso, pero dos años más tarde (1829), cuando Jacobi publicó su primera obra maestra, Fundamenta Nova Theoriae Functionum Ellipticarum (Nuevos fundamentos de la teoría de las funciones elípticas), fueron los primeros en decir que se había hecho justicia y felicitaron a su brillante y joven colega.

En 1832 murió el padre de Jacobi. Hasta entonces no tuvo necesidad de trabajar para vivir. Su prosperidad continuó durante cerca de ocho años, pero entonces la fortuna de la familia se derrumbó. Jacobi se vio privado de su capital cuando tenía 36 años, debiendo además atender al cuidado de su madre que había quedado arruinada.

En esta época Gauss seguía observando la actividad fenomenal de Jacobi con un interés mayor que el meramente científico, pues mucho de los descubrimientos de Jacobi coincidían con algunos de los hechos por Gauss durante su juventud, que nunca habían sido publicados. Se dice que también llegaron a conocerse personalmente. Jacobi acudió a visitar a Gauss, aunque no se conservan detalles de la visita, en septiembre de 1839, al volver a Königsberg después de unas vacaciones en Marienbad para recuperar su salud quebrantada por el exceso de trabajo, Gauss parece que temió que el colapso financiero de Jacobi repercutiera desastrosamente sobre sus estudios matemáticos, pero Bessel le tranquilizó: "Por fortuna ese talento no puede ser destruido, pero me hubiera alegrado que conservara la sensación de libertad que asegura el dinero".

La pérdida de su fortuna no tuvo consecuencias sobre los estudios de Jacobi. Jamás se refirió a sus reveses y se mantuvo trabajando como antes. En 1842 Jacobi y Bessel acudieron a la reunión de la British Association en Manchester, donde el alemán Jacobi y el irlandés Hamilton se encontraron. Fue una de las grandes glorias de Jacobi continuar la obra de Hamilton sobre dinámica, y en cierto sentido completar lo que el irlandés había abandonado en favor de un fuego fatuo. (Véase más adelante).

En este momento de su carrera Jacobi sintió la repentina tentación de dedicarse a algo más brillante que la simple Matemática. Para no interrumpir la historia de su vida científica, cuando hagamos su exposición, nos ocuparemos en este momento de las singulares desventuras políticas del ilustre matemático.

El año siguiente de volver de su viaje de 1842, Jacobi sufrió un completo derrumbe de su salud por exceso de trabajo. En el año 1840, el progreso de la ciencia en Alemania, estaba en las manos de los príncipes y reyes de los pequeños Estados que al fundirse habrían de dar lugar al Imperio alemán. El buen ángel de Jacobi fue el rey de Prusia, quien parece que comprendió el honor que reportaban al reino las investigaciones de Jacobi. En consecuencia, cuando Jacobi cayó enfermo, el buen rey le concedió las vacaciones necesarias para que pudiera reponerse en el suave clima de Italia. Después de cinco meses en Roma y Nápoles con Borchardt (a quien más tarde conoceremos en compañía de Weierstrass) y Dirichlet, Jacobi volvió a Berlín, en junio de 1844. Podía permanecer en Berlín hasta que su salud se restableciera completamente, pero, debido a los celos, no le fue concedida una cátedra en la Universidad, aunque como miembro de la Academia le era permitido pronunciar conferencias sobre los temas que eligiera. Por otra parte, el rey concedió a Jacobi, de su propio peculio, una pensión de cierta importancia.

Después de esta generosidad por parte del Rey podría pensarse que Jacobi se dedicaría en cuerpo y alma a sus Matemáticas. Pero por el imbécil consejo de su médico, comenzó a mezclarse en política "para beneficiar su sistema nervioso". Nunca fue hecha una prescripción más idiota a un paciente, cuyo padecimiento no se ha podido diagnosticar. Jacobi ingirió la dosis. Cuando el movimiento democrático de 1848 se inició, Jacobi estaba ya maduro para dedicarse a las nuevas tareas. Por el consejo de un amigo, precisamente uno de aquellos que se vieron perjudicados hacía 20 años por el ascenso de Jacobi, el ingenuo matemático salió a la arena de la política, con la misma inocencia con que un virtuoso misionero pone pie en una isla de caníbales.

El partido liberal moderado al que su amigo le condujo pensó en Jacobi como candidato para la elección de mayo de 1848. Pero Jacobi jamás pudo ver el interior del Parlamento. Su elocuencia ante el partido convenció a los prudentes miembros de que Jacobi no era el candidato apropiado. Pensaron que Jacobi, el protegido del rey, podría ser tan liberal como él suponía, pero era más probable que fuera un contemporizador, un renegado y un embaucador para los realistas. Jacobi refutó estas insinuaciones en un discurso magnífico lleno de lógica irrefutable, olvidando el axioma de que la lógica es la cosa menos importante para un político práctico. Le abandonaron dejándole con un palmo de narices. No fue elegido y sus sistema nervioso poco se benefició porque su candidatura rodara por las cervecerías y bodegas de Berlín.

Pero las cosas no pararon ahí. ¿Quién puede culpar al Ministro de Educación por querer saber, en el mes de mayo, si la salud de Jacobi se había restablecido suficientemente para que pudiera regresar a Königsberg? ¿A quién puede sorprender que la protección del rey fuera suspendida pocos días más tarde? Un rey puede muy bien permitirse esa petulancia cuando la boca que intenta alimentar pretende morderle. De todos modos, la situación de Jacobi era lo suficientemente desesperada para atraer la simpatía de todos. Casado, y prácticamente sin el menor ahorro, tenía siete hijos pequeños que mantener, además de su mujer. Un amigo de Gotha tomó a su cargo a la mujer y a los hijos, y Jacobi permaneció en la sucia habitación de un modesto hotel para continuar sus investigaciones.

Tenía entonces (1849) 45 años y, exceptuando a Gauss, era el matemático más famoso de Europa. Al conocer sus cuitas, la Universidad de Viena pensó en llevarle a su seno y Littrow, el amigo vienés de Abel, tomó una parte esencial en las negociaciones. Cuando al fin le fue hecha una definida y generosa oferta, Alexander von Humbolt habló con el malhumorado rey, y la pensión fue restablecida. Jacobi pudo continuar en Alemania, que así no se vio privada de su segundo gran hombre. Permaneció en Berlín, gozando nuevamente del favor real, pero completamente apartado de la política.

Ya hemos indicado, a propósito de las funciones elípticas, en donde Jacobi realizó su primera gran obra, el puesto que parece corresponderle; después de todo, actualmente tan sólo es un detalle de la teoría más amplia de las funciones de una variable compleja, que a su vez va borrándose de la cambiante escena, al difuminarse su interés. Como la teoría de las funciones elípticas será mencionada varias veces en los capítulos sucesivos, intentaremos hacer una breve justificación de su al parecer inmerecida importancia.

Ningún matemático puede discutir la pretensión de que la teoría de las funciones de una variable compleja ha sido uno de los campos esenciales de la Matemática del siglo XIX. En este lugar puede hacerse mención de una de las razones de que esta teoría haya tenido tal importancia. Gauss ha demostrado que los números complejos son necesarios y suficientes para demostrar que una ecuación algebraica cualquiera tiene una raíz. ¿Son posibles otros tipos más generales de números"? ¿Cómo pueden surgir tales "números"?

En vez de considerar los números complejos como presentándose por sí mismos en el intento de resolver ciertas ecuaciones sencillas, por ejemplo

x 2 + 1 = 0,

podemos ver también su origen en otro problema de Álgebra elemental. El de la factorización. Para descomponer

x 2 - y 2

en factores de primer grado no se necesita otra cosa que los números enteros positivos y negativos:

( x 2 - y 2 ) = (x + y) (x - y).

Pero el mismo problema si es x 2 + y 2 exige "imaginarios":

Dando un paso en alguno de los muchos posibles caminos que se abren podemos intentar descomponer x 2 + y 2 + z 2 en dos factores de primer grado. ¿Son suficientes los números positivos, negativos e imaginarios? ¿Debemos inventar algún nuevo tipo de número para resolver el problema? Este último es el caso. Se encontró que para los nuevos números necesarios, las reglas del Álgebra común no son válidas en un aspecto importante; ya no es cierto que el orden en que los números se multiplican entre sí es indiferente, o sea que para los nuevos números, no es verdad que

a ´ b sea igual a b ´ a .

Seremos más explícitos cuando nos ocupemos de Hamilton, pero por el momento haremos notar que el problema algebraico elemental de descomponer en factores nos conduce rápidamente a regiones donde son inadecuados los números complejos.

¿Hasta dónde podremos ir, cuáles son los números posibles más generales, si insistimos en que para esos números haya que mantener las leyes familiares del Álgebra común? A finales del siglo XIX se demostró que en los números complejos x + ¡y , donde x, y son números reales e so los más generales en que el Álgebra común es aplicable. Los números reales, recordaremos, corresponden a las distancias medidas siguiendo una línea recta fija en ambos sentidos (positivo, negativo) desde un punto fijo, y la gráfica de una función, f (x) trazada como y = f(x), en Geometría cartesiana, nos da una descripción de una función y de una variable real x. Los matemáticos de los siglos XVIII y XIX imaginaban las funciones como pertenecientes a este tipo. Pero si el Álgebra común y sus extensiones al Cálculo que ellos aplicaban a sus funciones son igualmente aplicables a los números complejos, que incluyen a los números reales como un caso particular, era natural que muchas de las cosas que los primeros analistas encontraron sean en una mitad discutibles. En particular, el Cálculo integral presentó muchas anomalías inexplicables que sólo fueron aclaradas cuando el campo de operaciones se amplió en el mayor grado posible y las funciones de variable compleja fueron introducidas por Gauss y Cauchy.

La importancia de las funciones elípticas en todo este vasto y fundamental desarrollo no puede ser desconocida. Gauss, Abel y Jacobi, por su detenida y detallada elaboración de la teoría de funciones elípticas, donde los números complejos aparecen inevitablemente, proporcionan un terreno apropiado para el descubrimiento y mejoramiento de los teoremas generales en la teoría de funciones de una variable compleja. Las dos teorías parecen haber sido designadas por el destino para complementarse recíprocamente, existe una razón para esto en la profunda conexión de las funciones elípticas con la teoría gaussiana de las formas cuadráticas, que las limitaciones del espacio nos obligan a omitir. Sin las innumerables claves para una teoría general, proporcionadas por los ejemplos especiales de teoremas de mayor alcance que se presentan en las funciones elípticas, la teoría de funciones de una variable compleja se habría desarrollado mucho más lentamente de lo que lo hizo el teorema de Liouville, toda la cuestión de la periodicidad múltiple con su influencia sobre la teoría de las funciones algebraicas y sus integrales serán recordadas por los lectores matemáticos. Si algunos de estos grandes monumentos de la Matemática del siglo XIX se han perdido ya en la niebla del ayer, sólo necesitamos recordar que el teorema de Picard sobre valores excepcionales en el entorno de un punto singular esencial, uno de los más sugestivos en el Análisis corriente, fue demostrado por primera vez mediante recursos que se originaron en la teoría de las funciones elípticas. Con este breve resumen que nos muestra el porqué las funciones elípticas fueron importantes en las Matemáticas del siglo XIX, podemos pasar a la obra cardinal de Jacobi en el desarrollo de la teoría.

La historia de las funciones elípticas es muy complicada, y aunque de considerable interés para los especialistas, no es probable que atraiga al lector general. En consecuencia, omitiremos los datos (cartas de Gauss, Abel, Jacobi, Legendre y otros) sobre las cuales está basado el siguiente resumen.

En primer lugar se ha establecido que Gauss se anticipó a Abel y Jacobi en 27 años en algunos de sus más notables trabajos. En efecto, Gauss dice que "Abel ha seguido exactamente el mismo camino que yo seguí en 1798". Esta afirmación es exacta y así lo demuestran las pruebas que fueron publicadas después de la muerte de Gauss. Segundo, parece que puede aceptarse que Abel se anticipó a Jacobi en ciertos detalles, pero que Jacobi consiguió grandes progresos ignorando completamente la obra de su rival.

Una propiedad capital de las funciones elípticas es su doble periodicidad (descubierta en 1825 por Abel). Si E (x) es una función elíptica, habrá dos números distintos, es decir p 1 , p 2 , tales que

E(x + p 1 ) = E(x)

E(x + P 2 ) = E(x)

para todos los valores de la variable x .

Finalmente, por lo que se refiere a la faceta histórica, mencionaremos el papel algo trágico desempeñado por Legendre. Durante cuarenta años estuvo esclavo de las integrales elípticas, (no de las funciones elípticas), sin darse cuenta de que Abel y Jacobi vieron casi al mismo tiempo, que invirtiendo su punto de vista todo el problema se simplificaba infinitamente. Las integrales elípticas se presentan primeramente en el problema de hallar la longitud de un arco de elipse. A lo que hemos dicho acerca de la inversión al ocuparnos de Abel, puede añadirse lo siguiente enunciado en símbolos, que nos mostrará claramente el punto en que Legendre se equivocó.

Si R(t) es un polinomio en t , una integral del tipo

se llama una integral elíptica si R(t) es de tercer o de cuarto grado; si R(t) es de tercer grado la integral se llama abeliana (porque gran parte de la obra de Abel se refiere a tales integrales). Si R(t) es de sólo segundo grado, la integral se puede calcular por medio de funciones elementales. En particular

(sen -1 x se lee "un ángulo cuyo seno es x"). Es decir, si

consideraremos el límite superior, x, de la integral, como una función de la integral misma, o sea de y . Esta inversión del problema elimina la mayor parte de las dificultades con que Legendre tropezó durante cuarenta años. La exacta teoría de estas importantes integrales pudo progresar una vez eliminada esta obstrucción, como los trozos de leño siguen la corriente del río eliminado el remanso.

Cuando Legendre supo lo que Abel y Jacobi habían hecho les alentó con suma cordialidad, aunque pudo darse cuenta que esta forma más simple de abordar el problema [de la inversión], anulaba lo que había sido su obra maestra de 40 años de trabajo. Para Abel el elogio de Legendre llegó demasiado tarde desgraciadamente, pero para Jacobi fue un estímulo para seguir trabajando. En una de las correspondencias más interesantes de toda la literatura científica, el joven de 20 años y el veterano, cumplido los 70, se expresan recíprocamente sus elogios y gratitud. La única nota discordante es el menosprecio manifiesto de Legendre por Gauss, a quien Jacobi defiende vigorosamente. Pero como Gauss jamás consistió en publicar sus investigaciones, había planeado una obra importante sobre las funciones elípticas cuando Abel y Jacobi se le anticiparon en la publicación, difícilmente puede culparse a Legendre por tener una opinión totalmente equivocada. Por falta de espacio debemos omitir párrafos de esta hermosa correspondencia. (Las cartas están publicadas en el volumen 1 de la Werke de Jacobi).

La creación, en unión con Abel, de la teoría de funciones elípticas fue sólo una pequeña, aunque importante, parte de la enorme producción de Jacobi. Para sólo enumerar todos los campos que enriqueció en su breve vida de trabajo de menos de un cuarto de siglo, sería necesario más espacio de lo que podemos dedicar a un hombre en un libro como éste. Por tanto, mencionaremos tan sólo algunas de las cosas más importantes que hizo.

Jacobi fue el primero en aplicar las funciones elípticas a la teoría de los números. Esta iba a ser la diversión favorita para algunos de los grandes matemáticos que sucedieron a Jacobi. Es un tema curioso, donde los arabescos de la ingeniosa Álgebra revelan inesperadamente relaciones, hasta entonces insospechadas, entre todos los números comunes. Por este medio Jacobi demostró la famosa afirmación de Fermat de que cualquier número entero, 1, 2, 3, ... es una suma de cuatro cuadrados de números enteros (siendo considerado el cero como un entero), y además su bello análisis le permitió ver las diversas ma neras en que cualquier entero puede ser expresado como tal suma.

Para quienes gustan de aspectos más prácticos, podemos citar la obra de Jacobi en dinámica. En este tema de fundamental importancia para la ciencia aplicada y para la física matemática, Jacobi hizo el primer significativo progreso más allá del logrado por Lagrange y Hamilton. Los lectores familiarizados con la mecánica de los cuantos recordarán el importante papel desempeñado en algunos de los aspectos de esa revolucionaria teoría por la ecuación Hamilton-Jacobi. Su obra sobre ecuaciones diferenciales inicia una nueva era.

En Álgebra para mencionar una sola cosa entre muchas, Jacobi ideó la teoría de determinantes en la simple forma ahora familiar a todo el que estudie segundo curso de Álgebra.

Para la teoría de la atracción de Newton-Laplace-Lagrange, Jacobi hizo contribuciones especiales mediante sus bellas investigaciones sobre las funciones que se repiten varias veces en esa teoría y mediante aplicaciones de las funciones elípticas y abelianas a la atracción de los elipsoides.

De una originalidad aun mayor es su descubrimiento de las funciones abelianas. Tales funciones surgen al invertir una integral abeliana, en la misma forma que las funciones elípticas surgen de la inversión de una integral elíptica. (Los términos técnicos fueron mencionados a principio de este capítulo). Aquí no tenía nada que le guiara y durante largo tiempo tuvo que caminar en un laberinto sin claves. Las funciones inversas apropiadas en el caso más sencillo son funciones de dos variables, que tienen cuatro períodos; en el caso general, las funciones tienen n variables y 2n períodos; las funciones elípticas corresponden a n = 1. Este descubrimiento fue para el Análisis del siglo XIX lo que el descubrimiento de Colón fue para la geografía del siglo XV.

Jacobi no murió tempranamente por exceso de trabajo, como sus amigos predecían, sino de viruela (18 de febrero de 1851), teniendo 47 años. Antes de terminar citaremos su respuesta al gran físico matemático francés que reprochaba a Abel y Jacobi de "gastar" su tiempo en las funciones elípticas, mientras aun debían ser resueltos problemas sobre conducción del calor.

"Cierto es dice Jacobi, que M. Fourier opina que el principal objeto de la Matemática es la utilidad pública y la explicación de los fenómenos naturales; pero un filósofo como él debía saber que el único objeto de la ciencia es honrar la mente humana, y que bajo este título un problema referente a los números es tan digno de estima como una cuestión acerca del sistema del mundo".

Si Fourier reviviera quedaría asombrado de lo que le ha ocurrido al Análisis que él inventó para "utilidad pública y para la explicación de los fenómenos naturales". Por lo que se refiere a la física matemática, el Análisis de Fourier hoy tan sólo constituye un detalle en la infinitamente más vasta teoría de los problemas del valor-límite, y es en la más pura de la Matemática pura donde el Análisis que Fourier inventó encuentra su interés y su justificación.

Hosted by www.Geocities.ws

1