next up previous contents
Next: Pythagorean triples and the Up: Pythagorean Triples, etc. Previous: Generating all Pythagorean Triples   Contents

Finding m and n if given a primitive Pythagorean triple

Have you ever been, while attending a rap concert, political gathering, or pro-wrestling event, asked to find numerical values for the parameters used to generate a particular primitive Pythagorean triple? And did you suffer embarrassment and scorn because you did not know how to perform such a simple task? If you answered yes to those two questions then this page is for you.


1

This section in pdf form. triplesmn.pdf

Claim 1   If $ a^2+b^2=c^2$ is a primitive Pythagorean triangle, where $ a$ is odd, then each of the fractions

$\displaystyle \frac{c+a}{b},\quad \frac{c+b+a}{c+b-a},\quad
\frac{b}{c-a},$ and $\displaystyle   \frac{a+c-b}{a+b-c}$

(each fraction reduced to lowest terms) is equal to $ \frac{m}{n}$ where

$\displaystyle a=m^2-n^2, \quad b=2mn,$   and$\displaystyle \quad c=m^2+n^2 .
$

Proof.

$\displaystyle \frac{c+a}{b}$ $\displaystyle =\frac{\left(m^2+n^2\right)+\left(m^2-n^2\right)}{2mn}= \frac{2m^2}{2mn} =\frac{m}{n} ,$    
     
$\displaystyle \frac{c+b+a}{c+b-a}$ $\displaystyle =\frac{\left(m^2+n^2\right)+(2mn)+\left(m^2-n^2\right)} {\left(m^2+n^2\right)+(2mn)-\left(m^2-n^2\right)}=\frac{2m(m+n)}{2n(n+m)}=\frac{m}{n} ,$    
     
$\displaystyle \frac{b}{c-a}$ $\displaystyle =\frac{2mn}{\left(m^2+n^2\right)-\left(m^2-n^2\right)} =\frac{2mn}{2n^2}=\frac{m}{n} ,$    
     
and$\displaystyle \quad \frac{a+c-b}{a+b-c}$ $\displaystyle =\frac{\left(m^2-n^2\right)+\left(m^2+n^2\right)-(2mn)} {\left(m^2-n^2\right)+(2mn)-\left(m^2+n^2\right)}=\frac{2m(m-n)}{2n(m-n)}=\frac{m}{n} .$    

$ \qedsymbol$


Claim 2   If $ a^2+b^2=c^2$ is a primitive Pythagorean triangle, where $ a$ is even, then each of the fractions

$\displaystyle \frac{c+a}{b},\quad \frac{c+b+a}{c+b-a},\quad
\frac{b}{c-a},$ and $\displaystyle   \frac{a+c-b}{a+b-c}$

(each fraction reduced to lowest terms) is equal to $ \frac{m}{n}$ where

$\displaystyle a=\frac{m^2-n^2}{2}, \quad b=mn,$   and$\displaystyle \quad
c=\frac{m^2+n^2}{2} .
$

Proof. Since $ a,b,c$ is a PPT, there exists relatively prime, positive integers, $ u$ and $ v$ , $ u > v$ , $ u$ and $ v$ of opposite parity such that

$\displaystyle a=2uv ,\quad b=u^2-v^2 ,$   and$\displaystyle \quad c=u^2+v^2 .
$

So,

$\displaystyle \frac{c+a}{b}=$ $\displaystyle \frac{u^2+v^2+2uv}{u^2-v^2}=\frac{u+v}{u-v} .$    
     
$\displaystyle \frac{c+b+a}{c+b-a}=$ $\displaystyle \frac{u^2+v^2+u^2-v^2+2uv}{u^2+v^2+u^2-v^2-2uv} =\frac{2u(u+v)}{2u(u-v)}=\frac{u+v}{u-v} .$    
     
$\displaystyle \frac{b}{c-a}=$ $\displaystyle \frac{u^2-v^2}{u^2+v^2-2uv}=\frac{(u+v)(u-v)}{(u-v)^2}=\frac{u+v}{u-v} .$    
     
$\displaystyle \frac{a+c-b}{a+b-c}=$ $\displaystyle \frac{2uv+u^2+v^2-u^2+v^2}{2uv+u^2-v^2-u^2-v^2}=\frac{2v(u+v)}{2v(u-v)} =\frac{u+v}{u-v} .$    

Let $ m=u+v$ and $ n=u-v$ . Then

$\displaystyle u=\frac{m+n}{2}$   and$\displaystyle \quad v=\frac{m-n}{2} .
$

Hence, we have,

$\displaystyle a=2uv=\frac{m^2-n^2}{2},\quad b=u^2-v^2=mn,$   and$\displaystyle \quad c=u^2+v^2=\frac{m^2+n^2}{2} .
$

$ \qedsymbol$


Examples


$ 3^2+4^2=5^2$ is a primitive Pythagorean triple and 3 is odd. So, let $ a=3$ . Then

$\displaystyle \frac{5+3}{4}=\frac{5+4+3}{5+4-3}=\frac{4}{5-3}=\frac{3+5-4}{3+4-5}=\frac{2}{1} .
$

Hence

$\displaystyle 3=2^2-1^2,\quad 4=2(2)(1),$   and$\displaystyle 5=2^2+1^2 .
$


$ 20^2+21^2=29^2$ is a PPT and 21 is odd. So

$\displaystyle \frac{29+21}{20}=\frac{29+20+21}{29+20-21}=\frac{20}{29-21}=\frac{21+29-20}{21+20-29}=\frac{5}{2} .
$

Hence,

$\displaystyle 20=2(5)(2),\quad 21=5^2-2^2 ,$   and$\displaystyle \quad
29=5^2+2^2 .
$


$ 4^2+3^2=5^2$ is a primitive Pythagorean triple and 4 is even. So, let $ a=4$ . Then

$\displaystyle \frac{5+4}{3}=\frac{5+3+4}{5+3-4}=\frac{3}{5-4}=\frac{4+5-3}{4+3-5}=\frac{3}{1} .
$

Thus

$\displaystyle 4=\frac{3^2-1^2}{2}, \quad 3=(3)(1),$   and$\displaystyle \quad
5=\frac{3^2+1^2}{2} .
$

$ 20^2+21^2=29^2$ is a PPT and 20 is even. So let a=20. Then

$\displaystyle \frac{29+20}{21}=\frac{29+21+20}{29+21-20}=\frac{21}{29-20}=\frac{20+29-21}{20+21-29}=\frac{7}{3} .
$

Therefore

$\displaystyle 20=\frac{7^2-3^2}{2}, \quad 21=(7)(3),$   and$\displaystyle \quad
29=\frac{7^2+3^2}{2} .
$


next up previous contents
Next: Pythagorean triples and the Up: Pythagorean Triples, etc. Previous: Generating all Pythagorean Triples   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1