next up previous contents
Next: Primitive Pythagorean triangles where Up: Pythagorean Triples, etc. Previous: Pythagorean triple preserving matrices   Contents

Primitive Pythagorean triangles where the hypotenuse is to a power.

This section in pdf form triples3.pdf


It is well-known that if $ (a,b,c)$ is a solution to a Pythagorean triangle, where $ c$ is the hypotenuse, then the Mersenne prime $ 3$ divides $ ab$ , and the Fermat prime $ 5$ divides $ abc$ . In this section, I show that if $ \left(a,b,c^{2^j}\right)$ is a solution to a primitive Pythagorean triangle, where $ j$ is a non-negative integer, then every Mersenne prime less than or equal to $ \left(2^{j+2}-1\right)$ divides $ ab$ , and every Fermat prime less than or equal to $ \left(2^{j+2}+1\right)$ divides $ abc$ .


Introduction


If $ (a,b,c)$ is a solution to the Pythagorean triangle $ a^2+b^2=c^2$ then $ (a,b,c)$ is a Pythagorean triple. If, additionally, $ a, b$ , and $ c$ are pairwise relatively prime then $ (a,b,c)$ is a primitive Pythagorean triple (PPT), and $ a^2+b^2=c^2$ is a Primitive Pythagorean triangle.

All PPT's are given by the parametric equations

$\displaystyle a=m^2-n^2, \quad b=2mn,$   and$\displaystyle \quad c=m^2+n^2$ (15)

where $ m$ and $ n$ are relatively prime, positive integers of opposite parity, and $ m > n$ .

When computing the PPT $ \left(a,b,c^{2^j}\right)$ , it is convenient to express $ a, b$ , and $ c$ in terms of Gaussian integers $ \mathbb{Z}[i]$ . To do so, let $ m > n$ where $ m$ and $ n$ are relatively prime, positive integers having opposite parity. Let $ z=m+ni$ and $ \bar{z}=m-ni$ . And let $ j$ be a non-negative integer. Then there exists positive integers $ u$ and $ v$ such that

$\displaystyle u=\left\vert\frac{z^{2^j}+\bar{z}^{2^j}}{2}\right\vert=\left\vert\frac{(u+vi)+(u-vi)}{2}\right\vert,$   and$\displaystyle \quad
v=\left\vert\frac{z^{2^j}-\bar{z}^{2^j}}{2i}\right\vert=\left\vert\frac{(u+vi)-(u-vi)}{2i}\right\vert.
$

Thus, all primitive Pythagorean triples of the form $ \left(a,b,c^{2^j}\right)$ are given by the parametric equations

$\displaystyle a=u^2-v^2=\left\vert\frac{(m+ni)^{2^{j+1}}+(m-ni)^{2^{j+1}}}{2}\right\vert,$ (16)

$\displaystyle b=2uv=\left\vert\frac{(m+ni)^{2^{j+1}}-(m-ni)^{2^{j+1}}}{2i}\right\vert,$ (17)

and$\displaystyle \quad c^{2^j}=u^2+v^2=\left(m^2+n^2\right)^{2^j} .$ (18)

Then

$\displaystyle 2ab=\left\vert\frac{(m+ni)^{2^{j+2}}-(m-ni)^{2^{j+2}}}{2i}\right\vert.$ (19)

Some prime divisors of primitive Pythagorean triangles.


If $ a, b, c,  k$ and $ d$ are positive integers such that $ a^2+b^2=\left(c^k\right)^2$ is a primitive Pythagorean triangle, and if $ d$ divides $ k,$ then we are going to show the following:

Previously, it was shown (here), that those three items are true for the case $ d=1.$

I will, first, state and prove a theorem on the divisors of $ ab$ , and of $ abc$ , where $ \left(a,b,c^k\right)$ is a PPT. Then the case where $ k=2^j$ will be proven in the corollary. If $ k=2^j$ in equation (19) then

$\displaystyle 2ab=\left\vert\frac{(m+ni)^{4k}-(m-ni)^{4k}}{2i}\right\vert.
$

Theorem 1   Let $ a^2+b^2=\left(c^k\right)^2$ be a primitive Pythagorean triangle where $ k\in \mathbb{Z}^+$ . Let $ d$ be a positive integer divisor of $ k$ . Let $ p=4d-1$ and $ q=4d+1$ .
(a)
If $ p$ is a prime then $ p\vert ab$ .
(b)
If $ q$ is a prime then $ q\vert abc$ .

Proof. [Proof of part (a)] Since $ m+ni\in \mathbb{Z}[i]$ , then $ \left((m+ni)^{\frac{k}{d}}\right)^{4d}=(M+Ni)^{4d}$ for some $ M ,N\in \mathbb{Z}$ . If $ p=4d-1$ is a prime, then since $ -i=i^{4d-1}=i^p$ ,

$\displaystyle p\vert(M+Ni)^p-(M-Ni)=\bigl((M+Ni)^p-M^p-(Ni)^p\bigr)+(M^p-M)-i(N^p-N).
$

Which implies

$\displaystyle p\vert(M+Ni)^{p+1}-\left(M^2+N^2\right).
$

Similarly,

$\displaystyle p\vert(M-Ni)^{p+1}-\left(M^2+N^2\right).
$

Which implies

$\displaystyle p  $    divides $\displaystyle   
(M+Ni)^{p+1}-(M-Ni)^{p+1}=(m+ni)^{4k}-(m-ni)^{4k}=4abi.
$

Therefore $ p\vert ab$ . $ \qedsymbol$

Proof. [Proof of part (b)] If $ q=4d+1$ is a prime, then since $ i=i^{4d+1}=i^q$ ,

$ q\vert(M+Ni)^q-(M+Ni)$ where $ M+Ni=(m+ni)^{\frac{k}{d}}$ and $ M-Ni=(m-ni)^{\frac{k}{d}}$ . Which implies

$\displaystyle q\vert(M+Ni)\bigl((M+Ni)^{q-1}-1\bigr).
$

Similarly

$\displaystyle q\vert(M-Ni)\bigl((M-Ni)^{q-1}-1\bigr).
$

Then, if

$\displaystyle q\nmid (M+Ni)(M-Ni)=M^2+N^2=c^{\frac{k}{d}},
$

$\displaystyle q  $ divides $\displaystyle   (M+Ni)^{q-1}-(M-Ni)^{q-1}=(m+ni)^{4k}-(m-ni)^{4k}=4abi.
$

Therefore $ q\vert abc$ . $ \qedsymbol$

Corollary 1  

Let $ a^2+b^2=\left(c^{2^j}\right)^2$ be a primitive Pythagorean triangle where $ j$ is a nonnegative integer. Let $ M$ be any Mersenne prime less than or equal to $ 2^{j+2}-1$ . And, let $ F$ be any Fermat prime less than or equal to $ 2^{j+2}+1$ . Then

$\displaystyle \boxed{M  \mbox{divides}  ab, \mbox{ and
}F \mbox{ divides }abc.}
$

Proof. Let $ k=2^j$ in theorem (1). Then

$\displaystyle d$ $\displaystyle =\left\{ 2^0, 2^1, 2^2,\ldots ,2^{j-1}, 2^j \right\},$    
$\displaystyle 4d-1$ $\displaystyle =\left\{ 2^2-1, 2^3-1, 2^4-1,\ldots ,2^{j+1}-1, 2^{j+2}-1 \right\},$    
and $\displaystyle 4d+1$ $\displaystyle = \left\{ 2^2+1, 2^3+1, 2^4+1,\ldots ,2^{j+1}+1, 2^{j+2}+1 \right\}.$    

From Theorem (1), part (a), every prime in the set $ 4d-1$ divides $ ab$ . From Theorem (1), part (b), every prime in the set $ 4d+1$ divides $ abc$ . $ \qedsymbol$


The divisor $ \mathbf{4=2^{0+2}}$


Theorem 2   If

$\displaystyle a^2+b^2=\left(c^{2^j}\right)^2$

is a primitive Pythagorean triangle where $ j$ is a nonnegative integer then $ 2^{j+2}$ divides $ ab$ .

Proof. (by induction on $ j$ ) If $ j=0$ then

$\displaystyle a^2+b^2=\left(c^{2^0}\right)^2=c^2 .$

So there exists integers $ m$ and $ n$ , one odd the other even, such that $ a=m^2-n^2$ and $ b=2mn$ . Hence $ 4=2^{0+2}$ divides $ ab$ . Assume true for $ j$ , then

$\displaystyle \left(c^{2^{j+1}}\right)^2=\left[\left(c^{2^j}\right)^2\right]^2
=\left(a^2+b^2\right)^2
=\left(a^2-b^2\right)^2+(2ab)^2$

. Let $ a_1=a^2-b^2$ and $ b_1=2ab$ . Then if $ 2^{j+2}$ divides $ ab$ , $ 2^{(j+1)+2}$ divides $ a_1b_1$ . $ \qedsymbol$


Examples



Table 4: Divisors of primitive Pythagorean triples
Triangle $ k$ $ d$ Divisors of $ a$ or $ b$ Divisors of $ a, b,$ or $ c$
$ a^2+b^2=c^2$ 1 1 $ 3, 2^2$ $ 3, 2^2, 5$
$ a^2+b^2=\left(c^2\right)^2$ 2 1,2 $ 3, 7, 2^3$ $ 3, 5, 7, 2^3$
$ a^2+b^2=\left(c^3\right)^2$ 3 1,3 $ 3, 2^2, 11$ $ 3, 2^2, 5, 11, 13$
$ a^2+b^2=\left(c^4\right)^2$ 4 1,2,4 $ 3, 7, 2^4$ $ 3, 5, 7, 2^4, 17$
$ a^2+b^2=\left(c^5\right)^2$ 5 1,5 $ 3, 2^2, 19$ $ 3, 2^2, 5, 19$
$ a^2+b^2=\left(c^6\right)^2$ 6 1,2,3,6 $ 3, 7, 2^3, 11, 23$ $ 3, 5, 7, 2^3, 11, 13, 23$
$ a^2+b^2=\left(c^7\right)^2$ 7 1,7 $ 3, 2^2$ $ 3, 2^2, 5, 29$
$ a^2+b^2=\left(c^8\right)^2$ 8 1,2,4,8 $ 3, 7, 31, 2^5$ $ 3, 5, 7, 17, 31, 2^5$
$ a^2+b^2=\left(c^9\right)^2$ 9 1,3,9 $ 3, 2^2, 11$ $ 3, 2^2, 5, 11, 13, 37$
$ a^2+b^2=\left(c^{10}\right)^2$ 10 1,2,5,10 $ 3, 7, 2^3, 19$ $ 3, 5, 7, 2^3, 19, 41$




next up previous contents
Next: Primitive Pythagorean triangles where Up: Pythagorean Triples, etc. Previous: Pythagorean triple preserving matrices   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1