next up previous contents
Next: Primitive Pythagorean triangles where Up: Pythagorean Triples, etc. Previous: Finding m and n   Contents

Pythagorean triples and the divisors 3, 4, and 5.


Claim 3   If $ (a,b,c)$ is a solution in positive integers to the equation $ a^2+b^2=c^2$ then 3 divides $ a$ or $ b$ , 4 divides $ a$ or $ b$ , and 5 divides $ a$ , $ b$ , or $ c$ .

Proof. (The divisor 3)

Every integer squared equals 0 or 1 modulo 3. Hence, if $ 3\nmid ab$ then $ a^2+b^2=c^2= 1+1$ =2 modulo 3. But $ c^2=$ 0 or 1 modulo 3. Therefore $ 3 \vert ab$ . $ \qedsymbol$

Proof. (The divisor 4)

Every square integer equals 0, 1, 4, or 9 modulo 16. If $ 4\nmid b$ then $ b^2$ equals either of 1, 4, or 9 modulo 16. But none of $ 1+1, 1+4, 1+9, 4+4, 4+9$ , or $ 9+9$ equals 0, 1, 4, or 9 modulo 16. However, $ c^2$ equals 0, 1, 4 or 9 modulo 16. Hence $ a^2$ must equal 0 modulo 16. That is, 16 divides $ a^2$ and 4 divides $ a$ . $ \qedsymbol$

Proof. (The divisor 5)

Every integer squared equals 0, 1, or 4 modulo 5. If $ 5\nmid ab$ then $ a^2+b^2=$ 1+1, 1+4, or 4+4 equals 2, 0, or 3 modulo 5. But $ c^2$ equals 0, 1, or 4 modulo 5. Therefore $ a^2+b^2=c^2=$ 0 modulo 5 implies $ 5\mid c$ . $ \qedsymbol$


A few generalizations


In the section entitled Primitive Pythagorean triangles where the hypotenuse is to a power the following generalizations are found for the divisors 3, 4, and 5.

Let $ a^2+b^2=\left(c^k\right)^2$ where $ k\in \mathbb{Z}^+$ . Let $ d$ be a positive integer divisor of $ k$ .

i.
If $ p=4d-1$ is a prime then $ p$ divides either $ a$ or $ b$ .
ii.
If $ d=2^j$ , $ j$ a non-negative integer, then $ 2^{j+2}$ divides either $ a$ or $ b$ .
iii.
If $ q=4d+1$ is a prime then $ q$ divides one of $ a, b$ , or $ c$

Set $ d=1$ then $ p=4(1)-1=3$ , $ d=2^j=1$ implies $ j=0$ implies $ 2^{0+2}=4$ , and $ q=4(1)+1=5$ .


next up previous contents
Next: Primitive Pythagorean triangles where Up: Pythagorean Triples, etc. Previous: Finding m and n   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1