next up previous contents
Next: The complex numbers from Up: Pythagorean Triples, etc. Previous: 60 degree triangle preserving   Contents

120 degree triples and 60 degree triples from Fibonacci numbers


Figure 2: 120 degree triangle
\includegraphics[width=4.0in]{../../../texdocs/ip7}


A 120 degree triple is a solution, $ (a,b,c)$ , in positive integers to the 120 degree triangle equation

$\displaystyle a^2+b^2-2ab\cos120^{ \circ}=a^2+b^2+ab = c^2.
$

If additionally $ a, b$ ,and $ c$ are pairwise relatively prime then $ (a,b,c)$ is a primitive 120 degree triple.

$ (a,b,c)$ is a primitive 120 degree triple if and only if there exists relative prime integers $ u$ and $ v$ , $ u > v$ and $ 3\nmid u-v$ such that

$\displaystyle a=u^2-v^2,\quad b=2uv+v^2,$   and$\displaystyle \quad c=u^2+v^2+uv.
$ (41)

See (8) for a proof.


For $ n>2$ , the $ n^{th}$ Fibonacci number is given by $ F_n=F_{n-2}+F_{n-1}$ where $ F_1=F_2=1$ . The first few are $ 1,1,2,3,5,8,13,21,34$ .


Some notation:



.

Claim 10   If $ F_n,  F_{n+1},  F_{n+2},  F_{n+3}$ , and $ F_{n+4}$ are 5 consecutive Fibonacci numbers then

$\displaystyle \Bigl(F_nF_{n+3},   F_{n+1}F_{n+4},   F_{n+1}F_{n+4}+F_nF_{n+2}\Bigr)$

is a 120 degree triple. And if $ \colorbox{Goldenrod}{\boxed{3\nmid
F_n}}$ then it's a primitive triple. That is

$\displaystyle (F_nF_{n+3})^2+(F_{n+1}F_{n+4})^2+(F_nF_{n+3})(F_{n+1}F_{n+4})=(F_{n+1}F_{n+4}+F_nF_{n+2})^2
$

where each side of the triangle is relatively prime to each of the other two sides.


Proof. First note that any two consecutive Fibonacci numbers are relatively prime.

Proof. This is true if $ F_n=1.$ So assume $ F_n>1.$ Let $ d$ be an integer greater than zero. If $ d\mid F_{n+1}=F_{n-1}+F_n$ and $ d\mid F_{n}$ then $ d\mid F_{n-1}+F_n - F_n =F_{n-1}.$ Similarly, since $ d\mid F_n =F_{n-2}+F_{n-1}$ and $ d\mid F_{n-1}$ then $ d\mid
F_{n-2}.$ Continue in this manner until it's found that $ d\mid
F_{n-(n-1)}=F_1=1.$ Thus, $ \bigl(F_{n+1},F_n\bigr)=\bigl(F_{n+1},1\bigr)=1.$

Hence $ F_{n+1}$ and $ F_n$ are relatively prime. $ \qedsymbol$


Let $ v=F_{n+1}$ and $ u=F_{n+2}$ . Then $ 3\nmid F_n\Rightarrow 3\nmid
F_n+F_{n+1}-F_{n+1} =F_{n+2}-F_{n+1}=u-v$ . So, we have

  1. $ F_n=u-v$ .
  2. $ F_{n+1}=v$ .
  3. $ F_{n+2}=u$ .
  4. $ F_{n+3}=v+u$ .
  5. $ F_{n+4}=v+2u$ .
From equation (48),

$\displaystyle a$ $\displaystyle =u^2-v^2=(u-v)(u+v)=F_nF_{n+3},$    
$\displaystyle b$ $\displaystyle =2uv+v^2=v(v+2u)=F_{n+1}F_{n+4},$    
and$\displaystyle     c$ $\displaystyle =u^2+v^2+uv=v(v+2u)+(u-v)u=F_{n+1}F_{n+4}+F_nF_{n+2}.$    

$ \qedsymbol$

Example

Let $ F_n=5$ , then $ F_{n+1}=8$ , $ F_{n+2}=13$ , $ F_{n+3}=21$ , and $ F_{n+4}=34$ . So

  $\displaystyle F_nF_{n+3}= 5\cdot 21=105,$    
  $\displaystyle F_{n+1}F_{n+4}=8\cdot 34=272,$    
and$\displaystyle \quad$ $\displaystyle F_{n+1}F_{n+4}+F_nF_{n+2}=8\cdot 34+5\cdot 13=337.$    

Then

$\displaystyle 105^2+272^2+105\cdot 272=337^2$

.


This works for generalized Fibonacci numbers also. That is, choose any two positive integers $ N_0$ and $ N_1$ , then obtain integers $ N_2, N_3$ , and $ N_4$ thusly,

  1. $ N_0+N_1=N_2$ .
  2. $ N_1+N_2=N_3$ .
  3. $ N_2+N_3=N_4$ .
Set $ N_1=v$ and $ N_2=u$ . We have
  1. $ N_0=u-v$ .
  2. $ N_1=v$ .
  3. $ N_2=u$ .
  4. $ N_3=v+u$ .
  5. $ N_4=v+2u$ .
Then $ (N_0N_3,  N_1N_4,  N_1N_4+N_0N_2)$ is a 120 degree triple.


Example: If $ N_0=13$ and $ N_1=1$ then $ N_2=14, N_3=15$ , and $ N_4=29$ . Therefore

$\displaystyle (13\cdot 15)^2+(1\cdot 29)^2+(13\cdot 15)(1\cdot 29)=(1\cdot
29+13\cdot 14)^2.
$


Sixty degree triangles


Figure 3: 60 degree triangles
\includegraphics[width=4.5in]{../../../texdocs/ip8}


Construct equilateral triangles on each of the shorter legs of the $ 120^{ \circ}$ triangle in Figure (2) creating the two $ 60^{ \circ}$ triangles $ ABD$ and $ ACD$ as shown in figure (3). Thus,

  $\displaystyle \bigl(F_{n}F_{n+3},   F_{n}F_{n+3}+F_{n+1}F_{n+4},   F_{n+1}F_{n+4}+F_nF_{n+2}\bigr)$    
and$\displaystyle \quad$ $\displaystyle \bigl(F_{n}F_{n+3}+F_{n+1}F_{n+4},   F_{n+1}F_{n+4},   F_{n+1}F_{n+4}+F_nF_{n+2}\bigr)$    

are $ 60^{ \circ}$ triples. That is,

  $\displaystyle (F_{n}F_{n+3})^2+(F_{n}F_{n+3}+F_{n+1}F_{n+4})^2-(F_{n}F_{n+3})(F_{n}F_{n+3}+F_{n+1}F_{n+4})$    
$\displaystyle =$ $\displaystyle (F_{n}F_{n+3}+F_{n+1}F_{n+4})^2+(F_{n+1}F_{n+4})^2-(F_{n}F_{n+3}+F_{n+1}F_{n+4})(F_{n+1}F_{n+4})$    
$\displaystyle =$ $\displaystyle (F_{n+1}F_{n+4}+F_nF_{n+2})^2.$    

Download this section: fibo.pdf or fibo.ps



next up previous contents
Next: The complex numbers from Up: Pythagorean Triples, etc. Previous: 60 degree triangle preserving   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1