Publications

 

Asymmetric Synthesis     Natural Product Synthesis      Cross-Coupling        Halogen Bond Catalysis    Oxidation

Certificate of Reliable Chemistry     Certificate of Reproducibility   Home


                                                                                                                                                2022  
 36.Oxygen Bridged Bimetallic [Cu-O-Se] Catalyst for Sonogashira Cross-Coupling.   New. J. Chem, 2022;  DOI: 10.1039/D1NJ04485K (In Press);

Santosh Kumar Sahu, Prabhupada Choudhury,  Pradyota  Kumar Behera, Tanmayee Bisoyi,  Rashmi Ranjan Sahu, Abinash Bisoyi,   Koteswara Rao Gorantla, Bhabani S. Mallik,  Manoj Mohapatra,  Laxmidhar Rout,*#

                                                                       
 
                                                                                                                                               2021  

35.Strategy for Synthesis of Structural Analogues of Artemisinin, Resercah Journal of Berhampur University;  2021, 3, 69-82 (RJBU ISSN 2250-1681)

Santosh K. Sahu, a Pradyota K. Behera, a Prabhupada Choudhury, a Madhab Chandra Maity, Papita Behera, a Amlan Swain a  Raj Kiran Sahua, Subhalaxmi Panda a and Laxmidhar Rout*a,

 

 

 33.Recent advance in [3+2] cycloaddition of allene with 1,3-carbonyl ylide; Rh(II) catalyzed access to bridged polyoxocarbocyles; New. J. Chem, 2021; DOI: 10.1039/D1NJ02034J (In Press)

S. K. Sahu, P. K. Behera,  P. Choudhury,  M. Sethi, S. Jena, and L. Rout, 

 


 

32. Oxygen bridged bimetallic CuMoO4 nanocatalyst for benzylic alcohol  oxidation; mechanism and DFT  study;  A. J. Org. Chem. 2021, 10, 1117-1122;  DOI: 10.1002/ajoc.202100192  (In Press)

P. K. Behera,  P. Choudhury,  S K. Sahu, R. R. Sahu, A. N. Harvat, C. McNulty, A.  Stitgen, J.  Scanlon, M.  Kar, and Prof. L. Rout

 

31 Dehydrogenative oxidation of aryl methanol using oxygen bridged [Cu-O-Se] bimetallic catalyst New. J. Chem, 2021, 45, 5775-5779. https://doi.org/10.1039/D1NJ00712B

P.  Choudhury,  P.  K. Behera,  S. K. Sahu,  T.  Bisoyi, R. R. Sahu,  S.  R.  Prusty,  A. Stitgen,  J. Scanlon, Prof. L.  Rout,*

 

 

30Recent Advances in Transition-Metal-Mediated Csp2-B and Csp2-P Cross-Coupling Reactions, Coordination Chemistry Review, 2021, 413, 213675.  https://doi.org/10.1016/j.ccr.2020.213675, (Impact factor 15.5)

Laxmidhar Rout and Tharmalingam Punniyamurthy,

 


29.Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics,  Seminars in Cancer Biology, 2021, 73, 310-320;

 https://doi.org/10.1016/j.semcancer.2020.10.010  (Impact factor 11.09)  [Collaboration Paper]


S.  Patra; B. Pradhan; R.  Nayak; C.  Behera; L. Rout, M. Jena, T. Efferth, S. K. Bhutia,  


                                                                                                                  2020  

28.Developments in chemistry and biological application of cotarnine & its analogs, Tetrahedron 2020, 76,50, 131663

 ; https://doi.org/10.1016/j.tet.2020.131663

Sahu, S. K.   Behera, P. K.  Panda, S.  Choudhury, P. and Rout, L 

 

27. Strategy and Problems for Synthesis  of Antimalaria Artemisinin (Qinghaosu); Chemistry Select 2020, 29, 12333-12344

Santosh Kumar Sahu,  Pradyota Kumar Behera, Prabhupada Choudhury,  Subhalaxmi Panda and  Laxmidhar Rout,  

 

26:  Bimetallic  BaMoO4 Nanoparticle for  C-S Cross-Coupling of Thiols  with Haloarene New J. Chem 2020, 44, 2500-2504

Subhalaxmi Panda, Pradyota  Kumar Behera,  Santosh Kumar Sahu, Reba Panigrahi, Bamakanta Garnaik and Laxmidhar Rout,

https://doi.org/10.1039/C9NJ05581A  


25: CuMoO4 Bimetallic Nanoparticles, An  Efficient Catalyst  for Room Temperature C-S Cross-coupling of Thiols and Haloarenes, Chemistry Eur. J. 2020, 24, 620-624

Reba Panigrahi, Santosh Kumar Sahu, Pradyota Kumar Behera, Subhalaxmi Panda, and  Prof. Laxmidhar Rout,

 https://org/doi/10.1002/chem.201904801

                                                                                                                                           2019  

 

24:  Recyclable Bimetallic CuMoO4 Nanoparticle for  C-N Cross-Coupling Reaction Under Mild Condition   New J. Chem 2019,  43, 19274

Reba Panigrahi,  Subhalaxmi Panda, Pradyota  Kumar Behera,  Santosh Kumar Sahu and  Dr. Laxmidhar Rout

 https://doi.org/10.1039/C9NJ04436A

 

23:  Synthesis of Acyl Derivatives of Cotarnine, Organic Synthesis Database Online, (Editor: A. S. Kendee, and J. S. Freeman) 2019Volume 95

Dr. Laxmidhar Rout, B. B. Parida, G. Phaomei, B.Emmanuel, and Prof. A. K. Sahoo,  

 
                                                                                                                                                  2018  

22:  Synthesis of Acyl Derivatives of Cotarnine, Org. Syn, 2018, 95, 455.  DOI: 10.15227/orgsyn.095.0455

Dr. Laxmidhar Rout, B. B. Parida, G. Phaomei, B.Emmanuel, and Prof.A. K. Sahoo, 

 

 

 
                                                                                                                           2017  

21:  Metal Free Activation of C(SP3)-H Bond, Practical and Rapid Synthesis of Privileged 1-Substituted-1,2,3,4-Tetrahydroisoquinolines, Eur JOC 2017,  35, 5275-5292

 S. K. Choudhury, P. Rout, B. B. Parida, J-C. Florent, L. Johannes, G. Phaomei, E. Bertounesque,  Prof. Laxmidhar Rout

https://doi.org/10.1002/ejoc.201700471


                                                                                                                                       2016  

20:  Metal-Free Activation of a C(sp)−H Bond of Aryl Acetylenes Chem. - A Europ. J. 2016,  22, 14812–14815, 

Prof. Laxmidhar Rout, Dr. Bibhuti Bhusan Parida, Dr. Jean-Claude Florent, Dr. Ludger Johannes, Santosh Kumar Choudhury, Dr. Ganngam Phaomei, Prof. Joe Scanlon and Dr. Emmanuel Bertounesque

 https://doi.org/10.1002/chem.201603003


Virgin C−H bonds: The first example for activating acetylenic protons under base- and metal-free conditions is reported. This includes a general method for synthesizing propargylic derivatives of cotarnine. An array of tetrahydroisoquinolines alkaloids was synthesized by C−C bond formation between cotarnine and aryl acetylenes at room temperature. A DFT-based mechanism is proposed for the reaction.

        

 

19: Activation of a Carbonyl Compound by Halogen Bonding; Chem. Commun., 201450, 6281-6284

S. H. Jungbauer,  S.M. Walter, S. Schinder,  L. Rout,  F. Kniep  and S. M. Huber

https://doi.org/10.1039/C4CC03124E            

Graphical abstract: Activation of a carbonyl compound by halogen bonding

 

Halogen bond Catalysis: Using a prototypical Diels–Alder reaction as benchmark, we show that dicationic halogen-bond donors are capable of activating a neutral organic substrate. By variouscomparison experiments, the action of traces of acid or of other structural features of the halogen-bond donor not related to halogen bonding are excluded with high certainty.

 
 18: Multidentate Halogen-Bond Donors as Lewis Acidic Activators or Catalysts in Halide Abstraction Reactions;    Synlett, 201324, 2624. 

     S. H. Jungbauer,  F. Kniep, S.M. Walter, S. Schinder,  L. Rout, and S. M. Huber

        https://doi.org//10.1055/s-0033-1338981



 What is Halogen Bond, A Review:  Although halogen bonds share many similarities with hydrogen bonds, they have so far found virtually no application in organic synthesis. This account summarizes our efforts to use multidentate halogen-bond donors  (halogen-based Lewis acids) in  formal halide abstraction reactions. Following a first proof-of-principle study, we recently reported the first halogen-bond-based organocatalytic carbon–carbon bond-forming reaction.

 

17: 5-Iodo-1,2,3-triazolium-based multidentate halogen-bond donors as activating reagents,  Chem. Comm,2012, 48, 9299.

F. Kniep, L. Rout, S.M. Walter, H. K. V. Bensch, S. H. Jungbauer, E. Herdtweck and S. M. Huber.

https://doi.org/10.1039/C2CC34392D

 

Graphical abstract: 5-Iodo-1,2,3-triazolium-based multidentate halogen-bond donors as activating reagents

Abstract: Bi- and tridentate polycationic halogen bond donors based on 5-iodo-1,2,3-triazolium groups have been synthesized by 1,3-dipolar cycloaddition reactions. These halogen-based Lewis acids have been evaluated as activators in a halide-abstraction benchmark reaction.


 

 16: Isothermal Calorimetric Titrations on Charge-Assisted Halogen Bonds: Role of Entropy, Counterions, Solvent, and Temperature   J. Am. Chem. Soc. 2012134, 8507-8512.

Sebastian M. Walter, Florian Kniep, Laxmidhar Rout, Franz P. Schmidtchen, Eberhardt Herdtweck, Stefan M. Huber.

https://doi.org/10.1021/ja2119207

                                                                          

Abstrcat: We have conducted isothermal calorimetric titrations to investigate the halogen-bond strength of cationic bidentate halogen-bond donors toward halides, using bis(iodoimidazolium) compounds as probes. These data are intended to aid the rational design of halogen-bond donors as well as the development of halogen-bond-based applications in solution. In all cases examined, the entropic contribution to the overall free energy of binding was found to be very important. The binding affinities showed little dependency on the weakly coordinating counteranions of the halogen-bond donors but became slightly stronger with higher temperatures. We also found a marked influence of different solvents on the interaction strength. The highest binding constant detected in this study was 3.3 × 106 M–1.

 

15: Synthesis of a-Arylphosphonates Using Copper-Catalyzed a-Arylation and Deacylative  a-Arylation of b-Ketophosphonates.  Adv. Synth. Catal. 2011, 353, 3340.

L. Rout, S. Regati and C. G. Zhao,  https://doi.org/10.1002/adsc.201100605


 

Abstract: Efficient methods for the direct arylation and deacylative arylation of β-ketophosphonates with iodoarenes in presence of a copper(I) or a copper(II) salt as the catalysts have been developed. The corresponding α-arylphosphonates were obtained in high yields. A tentative mechanism for the deacylative arylation reaction was proposed on the basis of the experimental data.


 

 

 14: Organocatalytic Highly Enantioselective Synthesis of b-Formyl-a-hydroxyphosphonates;  Adv. Synth. Catal2011, 353, 1729. 

 S. Perera, V. K. Naganaboina, L.Wang, B.  Zhang, Q. Guo, L. Rout and C.-G. Zhao. https://doi.org/10.1002/adsc.201000835

 

 

 

Abstrcat: The cross-aldol reaction between enolizable aldehydes and α-ketophosphonates was achieved for the first time by using 9-amino-9-deoxy-epi-quinine as the catalyst. β-Formyl-α-hydroxyphosphonates were obtained in high to excellent enantioselectivities. The reaction works especially well with acetaldehyde, which is a tough substrate for organocatalyzed cross-aldol reactions. The products were demonstrated to have anticancer activities.

 

 

 13:  Allene Carboxylates as Dipolarophiles in Rh‐Catalyzed Carbonyl Ylide Cycloadditions.   Chem. Eur. J.  2009, 15, 12926. 

 L. Rout and A. M. Harned.,  https://doi.org/10.1002/chem.200902208

 

Abstract:  Face-to-face: Allene carboxylates can serve as efficient dipolarophiles for Rh-catalyzed carbonyl ylide cycloadditions (see scheme). The endo and exo products arise from cycloaddition on the same face of the allene, but opposite faces of the dipole. This facial selectivity results in the formation of two of the four possible diastereomers.

 

 
12: CuO Nanoparticles Catalyzed C−NC−O, and C−S Cross-Coupling Reactions: Scope and Mechanism., J. Org. Chem. 2009, 74, 1971. 

S. Jammi,  S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy,    https://doi.org/10.1021/jo8024253

 


Abstract: CuO nanoparticles have been studied for C−N, C−O, and C−S bond formations via cross-coupling reactions of nitrogen, oxygen, and sulfur nucleophiles with aryl halides. Amides, amines, imidazoles, phenols, alcohols and thiols undergo reactions with aryl iodides in the presence of a base such as KOH, Cs2CO3, and K2CO3 at moderate temperature. The procedure is simple, general, ligand-free, and efficient to afford the cross-coupled products in high yield.


 

11:  Synthesis, Structure, and Application of Self-Assembled Copper(II) Aqua Complex by H-Bonding for Acceleration of the Nitroaldol Reaction in Water;  Chem. Asian. J. 2009, 4, 314. 

 S. Jammi, Md A. Ali, S. Sakthivel, L. Rout, and T. Punniyamurthy .  https://doi.org/10.1002/asia.200800339

 

                                                                   

Abstract: Simple addition: Copper(II) aqua complex 1 can be prepared in a one-pot synthesis and is self-assembled by H-bond interactions. Complex 1 is shown to accelerate the nitroaldol reaction on water, which is a heterogeneous process, requiring no additive or base, and 1 can be recycled without loss of activity. opper(II) aqua complex 1 has been prepared in a one-pot synthesis. The single crystal X-ray analysis showed that the complex is self-assembled through aqua ligands by H-bond interactions and the copper(II) atoms are pentacoordinated with square pyramidal geometry. Complex 1 has been studied for the acceleration of the nitroalodol reaction on water. It is a clean technological process and the catalyst can be recycled without loss of activity.

 

10: Synthesis, Structure and Application of Chiral Copper(II) Polymers for Asymmetric Acylation  of Secondary Alcohols.   InorgChem.  2008, 12, 5093.

S. Jammi, L. Rout, P. Saha, V. K. Akhilagunta, S. Sanyasi and T. Punniyamurthy, https://doi.org/10.1021/ic800228c



Abstract: Chiral copper(II) coordination polymers 1a−c prepared by the one-pot synthesis catalyze the asymmetric acylation of secondary alcohols with 90% ee (s = 50). The catalyst is recyclable without loss of activity.Chiral copper(II) coordination polymers 1a−c have been prepared by one-pot synthesis in high yield. Their single-crystal X-ray analysis showed that repeating units are connected to each other by carboxylate linker and copper(II) atoms are pentacoordinated with distorted square-pyramidal geometry for 1a−b and square-planar geometry for 1c. These polymers have catalyzed the kinetic resolution of secondary alcohols by acylation with up to 90% ee (s = 50).

 

9. Efficient Ligand-Free Nickel-Catalyzed C-S Cross-Coupling of Thiols with Aryl Iodides.   Tetrahedron. Lett. 200849,1484.

S. Jammi, P. Barua, L. Rout, P. Saha and T. Punniyamurthy, https://doi.org/10.1016/j.tetlet.2007.12.118


image

Abstract: NiCl2·6H2O efficiently catalyzes the C–S bond formation by the cross-coupling of aryl iodides with thiols in tetrabutylammonium bromide (TBAB) in excellent yield. The reaction functions in air and the NiLn-TBAB can be recovered and recycled without the loss of activity.

 

 8:  Efficient Copper(I) Catalyzed C-S Cross-Coupling of Thiols with Aryl Halides in Water;   Eur. J. Org. Chem. 2008, 640. 

 L. Rout, P. Saha and T. Punniyamurthy, https://doi.org/10.1002/ejoc.200700978



 Abstrcat: CuI efficiently catalyzes the C–S cross coupling of thiols with aryl halides in the presence of tetrabutylammonium bromide in water. The reactions with aryl thiols that have electron-withdrawing and -donating substituents are comparable and afford C–S cross-coupling products in high yield. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)


 

7: Recent Advances in Copper-Catalyzed Oxidation of Organic Compounds. Coord. Chem. Rev.2008252, 134.

 T. Punniyamurthy and L. Rout,  https://doi.org/10.1016/j.ccr.2007.04.003

Abstract: The copper-catalyzed oxidation of organic compounds has made considerable progress in the recent years. Molecular oxygen, aqueous hydrogen peroxide, tert-butyl hydroperoxide and peroxyesters have been employed as terminal oxidants for this purpose. The use of polymer and solid-supported catalysts, ionic liquids and fluorous biphase systems (FBS) has been demonstrated to facilitate the recyclability of the catalysts. Efforts have been made for the aqueous oxidation processes employing water-soluble copper complexes. Chiral catalysts have been designed and developed for the enantioselective oxidative coupling of 2-naphthols, Baeyer–Villiger oxidation and Kharasch–Sosnovsky reaction with high enantioselectivity.

 

 6: Cadmium(II) Catalyzed C-N Cross-Coupling of Amines with Aryl Iodides. Adv. Synth. Catal. 2008, 350, 395. 

L. Rout, S. Jammi and T. Punniyamurthy,  https://doi.org/10.1002/adsc.200700480




 

Abstrcat: Cadmium diacetate dihydrate [Cd(OAc)2⋅2 H2O] in combination with ethylene glycol catalyzes efficiently the C[BOND]N cross-coupling of amines with aryl iodides by a benzyne mechanism. Alkyl, aryl and heterocyclic amines are compatible with this system affording the aminated products in high to excellent yield.

 

 5:  Efficient CuO Nanoparticle Catalyzed C-S Cross Coupling of Thiols with Iodobenzene; Angew. Chem. Int. Ed. Eng 2007, 46, 5583. 

 L. Rout, T. K. Sen and T. Punniyamurthy, https://doi.org/10.1002/anie.200701282


Abstract: Cheap but good: Readily available CuO nanoparticles are not only less expensive than other catalysts used for the C[BOND]S cross-coupling of thiols with aryl halides, but they are also effective at a moderate temperature and low concentration. The title reaction proceeds with a variety of alkyl and aryl thiols to give the corresponding sulfides in high yields.

 


 

4:  Novel CuO Nanoparticle Catalyzed  C- Cross-Coupling of Amines with Iodobenzene.;  Org. Lett. 2007, 9, 3397. 

L. Rout, S. Jammi and T. Punniyamurthy, https://doi.org/10.1021/ol0713887



 

Abstrcat: CuO nanoparticles catalyze the C−N cross coupling of amines with iodobenzene in excellent yields. The reaction is simple and efficient and operates under air with ligand free conditions. The catalyst is recyclable without loss of activity.

 
3:  Chiral Linear Polymers Bonded Alternatively with Salen and 1,4-Dialkoxy-2,6-diethynylbenzene: Synthesis and Application to Diethylzinc Addition to Aldehydes. Tetrahedron: Asymmetry 2007,17,2016. 

S. Jammi, L. Rout and T. Punniyamurthy,  https://doi.org/10.1016/j.tetasy.2007.09.004

image

Abstract :  The synthesis of chiral polymers 1 bonded alternatively with salen and 1,4-dialkoxy-2,6-diethynylbenzene was accomplished. These polymers are recyclable and catalyze the Et2Zn addition to aldehydes with good enantioselectivity.

 

 
2: Vanadium-Catalyzed Selective Oxidation of Alcohols to Aldehydes and Ketones with t-BuO2H;  Adv. Synth. Catal. 2007349, 846. 

L. Rout and T. Punniyamurthy, https://doi.org/10.1002/adsc.200600397

Abstrcat: The oxidation of alcohols to aldehydes and ketones has been described using silica-supported vanadium(iv) oxide (V/SiO2, 1) in the presence of tert-butyl hydroperoxide in tert-butyl alcohol at ambient temperature with quantitative yields. The procedure is simple, efficient and environmentally benign.

 
1: Silica-Supported Vanadium-Catalyzed N-Oxidation of Tertiary Amines with Aq. H2O2.  Adv. Synth. Catal.  2005, 347, 1958.

 L. Rout and T. Punniyamurthy,  https://doi.org/10.1002/adsc.200505166

Abstrcat: A recyclable silica supported vanadium 1 catalyzes the oxidation of tertiray amines to the corresponding N-oxides with 30% H2O2 in high yield