Main: The Wave equation


The three dimensional problem

The three dimensional wave equation problem is

\begin{displaymath}
{1\over c^{2}}{{\partial^2 \phi}\over{\partial {t}^2}} = {\hbox{\boldmath$\Delta$}}\phi + f({\hbox{\boldmath$x$}},t),
\end{displaymath} (39)

together with a radiation condition. Specifically, waves should travel outwards from points where $f({\hbox{\boldmath$x$}},t)\neq 0$ towards infinity rather than travel in from infinity.

The associated Green's function, $G({\hbox{\boldmath$x$}},t;{\hbox{\boldmath$y$}},\tau)$ satisfies

\begin{displaymath}
{1\over c^{2} }{{\partial^2 G}\over{\partial {t}^2}}-{\hbox...
...ta(t-\tau)\delta({\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}),
\end{displaymath} (40)

together with the radiation condition that disturbances should radiate away from the point of disturbance, ${\hbox{\boldmath$x$}}={\hbox{\boldmath$y$}}$, rather than towards it.

For the usual reasons, it follows that the solution of (8.1) is

\begin{displaymath}
\phi({\hbox{\boldmath $x$}},t) = \int_{-\infty}^{\infty}\ke...
...ath $y$}},\tau)
\,d^{3}{\hbox{\boldmath $y$}}\kern 4pt d\tau.
\end{displaymath}

If we introduce ${\hbox{\boldmath$z$}} = {\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}$ and $T=t-\tau$ then (8.2) becomes

\begin{displaymath}
{1\over c^{2}}{{\partial^2 G}\over{\partial {T}^2}}-{\hbox{...
...math $\Delta$}}_{z}G = \delta(T)\delta({\hbox{\boldmath $z$}})
\end{displaymath}

Since $\delta({\hbox{\boldmath$z$}})=\delta(r)/4\pi r^{2}$, where $r=\left\vert{\hbox{\boldmath$z$}}\right\vert$ it follows that G=G(r,T). Thus

\begin{displaymath}
{1\over c^{2}}{{\partial^2 G}\over{\partial {T}^2}}-{1\over...
...{\partial {r}^2}}(rG)={1\over 4\pi
r^{2}}\delta(T)\delta(r),
\end{displaymath}

For $r\neq 0$ we have $\delta(r)=0$, hence after multiplying through by r

\begin{displaymath}
\left({1\over c^{2}}{{\partial^2 }\over{\partial {T}^2}} - {{\partial^2 }\over{\partial {r}^2}}\right)(rG) = 0
\end{displaymath}

which is the one-dimensional wave equation for rG(r,T). Using the D'Alembert solution for the one-dimensional wave equation we conclude that

\begin{displaymath}
G(r,T) = {F(T-r/c)\over 4\pi r} + {E(T+r/c)\over 4\pi r}
\end{displaymath}

for some functions F(T-r/c) and E(T+r/c). (The factor of $1/4\pi$ is introduced purely for convenience in what follows.)

The radiation condition that disturbances should radiate away from ${\hbox{\boldmath$x$}}={\hbox{\boldmath$y$}}$ rather than towards it becomes the condition that disturbances should move away from r=0 ( $r=\left\vert{\hbox{\boldmath$z$}}\right\vert=\left\vert{\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}\right\vert$) rather than towards r=0. Since F(T-r/c) represents a wave moving away from r=0 and E(T+r/c) represents a wave moving towards r=0, it follows that we must take

\begin{displaymath}
G(r,T) = {F(T-r/c)\over 4\pi r}.
\end{displaymath}

This solution is singular as $r\to 0$, so we define a ``generalised version'' of it by

\begin{displaymath}
G(r,T) = \lim_{\epsilon\to 0}
\left( H(r-\epsilon){F(T-r/c)\over 4\pi r}\right)
\end{displaymath}

where the point r=0 is excluded, and use the result from section 5.4 that

\begin{displaymath}
{\hbox{\boldmath $\Delta$}}_{z}€\left[ \lim_{\epsilon\to 0}...
...=
{f''(r)\over 4\pi r} - f(0)\delta({\hbox{\boldmath $z$}}).
\end{displaymath}

This shows that

\begin{displaymath}
{\hbox{\boldmath $\Delta$}}_{z}G = {F''(T-r/c)\over 4c^{2}\pi r} - F(T)\delta({\hbox{\boldmath $z$}})
\end{displaymath}

and, differentiating G twice with respect to T we obtain

\begin{displaymath}
{{\partial^2 G}\over{\partial {T}^2}} = {F''(T-r/c)\over 4\pi r}
\end{displaymath}

so that

\begin{displaymath}
{1\over c^{2}}{{\partial^2 G}\over{\partial {T}^2}} - {\hbo...
...{\boldmath $z$}}) =
\delta(T)\delta({\hbox{\boldmath $z$}}).
\end{displaymath}

Thus

\begin{displaymath}
F(T) = \delta(T)
\end{displaymath}

and therefore

\begin{displaymath}
G(r,T) = {\delta(T-r/c)\over 4\pi r}.
\end{displaymath}

Recalling that $T=t-\tau$, $r=\left\vert{\hbox{\boldmath$z$}}\right\vert=\left\vert{\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}\right\vert$,
\begin{displaymath}
G({\hbox{\boldmath$x$}},t; {\hbox{\boldmath$y$}},\tau) = {1...
...{\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}\right\vert\right).
\end{displaymath} (41)

Note that G=0 except where $t=\tau+ {1\over
c}\left\vert{\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}\right\vert$.

An important point:

The delta function in the Green's function (8.3),

\begin{displaymath}
G({\hbox{\boldmath$x$}},t; {\hbox{\boldmath$y$}},\tau) = {1...
...{\hbox{\boldmath$x$}}-{\hbox{\boldmath$y$}}\right\vert\right).
\end{displaymath}

is a scalar delta function not a vector delta function. That is, it is a one dimensional delta function $\delta(x)$ rather than a three dimensional delta function $\delta({\hbox{\boldmath$x$}})$.


Main: The Wave equation

Hosted by www.Geocities.ws

1