```SHOP TRIGONOMETRY
using GW-BASIC

Go to the Index of "The Last Book of GW-BASIC"

This program shows some methods of establishing values for
the sine, cosine and tangent expressed in degrees and not
radians.  Results from all three different methods are
shown.  This program is just an example program showing the
three different methods.

1  'Ways of returning the Sine, Cosine & Tangent in degree values
2 '
3 'Method #1:    ***Create Variables***
4 'PI=355/113
5 '    or
6 PI=4*ATN(1)    'establish PI - probably the best method
7 '   then
8 ' r2d= 2*pi/360   'since there are 2PI radians in a circle, we simply divide
9 '                  360 into (2 x 3.1415926535) to get the value for 1 degree
10 '                  or reducing the fraction, pi/180
11 '    so
12 R2D=PI/180     'convert from Radians to Degrees
13 '
14 'Method #2:    ***Define FN functions***
15 DEF FNSINE(X)=SIN(X*4*ATN(1)/180)    'or use the def fn function
16 DEF FNCOSINE(X)=COS(X*4*ATN(1)/180)  'to create your own translation method
17 DEF FNTANGENT(X)=TAN(X*4*ATN(1)/180)'fnsine, fncosine, fntangent
18 '
19 'Method #3:   Straight Declaration
20 'PI=3.1415926535
21 'R2D= pi/180
22 '
23 CLS:INPUT "Input Degrees: ",X:PRINT "      Values are in Degrees"
24 '
25 PRINT "  sine          cosine        tangent"
26 '
27 PRINT FNSINE(X), FNCOSINE(X), FNTANGENT(X)       'sin/cos/tan using FN
28 '
29 PRINT SIN(X*PI/180),COS(X*PI/180), TAN(X*PI/180) 'sin/cos/tan varibles
30 '
31 PRINT SIN(X*R2D),COS(X*R2D), TAN(X*R2D)          'sin/cos/tan w r2d variable
32 '     save   "trig.bas",a
33 ' or you could just buy a cheap calculator  :-)

This this snippit of code gives all six (6) transcendental functions
plus their reciprocals for a given degree value EXPRESSED IN
DECIMAL DEGREES.  So if you want the sine of 30 degrees and 20
minutes you have to imput 30.3333 degrees as 20 minutes is 1/3 of
a degree.  15 minutes is 1/4 of a degree and so on...
Finally a 5" sinebar setting is offered as well.

10 CLS: PRINT TAB(30)"The Trig Book"
20 PI=3.141592654#
30 R2D=PI/180
40 INPUT "Input degrees ",DEGREES
50 PRINT"The Sine of";DEGREES;"degrees is: ";USING "###.######";SIN(DEGREES*R2D)
60 PRINT"The Cosine of";DEGREES;"degrees is: ";USING "###.######";COS(DEGREES*R2D)
70 PRINT"The Tangent of";DEGREES;"degrees is: ";USING "###.######";TAN(DEGREES*R2D)
80 PRINT"The Cotangent of";DEGREES;"degrees is: ";USING "###.######";1/TAN(DEGREES*R2D)
90 PRINT"The Secant of";DEGREES;"degrees is: ";USING "###.######";1/COS(DEGREES*R2D)
100 PRINT"The Cosecant of";DEGREES;"degrees is: ";USING "###.######";1/SIN(DEGREES*R2D)
110 PRINT"5 inch sinebar setting is: ";USING "##.####";SIN(DEGREES*R2D)*5;:PRINT " inches"
120 '     save"trigbook.bas",a

The next six programs deliver the inverse function of the sine,
cosine, tangent, cotangent, secant and cosecant in radians,
decimal degrees, and degrees, minutes, seconds.  giving you a
complete six dollar calculator.  nifty huh?

10 'Delivers the arcsine of a value.
20 '
30 'VariableAssignments:
40 LOCATE,,,0,7   'block cursor
50 PI=4*ATN(1)    'establish the value for PI
60 R2D=PI/180     'convert from radians to degrees
70 '
90 INPUT "input sine value: ";SINE
100 '
110 'EstablishValueLimits:
120   IF SINE>1 THEN PRINT "Sine Value too high":GOTO 90
130   IF SINE=1 THEN PRINT "the angle whose sine is 1 is 90 degrees":END
140   IF SINE<0 THEN PRINT "Sine Value too low":GOTO 90
150 '
160 'Do all the DMS monkey motion:
170 DECIMALDEGREE=ATN(SINE/SQR(-SINE*SINE+1))/R2D
180 DEGREES=INT(DECIMALDEGREE)
190 '
200 DECIMALMINUTES=DECIMALDEGREE-INT(DECIMALDEGREE)
210 MINUTES=INT(DECIMALMINUTES*60)
220 '
230 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
240 SECONDS=INT(DECIMALSECONDS*60)
250 '
260 'PrintTheMess:
270 PRINT"the angle whose sine is:";
280 PRINT SINE;"is";
300 PRINT TAB(22)"or: "DECIMALDEGREE;"decimal degrees"
310 PRINT TAB(22)"or: "DEGREES;"degrees";MINUTES;"minutes";SECONDS;"seconds"
320 '
330 '    save"asindms.bas",a

10 'Delivers the arccosine of a value
20 '
30 'VariableAssignments:
40 LOCATE,,,0,7   'block cursor
50 PI=4*ATN(1)    'establish the value for PI
60 R2D=PI/180     'convert from radians to degrees
70 '
90 INPUT "input cosine value: ";COSINE
100 '
110 'EstablishValueLimits:
120   IF COSINE>1 THEN PRINT"Cosine value too high":GOTO 90
130   IF COSINE=1 THEN PRINT"The cosine value of 1 is 90 degrees":END
140   IF COSINE<0 THEN PRINT"Cosine value too low":GOTO 90
150 '
160 'Do all the DMS monkey motion:
170 DECIMALDEGREE=ATN(COSINE/SQR(-COSINE*COSINE+1))/R2D
180 DEGREES=INT(DECIMALDEGREE)
190 '
200 DECIMALMINUTES=DECIMALDEGREE-INT(DECIMALDEGREE)
210 MINUTES=INT(DECIMALMINUTES*60)
220 '
230 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
240 SECONDS=INT(DECIMALSECONDS*60)
250 '
260 'PrintTheMess:
270 PRINT"the angle whose cosine is:";
280 PRINT COSINE;"is: "
300 PRINT TAB(22)"or: "DECIMALDEGREE;"Decimal Degrees"
310 PRINT TAB(22)"or: "DEGREES;"Degrees";MINUTES;"Minutes";SECONDS;"Seconds"
320 '
330 '    save"acosdms.bas",a

10 'returns the arctangent of a value
20 '
30 'Variable Assignments:
40 LOCATE,,,0,7   'block cursor
50 PI=4*ATN(1)    'establish the value for PI
60 R2D=PI/180     'convert from radians to degrees
70 '
90 INPUT "input tangent value: ";TANGENT
100 '
110 'Do all the DMS monkey motion:
120 DECIMALDEGREES=ATN(TANGENT)/R2D
130 DEGREES=INT(DECIMALDEGREES)
140 '
150 DECIMALMINUTES=DECIMALDEGREES-INT(DECIMALDEGREES)
160 MINUTES=INT(DECIMALMINUTES*60)
170 '
180 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
190 SECONDS=INT(DECIMALSECONDS*60)
200 '
210 'PrintTheMess:
220 PRINT"the angle whose tangent is:";
230 PRINT TANGENT;"is: "
250 PRINT TAB(22)"or: ";ATN(TANGENT)/R2D;"Decimal Degrees"
260 PRINT TAB(22)"or: ";DEGREES;"Degrees";MINUTES;"Minutes";SECONDS;"Seconds"
270 '
280 '    save"atandms.bas",a

This one is a little more complete

10 'returns the arccotangent of a value
20 '
30 'VariableAssignments:
40 LOCATE,,,0,7   'block cursor
50 PI=4*ATN(1)    'establish the value for PI
60 R2D=PI/180     'convert from radians to degrees
70 '
90 INPUT "input cotangent value: ";COTANGENT
100 '
110 'Establish all the values and tuck them into variables:
120 '
150 '
160 'Then the decimal degrees:
170 DECIMALDEGREES=(-ATN(COTANGENT)+PI/2)/R2D
180 '
190 'Degrees:
200 DEGREES=INT(DECIMALDEGREES)
210 '
220 'Minutes:
230 DECIMALMINUTES=DECIMALDEGREES-INT(DECIMALDEGREES)
240 MINUTES=INT(DECIMALMINUTES*60)
250 '
260 'Seconds:
270 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
280 SECONDS=INT(DECIMALSECONDS*60)
290 '
300 'PrintTheMess:
310 PRINT"the angle whose cotangent is:";
320 PRINT COTANGENT;"is: "
340 PRINT TAB(22)"or: "DECIMALDEGREES;"Decimal Degrees"
350 PRINT TAB(22)"or: "DEGREES;"Degrees";MINUTES;"Minutes";SECONDS;"Seconds"
360 '
370 '    save"acotdms.bas",a

i've never, ever needed the arcsecant, but here it is anyway.

10 'returns the arcsecant of a value
20 '
30 '     As a personal note, keep the input over 1.0"
40 '     After thrashing for 2 days swearing at the formulas offered
50 '     i realized that my low input was causing all the grief.
60 '     And this with a table of secant values right in front of me.
70 '     Apologies to every source that was sworn at.  :-)  sigh...
80 '
90 'VariableAssignments:
100 LOCATE,,,0,7   'block cursor
110 PI=4*ATN(1)    'establish the value for PI
120 R2D=PI/180     'convert from radians to degrees
130 '
150 INPUT "input secant value: ";SECANT
160 '
170 'CheckEntry4CorrectValues:
180   IF SECANT < 1 THEN PRINT "Secant is always >= 1.000":GOTO 150
190 '
200 'Establish all the values and tuck them into variables:
210 '
250 '
260 'Then the decimal degrees:
280 '
290 'Degrees:
300 DEGREES=INT(DECIMALDEGREES)
310 '
320 'Minutes:
330 DECIMALMINUTES=DECIMALDEGREES-INT(DECIMALDEGREES)
340 MINUTES=INT(DECIMALMINUTES*60)
350 '
360 'Seconds:
370 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
380 SECONDS=INT(DECIMALSECONDS*60)
390 '
400 'PrintTheMess:
410 PRINT"the angle whose secant is:";
420 PRINT SECANT;"is: "
440 PRINT TAB(22)"or: "DECIMALDEGREES;"Decimal Degrees"
450 PRINT TAB(22)"or: "DEGREES;"Degrees";MINUTES;"Minutes";SECONDS;"Seconds"
460 '
470 '    save"asecdms.bas",a

Oh my!  aren't we getting advanced...
yet another "never used it" function.

10 'returns the arccosecant of a value
20 '
30 'VariableAssignments:
40 LOCATE,,,0,7   'block cursor
50 PI=4*ATN(1)    'establish the value for PI
60 R2D=PI/180     'convert from radians to degrees
70 '
90 PRINT"Keep the input greater then 1.0"
100 INPUT "input cosecant value: ";COSECANT
110 '
120 'CheckEntry4CorrectValues:
130   IF COSECANT < 1 THEN PRINT "Cosecant is always >= 1.000":GOTO 100
140 '
150 'Establish all the values and tuck them into variables:
160 '
170 'Radians first:   'Either of these algorithms seem to work okay.
200 '
210 'Then the decimal degrees:
230 '
240 'Degrees:
250 DEGREES=INT(DECIMALDEGREES)
260 '
270 'Minutes:
280 DECIMALMINUTES=DECIMALDEGREES-INT(DECIMALDEGREES)
290 MINUTES=INT(DECIMALMINUTES*60)
300 '
310 'Seconds:
320 DECIMALSECONDS=DECIMALMINUTES*60-MINUTES
330 SECONDS=INT(DECIMALSECONDS*60)
340 '
350 'PrintTheMess:
360 PRINT"the angle whose cosecant is:";
370 PRINT COSECANT;"is: "
390 PRINT TAB(22)"or: "DECIMALDEGREES;"Decimal Degrees"
400 PRINT TAB(22)"or: "DEGREES;"Degrees";MINUTES;"Minutes";SECONDS;"Seconds"
410 '
420 '    save"acscdms.bas",a

Here are some shorties if you don't need all the goobblygook

10 'Delivers the arcsine of a value
20 LOCATE,,,0,7   'block cursor
30 PI=4*ATN(1)    'establish the value for PI
40 R2D=PI/180     'convert from radians to degrees
50 INPUT "input sine value: ";SINE
60   IF SINE>1 THEN PRINT "Sine Value too high":GOTO 50
70   IF SINE=1 THEN PRINT "the angle whose sine is 1 is 90 degrees":END
80   IF SINE<0 THEN PRINT "Sine Value too low":GOTO 50
90 ARCSIN=ATN(SINE/SQR(-SINE*SINE+1))
100 PRINT"the angle whose sine is";SINE;"is";ARCSIN/R2D;"decimal degrees"
110 '    save"arcsin.bas",a

10 'Delivers the arccosine of a value
20 LOCATE,,,0,7   'block cursor
30 PI=4*ATN(1)    'establish the value for PI
40 R2D=PI/180     'convert from radians to degrees
50 INPUT "input cosine value: ";COSINE
60   IF COSINE>1 THEN PRINT"Cosine value too high":GOTO 50
70   IF COSINE=1 THEN PRINT"The cosine value of 1 is 90 degrees":END
80   IF COSINE<0 THEN PRINT"Cosine value too low":GOTO 50
90 ARCCOSINE=ATN(COSINE/SQR(-COSINE*COSINE+1))
100 PRINT"The cosine value of";COSINE;"is";ARCCOSINE/R2D;"decimal degrees"
110 '    save"arccos.bas",a

10 'returns the arctangent of a value
20 LOCATE,,,0,7   'block cursor
30 PI=4*ATN(1)    'establish the value for PI
40 R2D=PI/180     'convert from radians to degrees
50 INPUT "input tangent value: ";TANGENT
60 PRINT "The angle whose tangent is ";TANGENT;"is ";ATN(TANGENT)/R2D;"decimal degrees"
70 '    save"arctan.bas",a

Here is a little fun program of just two lines that does the same
thing as the above program.

1 PI=4*ATN(1):R2D=PI/180:INPUT"input tangent value: ";TANGENT
2 PRINT "The angle whose tangent is ";TANGENT;"is ";ATN(TANGENT)/R2D;"decimal degrees"

Here are three little programs for the Sine, Cosine and
Tangent that you can use if you only have a three dollar
four function calculator instead of a six dollar calculator.

i used sine, cosine and tangent for about 55 years almost
daily and never knew that a series expansion was available
that didn't need a scientific calculator or slide rule.

Anyhow here they are:

10 'Sine Series Expansion
20 'The expansion series for the Sine is:
30 '           SinZ = Z-Z^3/3!+Z^5/5!-Z^7/7!+Z^9/9!...
40 '
50 'Housekeeping:
60 LOCATE,,,0,7:COLOR 14,4:CLS
70 '
80 'VariableAssignments:
90 PI=4#*ATN(1#)
100 R2D=PI/180#
110 '
120 'ScreenPainter:
130 PRINT:PRINT
140 PRINT TAB(30)"Sine Series Expansion":PRINT TAB(36)"using"
150 PRINT TAB(18)"Sine of X = X-X^3/3!+X^5/5!-X^7/7!+X^9/9!..."
160 '
170 'InputRoutine:
180 LOCATE 9,20:INPUT "Degrees: ";DEGREES
190 IF DEGREES=90 THEN LOCATE 13,15:PRINT "The sine of 90 degrees is 1.00000":END
200 IF DEGREES>90 OR DEGREES<0 THEN GOTO 60
220 '
230 'DoTheSeriesExpansions:
250 '
260 'PrintTheResults:
270 LOCATE 13, 15:PRINT "The sine of";DEGREES;"degrees is: ";
280 PRINT USING "#.#######";SINE
290 '
300 'EmbeddedCommands:
310      SAVE"SINEXPAN.BAS",A

10 'Cosine Series Expansion
20 'The expansion series for the Cosine is:
30 '           CosZ = 1-Z^2/2!+Z^4/4!-Z^6/6!+Z^8/8!...
40 '
50 'Housekeeping:
60 LOCATE,,,0,7:COLOR 14,4:CLS
70 '
80 'VariableAssignments:
90 PI=4#*ATN(1#)
100 R2D=PI/180#
110 '
120 'ScreenPainter:
130 PRINT:PRINT
140 PRINT TAB(30)"Cosine Series Expansion":PRINT TAB(36)"using"
150 PRINT TAB(18)"Cosine of X = 1-X^2/2!+X^4/4!-X^6/6!+X^8/8!..."
160 '
170 'InputRoutine:
180 LOCATE 9,20:INPUT "Degrees: ";DEGREES
190 IF DEGREES=0 THEN LOCATE 13,15:PRINT "The cosine of 0 degrees is 1.00000":END
200 IF DEGREES=90 THEN LOCATE 13,15:PRINT"The cosine of 90 degress is zero":END
210 IF DEGREES>90 OR DEGREES<0 THEN GOTO 60
230 '
240 'DoTheSeriesExpansions:
260 '
270 'PrintTheResults:
280 LOCATE 13, 15:PRINT "The cosine of";DEGREES;"degrees is: ";
290 PRINT USING "#.#######";COSINE
300 '
310 'EmbeddedCommands:
320      SAVE"COSEXPAN.BAS",A

A lot of math books present this series Tangent algorithm
in an unclear fashion for a joseph_sixpack.  Simply don't
understand it correctly.  (turned out to be limits)
operator error again...

i never could get the tangent function to work correctly so
i used an old fashioned approach of combining the two
formulas, sine & cosine.  sorry, maybe i can find a correct
algorithm later on.  anyhow, this one seems to work okay.
Be aware however that most of the time, my problems with an
algorithm can be traced back to operator error.

Now my method of sin/cos to find the tangent is good up to
90 degrees.  The fancy formula method just goes up to 45
degrees and then you gotta go the cofunction of the
complementary angle routine so here i use both sine and
cosine series expansion.  it works good.

10 'Tangent Series Expansion
20 'The expansion series for the Tangent is:
30 '           TanZ = sin/cos expansions
40 '
50 'Housekeeping:
60 LOCATE,,,0,7:COLOR 14,4:CLS
70 '
80 'VariableAssignments:
90 PI=4#*ATN(1#)
100 R2D=PI/180#
110 '
120 'ScreenPainter:
130 PRINT:PRINT
140 PRINT TAB(28)"Tangent Series Expansion":PRINT TAB(36)"using"
150 PRINT TAB(25)"Tangent of X = Sin/Cos Expansion
160 '
170 'InputRoutine:
180 LOCATE 9,20:INPUT "Degrees: ";DEGREES
190 '
200 IF DEGREES=0 THEN LOCATE 13,15:PRINT "The tangent of 0 degrees is zero":END
210 IF DEGREES=90 THEN LOCATE 13,15:PRINT"The tangent of 90 degress is undefined":END
220 IF DEGREES>90 OR DEGREES<0 THEN GOTO 60
240 '
250 'DoTheSeriesExpansions:
260 '
280 '
310 '
320 'PrintTheResults:
330 LOCATE 13, 15:PRINT "The Tangent of";DEGREES;"degrees is: ";
340 PRINT USING "###.#####";TANGENT
350 '
360 'EmbeddedCommands:
370      SAVE"TANEXPAN.BAS",A

Okay, now here is the algorithm with which, i had problems.
Seems like i didn't know that it is limited to pi/4 radians
or 45 degrees.  Any degree entry higher than 45 and the
algorithm starts heading south.  Okay, operator error
again...

Now this tangent program, using a series expansion, has been
more "professionally" written so as to not throw error
messages upon bad data entry.  Pay particular attention to
the use of the "Check4number\$ and Check4letter\$" method of
error checking to see if the degrees have been entered
correctly.  Naturally, all the foofaw gives us a lot longer
program as well.  i run this program using the /d switch for
gw-basic but i haven't figured out why yet.

10 'Tangent Series Expansion
20 'The expansion series for the Tangent is:
30 '   TanZ = Z^3/3+2Z^5/15+17Z^7/315+...where |Z| is less than pi/4 (45 deg)
40 '
50 'ProgramTangent:
60 GOSUB 120 'housekeeping
70 GOSUB 180 'VariableAssignments
80 GOSUB 230 'ScreenPainter
90 GOSUB 350 'InputRoutine
100 '
110 '
120 'Housekeeping:
130 LOCATE,,,0,7:COLOR 14,4:CLS
140 CHECK4NUMBER\$="0123456789."
160 RETURN 'to VariableAssignments
170 '
180 'VariableAssignments:
190 PI=4#*ATN(1#)
200 R2D=PI/180#
210 RETURN 'to sub ScreenPainter
220 '
230 'ScreenPainter:
240 PRINT:PRINT
250 PRINT TAB(22)"Tangent Series Expansion up to 45";CHR\$(248)
260 PRINT TAB(37)"using"
270 PRINT TAB(18)"Tangent of X = X + 1/3*X^3 + 2/15*X^5 + 17/315*X^7..."
280 LOCATE 23,18:PRINT "'exit' or 'x' to quit.";
290 LOCATE 24,18:PRINT "Spacebar clears screen after calculation";
300 '
310 'Here we use a string in order to check the data entry.
320 LOCATE 9,18:INPUT "Degrees: ";DEGREES\$
330 RETURN 'to sub CheckInput
340 '
350 'CheckInput:
360 IF DEGREES\$="x" OR DEGREES\$="X" OR DEGREES\$="exit" OR DEGREES\$="EXIT" THEN CLS:NEW
370 FOR I=1 TO LEN(DEGREES\$)
380  IF INSTR(CHECK4NUMBER\$,MID\$(DEGREES\$,I,1))=0 THEN 420   '(errormessage)
390  ' IF INSTR(CHECK4LETTER\$,MID\$(DEGREES\$,I,1))>0 THEN 420   '(errormessage)
400  NEXT:GOTO 480
410 '
420 'ErrorMessages:
430 PRINT:PRINT TAB(10)"Wrong Data Entry! re-enter Degrees value correctly"
440 PRINT:PRINT TAB(10)"press the AnyKey to continue..."
450 WHILE INKEY\$="":WEND
460 GOTO 50
470 '
480 'ConvertString2Number:
490 DEGREES=VAL(DEGREES\$)
500 IF DEGREES=0 THEN LOCATE 13,15:PRINT "The tangent of 0 degrees is zero"
510 IF DEGREES=45 THEN LOCATE 13,15:PRINT"The tangent or 45 degrees is 1.0000000":GOTO 640
520 IF DEGREES>45 THEN LOCATE 13,15:PRINT"For this algorithm degrees should be < 45":GOTO 640
530 IF DEGREES<0 THEN LOCATE 13,15:PRINT"For this program degrees should be > 0":GOTO 640 'comment this line out and you can do -tangents... sort of... mostly...
540 '
560 '
570 'DoTheSeriesExpansionNowUsingRadians:  (only good to PI/4 or 45 degrees!)
590 '
600 'PrintTheResults:
610 LOCATE 13,18:PRINT "Tangent of ";DEGREES\$;CHR\$(248);" is: ";
620 PRINT USING "#.#########";TANGENT
630 '
640 WHILE INKEY\$="":WEND:CLS
650 GOTO 50
660 'EmbeddedCommands:
670 '    SAVE"TANEXPA2.BAS",A

Okay, here is yet another trigbook program, but this one
does a lot of bad entry trapping making it "more
professional".  yeah right...  It started out as a recursive
way to load the appropriate arrays to simplify formula
building but it turned out to be more confusing than the
simple "joe6pack" way.  Anyhow, it runs good (now) but i had
my fits with the program for a while there.  pretty much
bullet proof as near as i can tell.

Series expansion again is the method.

The A&S book  well... i suspect that they should really go
through that thing with a fine toothed comb. and check for
errors or omissions if dummies are going to read it and try
and use it.   Page 75-76 comes to mind.  God help you if you
book.  But remember, in all fairness to A&S, this is a
joe6pack talking... :-(

10 'HouseKeeping:
20 OPTION BASE 1:DIM F(15)
30 CHECK4NUMBER\$="0123456789."
50 PI=4*ATN(1):R2D=180/PI:D2R=PI/180  'stuck this extra stuff in but not needed
60 T=1:N=1:LOCATE,,,0,7:COLOR 15,0:CLS
70 '
90 WHILE N<>16   'start loop and just load values up to 15
100   T=T*N      'total=total * number
110   F(N)=T     'load F() array with factorial of N
120   N=N+1      'increment the number
130   WEND
140 '
150 'SeeWhatWeGotSoFar:
160 'FOR I=1 TO 15:PRINT F(I):NEXT   'uncomment this to check on array values
170 '
180 'ScreenPainter:
190 CLS
200 LOCATE  3,20:  PRINT "Trigonometric Functions by Series Expansion";
210 LOCATE  4,20:  PRINT "___________________________________________";
220 LOCATE 22,20:  PRINT "eXit                           Cls=spacebar";
230 LOCATE  7,20:  INPUT "Degrees: "; DEGREES\$  'input degrees as string
240 '
250 'CheckInput\$:
260 IF DEGREES\$="x" OR DEGREES\$="X" THEN CLS:NEW
270 IF DEGREES\$="" THEN GOSUB 610
280 FOR I=1 TO LEN(DEGREES\$)
290  IF INSTR(CHECK4NUMBER\$,MID\$(DEGREES\$,I,1))=0 THEN 610   '(errormessage)
300  'IF INSTR(CHECK4LETTER\$,MID\$(DEGREES\$,I,1))>0 THEN 610  '(errormessage)
310 NEXT
320 '
330 'Convert degrees\$2degrees:
340 X=VAL(DEGREES\$)
350 '
360 'CheckX:
370 IF X=0 THEN GOTO 720
380 IF X=90 THEN GOTO 810
390 IF X < .0002776 OR X > 89.9998 THEN 610   '  +/- 1 second of angle
400 '
410 R=X*D2R  'convert X to radian measure for use in calculations
420 '
430 'CalculateSine using just the first seven terms of the expansion:
440 SINE=R^1/F(1)-R^3/F(3)+R^5/F(5)-R^7/F(7)+R^9/F(9)-R^11/F(11)+R^13/F(13)
450 COSINE=1-R^2/F(2)+R^4/F(4)-R^6/F(6)+R^8/F(8)-R^10/F(10)+R^12/F(12)
460 TANGENT=SINE/COSINE
470 COTANGENT=(COSINE/SINE)
480 SECANT= 1/COSINE
490 COSECANT=1/SINE
500 '
510 'Print2Screen:
520 LOCATE 9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
530 LOCATE 11,20:PRINT "Sine      = ";:PRINT USING "####.#######";SINE
540 LOCATE 12,20:PRINT "Cosine    = ";:PRINT USING "####.#######";COSINE
550 LOCATE 13,20:PRINT "Tangent   = ";:PRINT USING "####.#######";TANGENT
560 LOCATE 14,20:PRINT "Cotangent = ";:PRINT USING "####.#######";COTANGENT
570 LOCATE 15,20:PRINT "Secant    = ";:PRINT USING "####.#######";SECANT
580 LOCATE 16,20:PRINT "Cosecant  = ";:PRINT USING "####.#######";COSECANT
585 LOCATE 18,20:PRINT "5 inch Sinebar setting: ";USING "#.####";5*SINE
590 GOTO 640
600 '
610 'ErrorMessage:
620 PRINT TAB(10)"the degree value entered does not compute."
630 PRINT TAB(10)"Press the Anykey to continue."
640 WHILE INKEY\$="":WEND
650 GOTO 60
660 '
670 '
680 '
690 '

well, i know this is cheating but this is the easiest way
to handle singularities or division by zero issues...

700 '
710 '
720 'SINE=ZERO BOUNDARYVALUES:
730 LOCATE  9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
740 LOCATE 11,20: PRINT "Sine      =   0.000000";
750 LOCATE 12,20: PRINT "Cosine    =   1.000000";
760 LOCATE 13,20: PRINT "Tangent   =   0.000000";
770 LOCATE 14,20: PRINT "Cotangent =  undefined";
780 LOCATE 15,20: PRINT "Secant    =   1.000000";
790 LOCATE 16,20: PRINT "Cosecant  =  undefined";
800 WHILE INKEY\$="":WEND:GOTO 60
810 '
820 'Sine=90 boundaryValues:
830 LOCATE 9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
840 LOCATE 11,20: PRINT "Sine      =   1.000000";
850 LOCATE 12,20: PRINT "Cosine    =   0.000000";
860 LOCATE 13,20: PRINT "Tangent   =  undefined";
870 LOCATE 14,20: PRINT "Cotangent =  undefined";
880 LOCATE 15,20: PRINT "Secant    =  undefined";
890 LOCATE 16,20: PRINT "Cosecant  =   1.000000";
900 WHILE INKEY\$="":WEND:GOTO 60
910 '
920 'EmbeddedCommands:
930 '       save"recur.bas",a

Well, here is one that shows you how joseph_sixpacks get
into trouble.  Now this program works fine.  It returns all
the right values and error traps okay and everything.

BUT...

There is something wrong with the code.  i have calculated
sine & cosine unnecessarily twice according to my mind.

See if you can alter the code to just calc the
transcendentals once and come up with the right answers.

10 'HouseKeeping:
20 Z=14
30 OPTION BASE 1:DIM F(13):DIM P(13)
40 CHECK4NUMBER\$="0123456789."
50 PI=4*ATN(1):R2D=180/PI:D2R=PI/180
60 T=1:N=1:LOCATE,,,0,7:COLOR 15,0:CLS
70 '
80 'LoadFactorialArray "F" & PowerArray "P"
90 WHILE N<>Z   'start loop and just load values up to 13
100   T=T*N      'total=total * number
110   F(N)=T    'load F() array with factorial of N
120   P(N)=X^N  'load P() array with X to the N power
130   N=N+1     'increment the number
140   WEND
150 '
160 SINE= P(1)/F(1) -P(3)/F(3) +P(5)/F(5) -P(7)/F(7) +P(9)/F(9) -P(11)/F(11) +P(13)/F(13)
170 COSINE= 1 -P(2)/F(2) +(P4)/F(4) -P(6)/F(6) +P(8)/F(8) -P(10)/F(10) +P(12)/F(12)
180 TANGENT=SINE/COSINE
190 COT=COSINE/SINE
200 SEC=1/COSINE
210 CSC=1/SINE
220 '
230 'ScreenPainter:
240 CLS
250 LOCATE  3,20:  PRINT "Trigonometric Functions by Series Expansion";
260 LOCATE  4,20:  PRINT "___________________________________________";
270 LOCATE 22,20:  PRINT "eXit                           Cls=spacebar";
280 LOCATE  7,20:  INPUT "Degrees: "; DEGREES\$  'input degrees as string
290 '
300 'CheckInput\$:
310 IF DEGREES\$="x" OR DEGREES\$="X" THEN CLS:NEW
320 IF DEGREES\$="" THEN GOSUB 660
330 FOR I=1 TO LEN(DEGREES\$)
340  IF INSTR(CHECK4NUMBER\$,MID\$(DEGREES\$,I,1))=0 THEN 660   '(errormessage)
350 NEXT
360 '
370 'Convert degrees\$2degrees:
380 X=VAL(DEGREES\$)
390 '
400 'CheckX:
410 IF X=0 THEN GOTO 720
420 IF X=90 THEN GOTO 810
430 IF X < .0002776 OR X > 89.9998 THEN 660   '  +/- 1 second of angle
440 '
450 R=X*D2R  'convert X to radian measure for use in calculations
460 '
470 'CalculateSine using just the first seven terms of the expansion:
480 SINE=R^1/F(1)-R^3/F(3)+R^5/F(5)-R^7/F(7)+R^9/F(9)-R^11/F(11)+R^13/F(13)
490 COSINE=1-R^2/F(2)+R^4/F(4)-R^6/F(6)+R^8/F(8)-R^10/F(10)+R^12/F(12)
500 TANGENT=SINE/COSINE
510 COTANGENT=(COSINE/SINE)
520 SECANT= 1/COSINE
530 COSECANT=1/SINE
540 '
550 'Print2Screen:
560 LOCATE 9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
570 LOCATE 11,20:PRINT "Sine      = ";:PRINT USING "####.#######";SINE
580 LOCATE 12,20:PRINT "Cosine    = ";:PRINT USING "####.#######";COSINE
590 LOCATE 13,20:PRINT "Tangent   = ";:PRINT USING "####.#######";TANGENT
600 LOCATE 14,20:PRINT "Cotangent = ";:PRINT USING "####.#######";COTANGENT
610 LOCATE 15,20:PRINT "Secant    = ";:PRINT USING "####.#######";SECANT
620 LOCATE 16,20:PRINT "Cosecant  = ";:PRINT USING "####.#######";COSECANT
630 LOCATE 18,20:PRINT "5 inch sinebar setting: ";SINE*5;"inches";
640 GOTO 690
650 '
660 'ErrorMessage:
670 PRINT TAB(10)"the degree value entered does not compute."
680 PRINT TAB(10)"Press the Anykey to continue."
690 WHILE INKEY\$="":WEND
700 GOTO 60
710 '
720 'SINE=ZERO BOUNDARYVALUES:
730 LOCATE  9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
740 LOCATE 11,20: PRINT "Sine      =   0.000000";
750 LOCATE 12,20: PRINT "Cosine    =   1.000000";
760 LOCATE 13,20: PRINT "Tangent   =   0.000000";
770 LOCATE 14,20: PRINT "Cotangent =  undefined";
780 LOCATE 15,20: PRINT "Secant    =   1.000000";
790 LOCATE 16,20: PRINT "Cosecant  =  undefined";
800 WHILE INKEY\$="":WEND:GOTO 60
810 '
820 'Sine=90 boundaryValues:
830 LOCATE 9,20:PRINT "The Transcendental functions of: ";X;"degrees are:"
840 LOCATE 11,20: PRINT "Sine      =   1.000000";
850 LOCATE 12,20: PRINT "Cosine    =   0.000000";
860 LOCATE 13,20: PRINT "Tangent   =  undefined";
870 LOCATE 14,20: PRINT "Cotangent =  undefined";
880 LOCATE 15,20: PRINT "Secant    =  undefined";
890 LOCATE 16,20: PRINT "Cosecant  =   1.000000";
900 WHILE INKEY\$="":WEND:GOTO 60
910 '
920 'EmbeddedCommands:
930 '       save"trig.bas",a

```
Go to TOP of Page