Hi, mi natural language is Spanish so please excuse the bugs =)


Numeric integral using the Simpson`s method


This program calculates the integral under a function using the simpson`s method.


It`s composed by many modules, you must save it in different files.  In this listing, that names are in black, you must store it in the PB-2000C with the same names (including CAPITALS) because it gonna be called with that names from SIMPSON, the main program.





The PB-2000C accepts file names with a maximum of eight letters and an extensión of 3 letters.  Every file can be defined as containing a C program or just data.  This can be changed from the principal menu (you can call it with [etc] key).  In the first case, you will see “C” at the right of the file`s name.  In the second case you will see the “S” letter.





Everithing contained into “ ” is sensible to the spaces included so, be guard with it.  If you have doubts about any place in the program, please look for the PB-2000C manual or instead in an ANSI C manual.





SIMPSON. [del tipo C]





/* Simpson v1.0 11-IV-00 (c) General Public Licence, Rubén Germán Paco Vargas, Bolivia */





#include <funcion.h>


#include <simpson.fn>





main()


{


float a, b, impares = 0, pares = 0, h, x;


angle(1);  /* radianes */


printf(“a,b,npar =?”);


scanf(“%f,%d”,&a,&b,&n);


n = 2 * (n/2);





h = (b-a) / n;


for(x = a+h; x < b - h/2; x += 2 * h){


impares += f(x);


pares += f(x + h);


}





printf(“area =%g”, h/3 * (f(a) + 4 * impares + 2 * pares - f(b) ) );


}





Next module contains the function to integrate.





simpson.fn [del tipo C]





float f(x)


float x;


{


float y;


/* write the funtion at the right of “y=“ */





y = exp(2*x) * cos(x)


; return y;


}





Next module has the adicional functions not provided by C but they are used to mathematical analysis.  If you want, you can use it to construct the function that you want to plot.  This module is shared with another programs so, if you already had stored it in the PB, you don`t need to store it again.





File: funcion.h [C type]





/* absolute function for float numbers */


float fabs(x)


float x;


{return (x>0 ? x : -x); }





/* sign function for float numbers */


float sgn(x)


float x;


{return x>0 ? 1 : x < 0 ? -1 : 0); }





/* round function */


float round(x,n)


float x;


int n;


{return( (int) (x / pow (10,n) + 0.5 * sgn(x)) * pow(10,n) ); }





/* distance function */


float x;


{return( fabs(x - round(x,0) ) ); }





/* function to get the fractionary part of a float number */


float frac(x)


float x;


{return(x - (int)x) ; }





/* unitary function “u” */


float u(x)


float x;


{return( x < 0 ? 0 : 1 ); }





/* unitary ramp */


float r(x)


float x;


{return( x*u(x) ) ; }





 /* factorial function to double float numbers */


double fact(i)


int i;


{


int n;


double  x = 1;


for(n = 2; n <= i; ) x *= n++;


return x;


}


To run the program:


1. Store the function to integrate in the file simpson.fn


2. Compile the principal program SIMPSON


3. Run the program in the [c] mode


4. You must give this data


a = left integral`s limit


b = right integral`s limit


nPar = the number of areas between a and b to calculate the integral.  With more great number more precisión, but more time to calculate the integral too.


In the program you will see that it uses radians (angle(1)) for angles but you can change it before compile the program to degrees (angle(0)) or gradients (angle(2))


sample:


Integrate sin(x) between 0 and 3.1416 radians (pi)


The program will ask you for:


a,b,nPar = ?


And you must give them:


0,3.1416,20


Then, you will see (waitting a few seconds)


area = 2.000007


