RED STAR project
A study in determining atmospheric ozone values
through the observations of red giants.


Below: consecutive pictures of M type stars taken from different sky locations.

RED Star project is designed for Amateur observers, you can help
prove this phenomena if you live in a light free area.


This page requires knowledge from several scientific disciplines, namely: astronomy,
spectroscopy and even human anatomy. If you are not well versed with these subjects
here is a brief summary:

Atmospheric Ozone is an elementary gas which absorbs ultraviolet and red light.
It is one of a few natural gases which affects a specific visual colour. A relatively
very thin vail of ozone literally protects the Earth ecosystems from lethal ultraviolet
radiation.

Spectrometers and other high tech instruments measure a total ozone column usually
compiled in Dobson Units. These instruments can be placed from the Earth's surface
or in space.

Any layer of terrestrial air has ozone. However the most important ozone stratum
can be found in the stratosphere. The stratosphere usually starts at about or right
above commercial jet traffic altitude of 10 kilometers.


Stars have a wide range of colours, they have been classified accordingly. A hot
or young star is usually blue, an old or dying star is mostly red. Our eyes only
perceive colours from the biggest Astral objects. To most observers, Vega appears
blue green while most dimmer stars appear white. Stellar magnitudes are used to
classify star Brightness, a very bright object like the moon has a visual magnitude
of -11, while human eyes perceive stars which are as dim as 6.5. For stellar
magnitude numbers, the scale is inversed, large negative numbers indicate extreme
brightness, conversely large positive numbers mean very dim objects. Night objects
beyond a positive stellar magnitude value of 6.5 require visual aids (a telescope)
just to see them.


Ozone measured by sighting red stars.

Ozone studies have been a modern scientific phenomena, human history deals with
this gas within the last 200 years or so. Atmospheric ozone has been measured with
instruments only recently, the Dobson spectrometer, an elegant but large instrument,
dominated this field, it required extensive human manipulations, and was in use since
the 1920's. Today, a few Dobsons are still in use, but electronic age instruments are
much smaller, they measure more visible and invisible frequencies while computing
results almost instantly. The original techniques remained the same for all spectro-
photometric instruments. Specific frequency intensities from a bright source
penetrating our atmosphere are measured by regularly intercomparing it with a
lamp having known values.


There is no doubt, modern calibrated spectrometers or lasers, essentially can give
accurate ozone values. But there may be another way, rather crude at this stage of
its evolution, for estimating how much ozone there is right on top of your house
(given the right dark sky conditions). This method requires good eyesight from
your eyes only,


Brief history of the red star anomaly.

Many very cold Resolute Bay Nunavut -40 degree nights (without windchill)
have come an gone during the long night of 1993. Observations of air quality
measurements through star magnitude sightings, have revealed surprising results,
the much expected dim star sightings were very rare, on average high Arctic
weakest stars were about 5.0 magnitude, much weaker stars can be seen around
high population areas even adjoining modern industrial sites. 5.0 magnitude
stars are much brighter than 6.5 magnitude stars found to be at the threshold
of human vision.


During many such observations, a particular star within Ursa Minor constellation
appeared to vanish, despite the presence of weaker neighbouring stars.

Many years after observing this strange phenomena, it was suggested that the
red star in question was a variable star. However this red star period or visual
intensity was known to vary between 5.07 to 5.0, while a certain blue star was
always seen right by it, and it has a weaker brightness of 5.27. Technically
speaking during all cycles of variability, this red star should be seen every
time the blue 5.27 one is sighted, but this was not the case. The colour
difference between the two stars, red and blue, may be the key which
explain this phenomena.



In the human eye retinas there are thousands of light sensitive receptors called
rods which are extremely sensitive in darkness, they are particularly sensitive
to light at 500 nanometers wavelength, a blue green colour. Dominant red light
given away by the red star is not perceived as well. Even if the blue star is
dimmer, rods are more sensitive to blue green, giving the illusion blue stars
are brighter than red ones.



Photographic attempt to explain the phenomena.

The pictures above are about two stars, nearly identical according to the
Harvard classification system. They were selected because they are M
types. On film, both of these stars are strikingly different in size and colour,
because they were at two different locations in the sky. Polaris Red
was at 77 degrees above the horizon, while Orion red (named this way because
it is near Orion) was at 12 degrees above the horizon. Polaris red was seen
during this photograph, Orion Red was taken a few seconds after
using the same camera, film (Kodak 1000 Gold) and exposure time. On
account of atmospheric extinction Orion red was not seen. Polaris red picture
is slightly ajar, most likely due to camera movement during high winds.

Polaris red is more bright than Orion red. There is more scattering of all
light near the Horizon. This phenomena is seen daily by most of us, at
sunset or sunrise, red or long wavelengths are scattered less than other
colours, the sky appears red for this reason.

A surprising effect can be seen at the corona of each red star, red near
Polaris appears to be more vivid than at near Orion. This effect contradicts
scattering laws.

The only element which can play a part in offsetting low on the horizon
scattering should be ozone. Red should dominate more near Orion, but it
doesn’t. The center of the stars show different colours near saturation
especially at Polaris red, while it is not the case for Orion Red. Generally,
weak stars on film usually give a true impression of their colour, very dim
star photos have very little saturation and colours are more uniform. In
the case of Orion red, the stars center is still not so red, rather orange
like, some red got absorbed by ozone.

The numbers immediately to the right of the star pictures are Red Green Blue
intensify numbers, they are analyzed by a computer program. A point on a star
which would result in red 256, green 256 and blue 256 has perfect saturation
colours giving additive white. Background colour around the numbers are
selected from a point on a center transect, either from the Corona or directly
from the center of the stars (maximum saturation).

The sum of these colours give a final result. Comparing corona colours, red is
dominant with Polaris red, much more so than Orion red, giving the very red
corona near Polaris . All steps were taken to reduce scanning discrepancies,
two photographs were cut and scanned at the same time. Although the
photographs were reproduced from negatives with equals photo processing
parameters.

Unlike red, blue stars show no apparent change in colours, just like
scattering laws predict. Blue literally disappears near the horizon, compare the size
of two identical B9 types, one near Polaris (left picture) and one near Orion (right) .
Red dimming is not as dramatic, but there is a shift in colour opposite to what is
expected if one forgets about ozone.


The Red star project invites you to study Dim red stars at the limit of your
vision on a nightly basis. Please write for more details.

Reference: Color Star Atlas by John Cox & Richard Monkhouse,
1991 published by George Philipe limited, London, U.K. Text and photos by Wayne Davidson please comment: [email protected]
Other Wayne Davidson sites:

Sir John Franklin was here! : A human tragedy completely ignored and misrepresented.

Extremely High Horizontal Refraction : Continuous updates

Hosted by www.Geocities.ws

1