GC_ET_AFX_CW_Filter.html

2021-07-18   11:20:01


  ( Be sure to Refresh your pages, each visit,   as web-site construction has been ongoing since 1995, for 25 years       
  ( ...... and may have changed since your last visit .   Remember, the internet browser retains a cached page.   

 aimg_Morse-Man.jpg                           AFX-RLFA-v9-all-B-MOTION.gif
 


                      

 "AFX" filter circuit : 

 
Differentiated
 & Integrated post-Filter Stages
& Q=20 stage
are detailed on a special page.




AFX : Analog CW Signal Processor.
*****  1. Preamp w limiter.
*****  2. Roofing Triad Filter,
*****  3. Active-Log_limiter,
*****  4. Quad MFB audio filter and Dual-Notches
*****  5. Audio out 0.5 W class-B.

      

CTD                                                                                       AFX_Dual-Notch_Dif-Fx-Curves_ref_runge.png   
 

This Page is about the  author's  AFX  core filter circuit    for use with  vintage and QRP  rigs, such as the  HW-8 .

*** Filter Topology Design notes : 

***
Multi-FeedBack topology ( Deliyanis-Friend ) was chosen because : 
*** (1) input vs output impedances match well when sequencing stages. 
*** (2) single resistor frequency control for easy tuning to f() for sequenced filter stages . 
*** (3) frequency adjustments alters gain by only the square-root of the f(change) . 

*** (4) the Roof-Triad-Differential design is very tolerant of component variations ( and see note below ) .

*** (5) the Quad Filter components should be maintained exactly as shown
***    since they produce two phase related signals ( uFx01 and uFx04) 
***    which drive the uDIF and uINT and uQ20 stages for the final results. 

************************************************************************************************************

Note:    in the following diagrams, Filter R2 is the R(freq) for adjusting f(center) 
Note:    the -1dB level is equivalent to 900 mV level and barely audible. 
Note:    the -3dB level is equivalent to 700 mV level the usual BandWidth point. 
Note:    [ (BW@-12dB - BW@-3dB ) / 9dB    labeled as :    "v" = slope of best fit for the Gaussian sideband shape ] 

Note:    All Filter and Differential stages are set to aprox. standard 1V peak 

Note:    Power Supply ByPass caps are not shown. 
             OpAmp Null trim pots were not used, in this development with LM-324 quad OpAmp chips. 

************************************************************************************************************ 

*** First section is a Pre-Amp and Roof-Differential-Filter.
*** Second section is the Active-Limiter
*** Third section is the Quad Stages MFB pass-band filter
*** Fourth section contains the Differential and Integration "N"arrow / "W"ide stages 
*** Fifth section is the Audio preamp and Class-B audio output.  
*** Because all filter stages are set to a standard 1V peak,
      the Filter-Select-Switch can tap most any stage for a signal into the Audio stage. 

 .                    That is the Basic  AFX  layout  

*** Goal:  "N"arrow and "W"ide passband signals.  

Advanced designs  begin with the Roofing Filters.
However, Basically, the Quad MFB filters  driving the uDIF and uINT stages produce the primary effect. 

(1) Differential produces "N"arrow double-notched  passband. 
* Stage UDIF  ( DIFFerentiating Fx01 with Fx04 )  to produce a "N"arrow double-notched signal. 

(2) Integration produces "W"ide Flat-Topped Steep Skirt passband. 
* Stage UINT  ( INTEgrating #3 negative and #4 positive signals )  to produce a "W"ide flat-top steep sided signal. 

 
Note: These specs are from PartSIM, and the schematics / plots are from ngSPICE. 
Note: Author did the initial build-up on ProtoBoards, and measurements compare favorably. 

These  specs  show both the "cQ" calculated "Q" , specific to each stage, 

and the "mQ"  measured "Q" as it accumulats progressively through the circuit. 

*****************************************************************************************


*********  Below is the  section primarally about the Quad Filter

***  the reader should note these filter characteristics  
:

 
***  The  DIFFerential  and  INTEgration Filter Stages have passband curves
***   that ARE NOT GAUSIAN CURVES.

 

      The "Q" of the passband, based on BandWidth at -3dB down to -12dB
      does not compare with regular band-pass circuits. 
      A modified slope-of-best-fit is used to better describe these bandpass curves.  
      This is the calculation
       :    [  (BW@-12dB - BW@-3dB ) / 9dB   = v   
]

       where    "v" = variance = a slope-of-best-fit 

***  The un-tuned DIFFerential stage produces a "N"arrow signal,
          via a Subtraction Operation, 
          with two -48dB notches at aprox. +/- 90 degrees from f(700) sidebands.  
          This is a f(700) narrow stage, for CW only.   

*** The un-tuned INTEgration stage produces a "W"ide signal, via a Summing Operation, 
          with a flat top, and steep side-bands. 

**************************************************************************************

***_ Differentiated  "N"arrow Output
***_ Dual Notch= 535 Hz & 920 Hz  , which is loosely aprox.  +/- 90 degrees from f(700)
***_ Dual Notch concept is NOT the same as  "I" / "Q"  concept.
***_ Dual Notch is developed at the point where "two waveforms cross-over". 
***_ Measurements:
      'mQ' (measured 'Q') =7.9,  
      'T' (-1dB BandWidth) = 47 Hz,
      'BW' (-3dB) =90 Hz
      'BW' (-12dB)=185 Hz

******************************************************************************************

***_  Differential "N"arrow passband has these characteristics:  
***_  BandPass shape is NOT gaussian. 
***_  Sideband falloff is -48 dB per octive in this basic schematic design.
***_  BW=89--196__ variance=12 (Hz passband spread per dB attenuation)  
***_    BW @ -3dB = 90Hz
***_    BW @ -12dB = 185Hz
***_    BW @ -48dB ( Notch-to-Notch ) =385Hz 
***_ 535Hz Low Notch  and  920Hz High Notch.  
***    NOT a Quadrature Filter by design and NOT Conceptually a Quadrature Filter. 
***_ 920Hz is -27 dB under Fx04 passband curve. 
***_ 920Hz is -48 dB down from 1V standard "0 dB" signal. 

******************************************************************************************

***_ Integrated  "W"ide Output has these characterisics:
***_ mQ=3.9,  T=101, BW=180 
***_ BW=179--390, variance = 24 (Hz passband spread per dB attenuation) 
***_    BW @ -3dB = 179 Hz
***_    BW @ -12dB = 390 Hz


******************************************************************************************

****   This is the QUAD FILTER  plus DIF and INT and Q20 stages :

***    DIF and INT and Q20 stages are presented in detail in a following section.

GC_ET_AFX_CW_Filter.html

2021-07-18   10:54:30


  ( Be sure to Refresh your pages, each visit,   as web-site construction has been ongoing since 1995, for 21 years       
  ( ...... and may have changed since your last visit .   Remember, the internet browser retains a cached page.   

 aimg_Morse-Man.jpg                                     AFX-RLFA-v9-all-B-MOTION.gif
 


                      

                          "AFX" filter circuit : 

 
Differentiated
 & Integrated post-Filter Stages
& Q=20 stage
are detailed on a special page.




AFX : Analog CW Signal Processor.
*****  1. Preamp w limiter.
*****  2. Roofing Triad Filter,
*****  3. Active-Log_limiter,
*****  4. Quad MFB audio filter and Dual-Notches
*****  5. Audio out 0.5 W class-B.

      

CTD                                                                                       AFX_Dual-Notch_Dif-Fx-Curves_ref_runge.png   
 

This Page is about the  author's  AFX  core filter circuit    for use with  vintage and QRP  rigs, such as the  HW-8 .

*** Filter Topology Design notes : 

***
Multi-FeedBack topology ( Deliyanis-Friend ) was chosen because : 
*** (1) input vs output impedances match well when sequencing stages. 
*** (2) single resistor frequency control for easy tuning to f() for sequenced filter stages . 
*** (3) frequency adjustments alters gain by only the square-root of the f(change) . 

*** (4) the Roof-Triad-Differential design is very tolerant of component variations ( and see note below ) .

*** (5) the Quad Filter components should be maintained exactly as shown
***    since they produce two phase related signals ( uFx01 and uFx04) 
***    which drive the uDIF and uINT and uQ20 stages for the final results. 

************************************************************************************************************

Note:    in the following diagrams, Filter R2 is the R(freq) for adjusting f(center) 
Note:    the -1dB level is equivalent to 900 mV level and barely audible. 
Note:    the -3dB level is equivalent to 700 mV level the usual BandWidth point. 
Note:    [ (BW@-12dB - BW@-3dB ) / 9dB    labeled as :    "v" = slope of best fit for the Gaussian sideband shape ] 

Note:    All Filter and Differential stages are set to aprox. standard 1V peak 

Note:    Power Supply ByPass caps are not shown. 
             OpAmp Null trim pots were not used, in this development with LM-324 quad OpAmp chips. 

************************************************************************************************************ 

*** First section is a Pre-Amp and Roof-Differential-Filter.
*** Second section is the Active-Limiter
*** Third section is the Quad Stages MFB pass-band filter
*** Fourth section contains the Differential and Integration "N"arrow / "W"ide stages 
*** Fifth section is the Audio preamp and Class-B audio output.  
*** Because all filter stages are set to a standard 1V peak,
      the Filter-Select-Switch can tap most any stage for a signal into the Audio stage. 

           That is the Basic  AFX  modular layout  

Our Advanced designs ( in later sections )  begin with the Roofing Filters.
 

However, Basically, the Quad MFB filters  driving the uDIF and uINT stages produce a primary effect. 

(1) Differential produces "N"arrow double-notched  passband. 
* Stage UDIF  ( DIFFerentiating Fx01 with Fx04 )  to produce a "N"arrow double-notched signal. 

(2) Integration produces "W"ide Flat-Topped Steep Skirt passband. 
* Stage UINT  ( INTEgrating #3 negative and #4 positive signals )  to produce a "W"ide flat-top steep sided signal. 

 
Note: These specs are via PartSIM, and the schematics / plots are from ngSPICE. 
Note: Author did the initial build-up on ProtoBoards, and measurements compare favorably. 

These  specs  show  the "cQ" calculated "Q" , specific to each stage, 

These  specs  show  the "mQ"  measured "Q" as it accumulats progressively through the circuit. 

****************************************************************************************************


*********  Below is the  section primarally about the Quad Filter

***  the reader should note these filter characteristics  
:

***  The  DIFFerential  and  INTEgration Filter Stages have passband curves
***   that ARE NOT GAUSIAN CURVES.

 

      The "Q" of the passband, based on BandWidth at -3dB down to -12dB
      does not compare with regular band-pass circuits. 
      A modified slope-of-best-fit is used to better describe these bandpass curves.  
      This is the calculation
       :    [  (BW@-12dB - BW@-3dB ) / 9dB   = v   
]

       where    "v" = variance = a slope-of-best-fit 

***  The un-tuned DIFFerential stage produces a "N"arrow signal,
          via a Subtraction Operation, 
          with two -48dB notches at aprox. +/- 90 degrees from f(700) sidebands.  
          This is a f(700) narrow stage, for CW only.   

*** The un-tuned INTEgration stage produces a "W"ide signal, via a Summing Operation, 
          with a flat top, and steep side-bands. 

**************************************************************************************

***_ Differentiated  "N"arrow Output
***_ Dual Notch= 535 Hz & 920 Hz  , which is loosely aprox.  +/- 90 degrees from f(700)
***_ Dual Notch concept is NOT the same as  "I" / "Q"  quadrature concept.

                                           AFX_Dual-Notch_Dif-Fx-Curves_ref_runge.png

***_ Dual Notch is developed at the point where "two waveforms cross-over". 

**************************************************************************************

***_ Measurements definitions applied to the Bode Plots :

      'cQ' (calculated 'Q') =3, specific to each filter stage.  

      'mQ' (measured 'Q') = accumulated effect for a series of filters.   

      'T' (-1dB BandWidth) = 47 Hz,
  

******************************************************************************************
   

      "V"ariance is measured increase in BW per dB attentuation in sideband.
      "V"ariance calculated from these -dB points.
      'BW' (-3dB) =90 Hz
      'BW' (-12dB)=185 Hz

       Example of "V" calculation :
       ***_ BW=179--390, variance = 24 (Hz passband spread per dB attenuation) 
       ***_    BW @ -3dB = 179 Hz
       ***_    BW @ -12dB = 390 Hz


******************************************************************************************

***_  Differential "N"arrow passband has these characteristics:  
***_  BandPass shape is NOT gaussian. 
***_  Sideband falloff is -48 dB per octive in this basic schematic design.
***_  BW=89--196__ variance=12 (Hz passband spread per dB attenuation)  
***_    BW @ -3dB = 90Hz
***_    BW @ -12dB = 185Hz
***_    BW @ -48dB ( Notch-to-Notch ) =385Hz 
***_ 535Hz Low Notch  and  920Hz High Notch.  
***    NOT a Quadrature Filter by design and NOT Conceptually a Quadrature Filter. 
***_ 920Hz is -27 dB under Fx04 passband curve. 
***_ 920Hz is -48 dB down from 1V standard "0 dB" signal. 

******************************************************************************************

***_ Integrated  "W"ide Output has these characterisics:
***_ mQ=3.9,  T=101, BW=180 
***_ BW=179--390, variance = 24 (Hz passband spread per dB attenuation) 
***_    BW @ -3dB = 179 Hz
***_    BW @ -12dB = 390 Hz


******************************************************************************************

****   This is the QUAD FILTER  plus DIF and INT and Q20 stages :

***    DIF and INT and Q20 stages are presented in detail in a following section.

AFX_RLFADIQP-v10-pFQUAD-S.png
AFX_RLFADIQP-v10-pXTRA-S.png 


 


********************************************************************************************
*** Below is Bode for  All Waveforms and INTEgration "W"  and  DIFFerential "N"
***  "W"ide is flat topped in yellow.  
***  "N"arrow is double Notched in red.

Here:  Narrow Differential signal is RED and Wide Integration signal is YELLOW. 

a

*** Special Note : ***********************************
*** F1-F4_DIF = Notches are -25dB below Fx04
*** DIF : 
*** BW=86--190___v=12
*** Notch at 533 @ -50dB
*** Notch at 920 @ -50dB
*** StopBand= -48dB to limits
******************************************************
*** F3+F4_INT
*** BW=176--369___v=-22
*** StopBand = -19dB to -42dB
************************************** 

********************************************************************************************************************************
 

***  Graphical Concept for the Dual-Notches     
*** The DIF stage produces a "N"arrow signal, with dual  notches surrounding 700Hz 

 ***  Graphical Concept for the Dual-Notches  AFX_Dual-Notch_Dif-Fx-Curves_ref_runge.png  
*** Where the wave-forms cross, there is zero difference in amplitude,
*** and a Differential OPA can produce a Notch at each cross-over !!!  


********************************************************************************************

Below:  Narrow Differential signal is RED   and   Wide Integration signal is BLUE
AFX_RSF-S4-Q7-SD-7-B-c.png   


***************************************************************************************
*** Below :
*** Bode for Fx01 (black), Fx04 (blue), and the Dif "N" (red) .  

*** At 930Hz , the Dif "N" (red)  versus  Fx04 (blue)    is  -25 dB.  
***    This is a log scale plot so the plots appear closer than reality. 
AFX_RSF-S4-Q7-SD-7-B-b.png   


*** Below is a "Magnitude Plot" which emphasizes the dB relations.

AFX_3RLFADI-v9-SimMaga.jpg


**************************************************************************************************************

***         More Discussion about the  Standard   "AFX-RSF"  Circuit  


1) Bullet-Proof Construction and Easy to tune just using a VOM and ordinary signal source off the air. 
2) Very steep skirts  . 

3) very low passband signal level  at 1000 Hz . 

*** PreAmp has wide gain.    
*** Roofing Filter is very wide.     
*** Log Diode Limiter is a single stage, instant response, Actively Driven by user control.     

*** LED indicator for Limiter-in-Action ( and if tapped from Fx04, then indicates also the Center-of-Passband).  

*** Filter stage BandWidth Ranges :
"W"ide Q=2.5 BW=250,  "N"arrow Q=5 BW=100. ... Measured "Q" are 3.5 and 6.5
*** Quad Filter has Variable f(0) in Stage #4 which acts like an RIT tuner for +/- 75 Hz. 
*** Hedge f(0) by shifting the Stage #4 f(0) within the source passband, to better capture a slightly QSY signal.
*** Optional : 
* extra is a Stage UDIF ( DIFferentiating Fx01 with Fx04 )  to produce a "N"arrow Double-Notched signal. 
* extra is a Stage UINT ( INTegrating #3 negative and #4 positive signals )  to produce a "W"ide flat-top steep sided signal. 
 

* Note: the Calculated "cQ"  and  Measured "mQ"  are shown. 
* Because circuit measurements show the cumulative effect of several stages.
*       the Measured "mQ" is always much higher than the Calculated "cQ".
* The Cumulative Measured "mQ" is the Real-Time Signal out of this filter.  
 

::: Some Circuit specs:
::: 12V split supply. So, +/- 6V supply
:::  LM741 & LM308 Vout max = +/- 4.2V. ::: LM324 Vout max = +/- 5.2V  

General Setup :
:::  Set Diode Limiting at 1.25 V as Limit Function begins. Variance is OK. 
:::  Set Limiter Vout = +/- 1.0V peak into audio filters , as a Standard Signal Level.
:::  Filters run at +/- 1V peak aprox. max. analogous to the Log-Limiter Peak range.  
:::  Filter Stage #4, calculated cQ=5, ,measured mQ=7 cumulative,  measured BW=100.  

Hedging control    ( Discussed in the R.I.T. section ) : 
:::: Here,  R(freq) is adjusted +/- 1KOhm to vary f() 100Hz, aprox.   
RIT-ani-ci.gif
(( this will vary when combined with Differentiation and Integrating circuits ))
( author uses a Panel Pot for hand control.)
( Is used as a Hedging control to push BandPass Peak Freq against the BandPass Skirt wall. )
( The net effect is to push unwanted signals down the opposite BandPass Skirt. )  


***********************************************************************************************************

#1 , #2, #3, #4  filter stages are standard MFB topology and Produce a standard Gausian BandPass. 
Underlapping ( by increasing "Q" in succeding stages ) reduces cumulative GroupDelay distortion.
Measurements at #4 Vout: 
Measured Q = 7.0  (cumulative effective “Q”). 
BW=90,130,165,200 @  -3,-6,-9,-12 db.
Var=12 Hz passband spread per dB attenuation , 
Fx4 Floor=-41dB at 1000 Hz.

#5 and #6 stages are the Differential and Integral stages.
These are untuned stages, and produce a very Non-Gausian BandPass. 



****************************************************************************************

See the Differentiated & Integrated post-Filter Stages for details.

*** #5 UDIF NARROW 100Hz BW DIFFerential stage 
  

***   where    Filter#4 (mQ=7.0)    is inverted and subtracted from    Filter#1 (mQ=2.0)
***   easily producing dual -48 dB notches at aprox. +/- 200 Hz: 
***   StopBand is aprox. -45 dB  to limits.



*************************************************************************************************
 See the Differentiated & Integrated post-Filter Stages for details.

WIDE: #6 UINT stage is a INTegration of Fx#3 positive and Fx#4 negative.

 INT stage produces Very Broad Top of 175 Hz.
INT stage produces a sideband skirt  steeper  than the sources. 
Final  INTegrated  stage "W"ide    ------------ mQ=4, BW=175, v=16, K=-24


( schematic figures for the DIF and INT  are in the  Differentiated & Integrated post-Filter  page )


*****************************************************************************
*** Bode for ALL filter waveforms 
*** Bode for Fx01, Fx02, Fx03, Fx04,    Flat-topped Sum"Wide" is yellow,    Dual-Notched Dif"Narrow" is purple. 

AFX_RLFA


********************************************************************************************************

Below: 
***    #5 UDIF and #6 UINT stages are the Differential and Integral stages. 
*** These are untuned stages, and produce a very Non-Gausian BandPass. 
See the Differentiated & Integrated post-Filter plus Q20  page  for details.

*** Bode for Fx03, Fx04
*** "W"ide signal is the "black" flat-topped trace. 
*** "N"arrow Differential signal is "blue" with double notches,  
*** Remember, this is a log scale plot, and the bottom of the curves is compressed on the graph.


 
 AFX_RSF-S4-Q7-ID-8-Filter-B-b2.jpg


**********************************************************************************************************************


   



******************************************************************************************************************************
*** NOTE about the special DIF and INT stage characteristics : 
***
*** The DIFFerentiantial and INTegration stages do NOT generate  gausian curves. 
*** The DIF and INT stages combine two signals to produce non-Gausian curves.

***
*** The DIF and INT stages are NOT tuned resonant filter stages.  

*** The DIF and INT stages are Phase Sensitive  Math-Operational Circuits , 
          receiving two signals, operating, and producing a single signal out. 

***
*** The DIF stage produces a "N"arrow signal, with dual -48 dB notches aprox +/- 200 Hz .   

*** The INT stage produces a "W"ide signal, with a flat top, and steeper side-bands.  


The Final Designs for these concepts are presented in the AFX-V (Variable) pages



******************************************************************************************************************************


That is the  author's  AFX  core filter circuit with the Best-of-Class development in the "AFV" circuit. 
The projectt is for use with  Vintage and Analog QRP  rigs, such as the  Heathkit HW-8  
It also provides excellent results attached to a Kenwood 830-S.     

*************************************************************************************************************************



AFX_RLFADIQP-v10-pFQUAD-S.png
AFX_RLFADIQP-v10-pXTRA-S.png 


 


********************************************************************************************
*** Below is Bode for  All Waveforms and INTEgration "W"  and  DIFFerential "N"
***  "W"ide is flat topped in yellow.  
***  "N"arrow is double Notched in red.

Here:  Narrow Differential signal is RED and Wide Integration signal is YELLOW. 

a

*** Special Note : ***********************************
*** F1-F4_DIF = Notches are -25dB below Fx04
*** DIF : 
*** BW=86--190___v=12
*** Notch at 533 @ -50dB
*** Notch at 920 @ -50dB
*** StopBand= -48dB to limits
******************************************************
*** F3+F4_INT
*** BW=176--369___v=-22
*** StopBand = -19dB to -42dB
************************************** 

********************************************************************************************************************************
 

***  Graphical Concept for the Dual-Notches     
*** The DIF stage produces a "N"arrow signal, with dual  notches surrounding 700Hz 

 ***  Graphical Concept for the Dual-Notches  AFX_Dual-Notch_Dif-Fx-Curves_ref_runge.png  
*** Where the wave-forms cross, there is zero difference in amplitude,
*** and a Differential OPA can produce a Notch at each cross-over !!!  


********************************************************************************************

Below:  Narrow Differential signal is RED   and   Wide Integration signal is BLUE
AFX_RSF-S4-Q7-SD-7-B-c.png   


***************************************************************************************
*** Below :
*** Bode for Fx01 (black), Fx04 (blue), and the Dif "N" (red) .  

*** At 930Hz , the Dif "N" (red)  versus  Fx04 (blue)    is  -25 dB.  
***    This is a log scale plot so the plots appear closer than reality. 
AFX_RSF-S4-Q7-SD-7-B-b.png   


*** Below is a "Magnitude Plot" which emphasizes the dB relations.

AFX_3RLFADI-v9-SimMaga.jpg


**************************************************************************************************************

***         More Discussion about the  Standard   "AFX-RSF"  Circuit  


1) Bullet-Proof Construction and Easy to tune just using a VOM and ordinary signal source off the air. 
2) Very steep skirts  . 

3) very low passband signal level  at 1000 Hz . 

*** PreAmp has wide gain.    
*** Roofing Filter is very wide.     
*** Log Diode Limiter is a single stage, instant response, Actively Driven by user control.     

*** LED indicator for Limiter-in-Action ( and if tapped from Fx04, then indicates also the Center-of-Passband).  

*** Filter stage BandWidth Ranges :
"W"ide Q=2.5 BW=250,  "N"arrow Q=5 BW=100. ... Measured "Q" are 3.5 and 6.5
*** Quad Filter has Variable f(0) in Stage #4 which acts like an RIT tuner for +/- 75 Hz. 
*** Hedge f(0) by shifting the Stage #4 f(0) within the source passband, to better capture a slightly QSY signal.
*** Optional : 
* extra is a Stage UDIF ( DIFferentiating Fx01 with Fx04 )  to produce a "N"arrow Double-Notched signal. 
* extra is a Stage UINT ( INTegrating #3 negative and #4 positive signals )  to produce a "W"ide flat-top steep sided signal. 
 

* Note: the Calculated "cQ"  and  Measured "mQ"  are shown. 
* Because circuit measurements show the cumulative effect of several stages.
*       the Measured "mQ" is always much higher than the Calculated "cQ".
* The Cumulative Measured "mQ" is the Real-Time Signal out of this filter.  
 

::: Some Circuit specs:
::: 12V split supply. So, +/- 6V supply
:::  LM741 & LM308 Vout max = +/- 4.2V. ::: LM324 Vout max = +/- 5.2V  

General Setup :
:::  Set Diode Limiting at 1.25 V as Limit Function begins. Variance is OK. 
:::  Set Limiter Vout = +/- 1.0V peak into audio filters , as a Standard Signal Level.
:::  Filters run at +/- 1V peak aprox. max. analogous to the Log-Limiter Peak range.  
:::  Filter Stage #4, calculated cQ=5, ,measured mQ=7 cumulative,  measured BW=100.  

Hedging control    ( Discussed in the R.I.T. section ) : 
:::: Here,  R(freq) is adjusted +/- 1KOhm to vary f() 100Hz, aprox.   
RIT-ani-ci.gif
(( this will vary when combined with Differentiation and Integrating circuits ))
( author uses a Panel Pot for hand control.)
( Is used as a Hedging control to push BandPass Peak Freq against the BandPass Skirt wall. )
( The net effect is to push unwanted signals down the opposite BandPass Skirt. )  


***********************************************************************************************************

#1 , #2, #3, #4  filter stages are standard MFB topology and Produce a standard Gausian BandPass. 
Underlapping ( by increasing "Q" in succeding stages ) reduces cumulative GroupDelay distortion.
Measurements at #4 Vout: 
Measured Q = 7.0  (cumulative effective “Q”). 
BW=90,130,165,200 @  -3,-6,-9,-12 db.
Var=12 Hz passband spread per dB attenuation , 
Fx4 Floor=-41dB at 1000 Hz.

#5 and #6 stages are the Differential and Integral stages.
These are untuned stages, and produce a very Non-Gausian BandPass. 



****************************************************************************************

See the Differentiated & Integrated post-Filter Stages for details.

*** #5 UDIF NARROW 100Hz BW DIFFerential stage 
  

***   where    Filter#4 (mQ=7.0)    is inverted and subtracted from    Filter#1 (mQ=2.0)
***   easily producing dual -48 dB notches at aprox. +/- 200 Hz: 
***   StopBand is aprox. -45 dB  to limits.



*************************************************************************************************
 See the Differentiated & Integrated post-Filter Stages for details.

WIDE: #6 UINT stage is a INTegration of Fx#3 positive and Fx#4 negative.

 INT stage produces Very Broad Top of 175 Hz.
INT stage produces a sideband skirt  steeper  than the sources. 
Final  INTegrated  stage "W"ide    ------------ mQ=4, BW=175, v=16, K=-24


( schematic figures for the DIF and INT  are in the  Differentiated & Integrated post-Filter  page )


*****************************************************************************
*** Bode for ALL filter waveforms 
*** Bode for Fx01, Fx02, Fx03, Fx04,    Flat-topped Sum"Wide" is yellow,    Dual-Notched Dif"Narrow" is purple. 

AFX_RLFA


********************************************************************************************************

Below: 
***    #5 UDIF and #6 UINT stages are the Differential and Integral stages. 
*** These are untuned stages, and produce a very Non-Gausian BandPass. 
See the Differentiated & Integrated post-Filter plus Q20  page  for details.

*** Bode for Fx03, Fx04
*** "W"ide signal is the "black" flat-topped trace. 
*** "N"arrow Differential signal is "blue" with double notches,  
*** Remember, this is a log scale plot, and the bottom of the curves is compressed on the graph.


 
 AFX_RSF-S4-Q7-ID-8-Filter-B-b2.jpg


**********************************************************************************************************************


   



******************************************************************************************************************************
*** NOTE about the special DIF and INT stage characteristics : 
***
*** The DIFFerentiantial and INTegration stages do NOT generate  gausian curves. 
*** The DIF and INT stages combine two signals to produce non-Gausian curves.

***
*** The DIF and INT stages are NOT tuned resonant filter stages.  

*** The DIF and INT stages are Phase Sensitive  Math-Operational Circuits , 
          receiving two signals, operating, and producing a single signal out. 

***
*** The DIF stage produces a "N"arrow signal, with dual -48 dB notches aprox +/- 200 Hz .   

*** The INT stage produces a "W"ide signal, with a flat top, and steeper side-bands.  


The Final Designs for these concepts are presented in the AFX-V (Variable) pages



******************************************************************************************************************************


That is the  author's  AFX  core filter circuit with the Best-of-Class development in the "AFV" circuit. 
The projectt is for use with  Vintage and Analog QRP  rigs, such as the  Heathkit HW-8  
It also provides excellent results attached to a Kenwood 830-S.     

*************************************************************************************************************************