
 1

Enabling Pakistani Languages through Unicode

Written for Microsoft by Abdul-Majid Bhurgri

 2

Introduction
We will begin this article with a keen and relevant observation made by two leading
experts in the field of information technology from Pakistan:

The benefits from Information Technology (IT) revolution cannot be reaped unless masses use it,
which is not possible unless computing is possible in a language that is understood by the masses.i

This perceptive remark defines the very goal that the people of regions like Pakistan must
achieve if they wish to make optimum use of the Information Technology. This also lays
down the condition precedent for such use. This being so, the corollary questions arise:
How to attain this goal and make computing in the regional languages possible? What are
the various choices? And of these, which ones are efficient and effective enough to be of
any practical help? The purpose of this article is to discuss the related issues objectively,
explore various solutions, and assist in the selection and implementation of the better
ones. The discussion will however be kept to the Arabic script languages of the region.

Information Technology
We are living in an era of Information Technology and some of the major issues of the
era relate as to how IT interacts with languages. Written language has been a basic mode
of human communication during the modern as well as medieval times. Language is the
medium and the vehicle used by IT to promote itself and advance its objectives, and in
turn the languages also get enriched and more widely used as means of written
communication. We could say that the information technology and languages have in a
sense become very closely linked and interdependent.

That being the case, the issue of effective use of information technology is closely linked
with and dependent upon the extent to which the languages of a region are implemented
in the technology. People of a region can make advantageous use of the technology only
if their native languages can be used in its environment.

English has no doubt evolved into what could rightly be called lingua franca or the
language of the world as well as of the IT era. But no language can replace any other
language in the normal course of things. The bond of a language with people and their
culture and milieu is too deep to be erased easily. Just as variety of languages in the real
world adds to its beauty, in the same way presence of various languages in the virtual
world, created by information technology, enhances its beauty as well as utility.

Here it is that the interests of vendors of IT and of people of a region coincide and
supplement each other. The vendors, by providing support for languages of the region,
find new markets for their products; while the people of the region, by being able to use
the technology in their native language, make optimal use of it.

 3

Languages of Pakistan
Let us take a stock of Arabic script languages of Pakistan. Some of the major languages
are listed in following table along with number of people in Pakistan speaking the
language as their mother tongue.ii

Language Number of Speakers

Balochi 5,685,000

Balti 270,000

Brahui 2,000,000

Farsi 1,000,000

Hindko 2,500,000

Kashmiri 105,000

Khowar 223,000

Parkari 250,000

Pashto 11,100,000

Punjabi 30 to 45 m.

Saraiki 15 to 30 m.

Sindhi 17,000,000

Urdu 10,700,000

Table 1

Major spoken languages of Pakistan are: Punjabi, Saraiki, Sindhi, Pashto, Urdu, Balochi,
Hindko and Brahui. Of these, only Urdu, Sindhi, and Pashto have a standardized
alphabet. There are very few written works available in these other languages. Speakers
of these languages, if they ever need to write in their language, use the alphabet of some
other major language (usually Urdu or Sindhi) in which they have been formally
educated. For Punjabi, mostly Urdu alphabet and writing style is used because most of
the Punjabis have received their schooling in Urdu. For Saraiki, Urdu as well as Sindhi
alphabet is used because Saraiki is spoken in Punjab as well as Sindh. Balochi also does
not have any standardized alphabet. Mostly Urdu, sometimes Farsi, and occasionally
Sindhi alphabets are used for it. Situation of the remaining languages is not much
different.

Tracing the history of languages in the region presently known as Pakistan, which first
appeared on the world map in 1947, we observe that Sindhi was the main language and

 4

medium of education in Sindh while in the remaining three provinces Urdu was mainly
used as medium of education, although spoken native languages of people of these
provinces were not Urdu. The result was that for all writing needs and correspondence
Sindhi was used in Sindh and Urdu in rest of the three provinces. The three major
languages of the region, ranked in order of written usage, are: Urdu, Sindhi and Pashto.

Alphabet of Sindhi was standardized as far back as 1850 and as per view of scholars and
researchers of that time, of all the languages of Indian sub continent, Sindhi was richest
in original literature. Urdu is the national language of Pakistan and also the most widely
used language of the region.

Text Processing on Computers
To usefully discuss the implementation of languages on computers, we need to
understand how computers handle text or written language. A paradox at first sight, but
the fact is that a computer basically recognizes or knows only two digits: 0 and 1– based
on presence or absence of current in a given bit. That is why computers are also known as
binary machines. Using various combinations of these two digits (if there are 8 bits, total
number of such combinations would be 28 = 256), computer can create another set of
numbers which it can then process or manipulate.

Since computer did not understand our language of characters, we had to find a way of
communicating with it using its language of numbers. So we used this set of 256 numbers
to talk to 8 bit computers, and this is how we did it: we created a table and assigned one
of these numbers to each of the characters of the language. This arrangement of assigning
number codes to characters came to be called code page or code plate of the language.
Code page is an encoding scheme where every character is represented by a unique
number so that the computer can understand it, process it.

In the beginning there was this 7 bit architecture which provided only 128 unique
numbers or codes which could be assigned to the characters. This was sufficient for
processing English. Later, as the need to implement other languages grew, the 8th bit was
also used and stock of unique codes increased from 128 to 256. This facilitated handling
of many languages including Arabic. For each language (apart from English, which
continued to be the main language of the computers) a code page was designed and there
came to be standardized hundreds of such code pages. Often there would be more than
one code pages for a given language. And then there were languages, like those of
Pakistan region, which did not even have a code page. Without indulging into a detailed
analysis, suffices it to say that limited market and relaxed enforcement of copyright laws
in the region were mainly responsible for unwillingness of the developers to commit
resources for development of products for languages of the region. If there are no
software products, no standards are needed; hence no need for code pages!

 5

Unicode
The computer industry has been one of the fastest growing industries and the
developments in the field have been phenomenal. The computing power has become
abundant as well as affordable. This increase in computing power, more than anything
else, ultimately made computing possible even in little known languages. As computer
architecture evolved into 16 bits, the limitation of 256 unique codes was transcended in
an explosive manner and 65,536 (that is what 216 simplifies to) unique code points
became available. This opened up new possibilities for multilingual and global
computing. At the same time, growing use of internet and popularity of World Wide Web
were also giving a new impetus and outlook to the industry. Need for platforms and
products which could facilitate communications and networking at the global level
started gaining currency.

In late 1980’s work began on the development of a universal encoding standard based on
16-bit architecture that could address the needs of all the languages of world. After
several years of informal cooperation, Unicode Consortium (a non-profit organization)
was formed in 1991 to develop and promote such encoding scheme. The scheme came to
be called the Unicode Standard (Unicode is acronym for Universal, Uniform and Unique
Coding scheme). As per their own statement, the Consortium brought “together software
industry corporations and researchers at the leading edge of standardizing international
character encoding. The outcome of this cooperation is the Unicode Standard, which
provides the foundation for internationalization and localization of software.”iii While
each of the earlier and local standards, based on 256 code points as these were, dealt with
one or two languages, the Unicode Standard, taking full advantage of 16-bit addressing
system of newer processors, catered to the needs of all known written scripts and
languages of the world. Thus Unicode, as an International encoding standard, has already
started replacing these older encoding schemes. At the same time, by providing a
universal code page, it provided a unique opportunity for little known languages to be
represented on the computer platform.

Earlier, the various encoding systems inevitably conflicted with each other. Often there
was more than one encoding systems for a given language. It was not unusual to find
more than one encoding systems assign same number or code point to different
characters, or vice versa assign different code points to the same character. To add
confusion to the complexity, different encoding systems of the same language differed as
to the character sets, implementation logic and rules, etc.

In this era of international computer networking and communications, there was this
increasing need to have a universal referencing standard which could be used for transfer
and exchange of data across the borders, computer platforms and applications. Computer
stations were no more islands unto themselves. Now most of these machines were most
of the time connected with other machines and networks all around the globe.

The Unicode Standard provided the common language needed for the global
communications. Emergence and implementation of The Unicode Standard, besides
making implementation of little known languages possible, also provided a robust
foundation for internationalizing general computing, internet communications and

 6

commerce. It was for these reasons that World Wide Web Consortium and Internet
Engineering Task Force also adopted The Unicode Standard.

The Unicode Standard has been adopted by such industry leaders as Apple, HP, IBM,
Microsoft, Oracle, Sun, Sybase and Unisys. Unicode is required by modern standards
such as XML, Java, JavaScript, LDAP, CORBA 3.0, WML, etc., and is the official way
to implement ISO/IEC 10646. The Standard is supported in many operating systems and
by all modern browsers.

Unicode, a key standard for internationalization, is becoming more relevant and essential
as web services and e-business become globalized. Until Unicode came along, there was
little possibility of languages like those of this region benefiting from this new
technology.

Current state of computing in languages of Pakistan
Having discussed in substantial detail the background, emergence and future promise of
Unicode, let us now revert and inquire whether Unicode also makes computing possible
in the languages that are understood by the masses living in region of Pakistan and its
neighbors.

Before we do this, let us briefly examine the computing presently available for Pakistani
languages. For the last almost 15 years, personal computers are being used for Urdu,
Sindhi and Pashto. Mainly these are used for desktop publishing needs. From flyers to
newspapers, almost every thing is typeset on the computers using different software
packages. But how do the experts assess the present state of computing? Here are some
observations in this regard:

Different applications have been developed by individuals and vendors since then, desktop
publishing leading the scene for Urdu Software. As all these packages were developed without any
underlying computing standard, each has its own character set and code page. Therefore data
exchange between them is not possible. They even have their own keyboard settings, therefore
making it difficult for a typist to switch from one application to another.iv

Commonly it is understood that Urdu desktop publishing is Urdu computing. These programs are
word processors not the programming tools which can be used to create other applications. We do
not find any programming tools for Urdu as yet.v

We have not even been able to make a dictionary in Urdu. How far is Urdu implemented as office
language? It is not question of official support (availability of funds) alone, it also matters how far
we as a nation patronize the effort. Whether it is development of applications or programming
tools, it requires a great deal of financial investment. Now, if there is no market for the products,
why would any one wish to invest and ultimately suffer substantial losses?vi

These comments on the present state of computing pretty much tell the story. This is state
of affairs in respect of Urdu, the most widely used and major language of the region.
Sindhi and Pashto are in no way better off. The problems faced in the way of bringing
computer technology to common user can be summed up as under:

1. There has been an utter lack of standardization resulting in mutual incompatibility
issues and lack of transfer or exchange of data.

 7

2. Most of the available software is for desktop publishing needs, which is used by
commercial concerns for production of published works.

3. The languages of the region have not been implemented in offices and schools.

4. Due to limited market and piracy of software, the developers have not been
willing to commit resources for developing software for languages of the area.

5. There has been practically nothing available which could be used for creating
exchangeable documents, web pages, database management applications, sending
and receiving emails, internet chatting etc. in the regional languages.

Having examined the nature of problems in the way of implementation of the regional
languages on computers, and having also considered multilingual computing potential of
The Unicode Standard, we believe that an excellent opportunity exists to achieve the
objective of bringing computer technology to masses. We believe that the Unicode
Standard, as implemented in MS Windows, the most widely used operating system for
personal computers, decidedly offers the best and most practical solution for
implementing the Arabic script languages of this region. This has the potential of
bringing the technology within reach of common man. Now we can examine in more
detail the basis for this view.

Advantages and Potential of Unicode for Pakistani Languages
Sometimes, to understand what a thing is, one has to at the same time understand what it
is not. Unicode is not an operating system, a computer program or even a font creation
system. It simply is an encoding arrangement of letters, characters and marks of all the
written languages of the world, which provides a standardized reference framework for
use in electronic text processing on computers. The Unicode Standard does explain, lay
down and in some cases standardize the rules relating to the processing or shaping of
world scripts, but it does not specify as to how an operating system or an application
should apply these rules to correctly display or print the text. Correct rendering of text is
handled by the operating systems and applications in their own way, though at the same
time conforming to the basic requirements of the Unicode Standard.

Previously, to be truly multilingual, a computer had to learn and implement as many
encoding arrangements as there were code pages – and even these did not cover all the
languages of the world, in fact these did not cover a single language from the Pakistan
region. Now, as the Unicode Standard was adopted, by learning just one encoding
arrangement, the computer has become a truly multilingual tool.

Incorporating Unicode into client-server or multi-tiered applications and websites offers
significant cost savings over the use of legacy character sets. Unicode enables a single
software product or a single website to be targeted across multiple platforms, languages
and countries without re-engineering. This has very far reaching implications. As stated
elsewhere also, earlier it was not financially feasible to undertake development of
software products for many languages mainly because there was not enough market to
justify such investment. It was just another paradox: users of these languages, usually
belonging to developing countries, needed software at affordable price; while the

 8

developers, with their high fixed costs per package (fewer packages sold in limited
market), had no option but to put a prohibitively high price tag.

Benefits of Unicode include:

• A standardized encoding system which can be used to represent text in any
language. Documents of this type are portable across systems.

• The resultant ability to exchange text provides necessary foundation for
technical and commercial developments such as web services and multilingual
application integration.

• Increased support and availability of software for languages which, because of
their limited market size, could not otherwise have been able solicit to such
support.

• Easier localization of software and operating systems, which can truly
globalize the IT and bring its benefits to all people and languages.

The Unicode Standard has brought an end to the era of inconsistencies, incompatibilities,
redundancies and wasteful duplicated effort, by introducing a universal and consistent
encoding scheme that holds a promise of globalizing the computer technology and
making it available to languages and people across the globe, beyond the politico-
linguistic barriers.

Though many sectors stand to benefit from the Unicode Standard, its importance for the
languages using complex scripts like Arabic is indeed unique. Since the computer
technology was, so to say, born and raised in the West, English became like mother
tongue to it. The languages sharing similar script (i.e. Roman) also found easier
implementation. But when it came to languages based on complex script like Arabic, it
was a different story.

Needless to say, the software industry, like all other industries, is also driven by the
economic factors of demand and supply. If there would be substantial demand for
applications for a language, the industry would willingly employ its R&D resources to
find solutions and meet the demand. That is how the demand for Arabic software in the
oil rich Middle Eastern countries caused Arabic to be implemented on the computers.

Of all the languages using Arabic script, Arabic is not only the most sophisticated, the
most ancient and the most widely used, but it also has the fewest letters/characters. As
such, support for Arabic did not ipso facto result in support for the other Arabic script
languages. This situation has continued more or less almost till today. But now,
hopefully, things are changing. It has taken quite some time for the computing facility in
these languages to emerge, evolve and mature.

With the development of internet and World Wide Web, the need for a common
reference ground increased. But the mutual incompatibilities continued to be a major
impediment in the way of effective communication and across the board implementation
of these languages. The Unicode Standard came as a life giving breeze, especially for the
languages with limited resources which would otherwise never have seen the light of the
“computer” day. Had it not been for Unicode, many languages would never have support.
This is because there is not large enough a market for these languages for the commercial
software houses to financially justify development of software for these languages. And

 9

even if software could have been developed, these would have been stand alone packages
which could not have led to universal implementation on platforms such as World Wide
Web.

Once the Unicode Standard is implemented in an operating system, it is much easier for
the applications to incorporate support for various languages. Implementation of Unicode
on Windows platform, and the resultant multilingual support provided in Microsoft’s
Office Suite exemplifies such benefits. Urdu has been major language of the region and
as mentioned earlier there have been quite a few software packages around for it. But
again, all these packages were standalone applications basically addressing word
processing and desktop publishing needs. While Sindhi, though second most widely
written language of the country, has not even been that lucky. Since 1988, computer has
been used for desktop publishing needs, but only by hacking Arabic fonts for its use.
There has been not a single software package for Sindhi. In 2000 first proper Sindhi font
was developed conforming to the Unicode Standard and OpenType specifications. On
being pointed out that MS Windows did not handle Sindhi properly, Microsoft started
examining and modifying Uniscribe (the system library that implements Unicode and
handles multilingual processing) so as to cater to the needs of the language. A prototype
keyboard was also developed for Sindhi. Within a few months it became possible to use
all the applications of MS Office suite for Sindhi, create Sindhi documents, web pages,
send and receive emails in Sindhi and even chat in Sindhi. In pre-Unicode days, years of
hard work and immense resources would have been needed to attain such an objective.
Parkari is a little known language, spoken by about 250,000 people in Tharparkar district
of Sindh. It uses Sindhi character set and three extra characters which were not in
Unicode. Users of the language pointed this out and submitted examples of usage of these
characters to the Unicode Technical Committee. The proposal has been accepted and
very soon they too can use the whole range of MS Office products and such other
products as conform to Unicode and offer multilingual support. This kind of opportunity
did not exist at all for languages of this region until the Unicode Standard was
implemented.

Criticism of Unicode
One may ask if Unicode offers such an opportunity then why we don’t just make most of
it. Yes, in fact this is high time that we did ask such question and search for some sound
reasons for not doing that. While it is not easy to find any reason, good or bad, there has
been some criticism of Unicode. Since this article basically deals with issues relating to
the languages of Pakistan region, we would discuss only such criticisms as relate to these
languages. Also, we must not forget the very objective that we started with: to find best
means of implementing these languages on computer. In this regard, the only criticism
that we came across related to implementation of Urdu.

A recent issue of National Language Authority of Pakistan’s periodical Akhbar-e-Urdu
(Special Urdu Software Issue) contained an account of proceedings of meetings of Urdu
Computer Standardization Committees and some other articles which contained criticism
of the Unicode Standard, explaining therein the grounds for questioning the suitability of

 10

the Standard for Urdu and the justification for developing a separate and unique code
page for Urdu. Some of the excerpts from these are translated and reproduced below.

Use of present Arabic Unicode is in no way suitable for Urdu, primarily because Unicode uses
Naskh script and Urdu Naskh has never been acceptable. For Urdu we will need Unicode based on
Nastaleeq.vii

We need to get 65,000 Urdu characters registered [on Unicode]viii

Some members [of the Urdu Standardization Committee] are of the opinion that Naskh should be
used as the script of the computer… but it was pointed out that Naskh was never accepted as such
for the computer (i.e. Unicode and internet) the standard script should be Nastaleeq and only
Nastaleeq.ix

The Unicode, which makes Urdu and other right-to-left languages mere sub-languages of Arabic,
needs to be discarded. Instead we should develop our own Urdu Unicode so that Malay, Moroccan
and other Central Asian languages could also use this Urdu Unicode and thereby avail all the
facilities.x

On international scene, most software companies now use International Code (Unicode).
International Code (Unicode) presents Arabic Naskh typeface in its current repertoire. The
National Language Authority is also pushing the proposal to get a place in the International
Standard (Unicode) for Urdu Nastaleeq so that on international and technical levels, Urdu also is
included in the list of international languages.xi

Though naïve and without any serious substance, these criticisms reveal serious
misconceptions about the Unicode Standard in particular and implementation of
languages on computers in general. Coming as these are from serious and responsible
quarters, these need to be addressed and clarified before we can move on to other more
substantial issues.

Issues raised by these criticisms are:

• Unicode is Arabic

• Unicode is Naskh based

• Nastaleeq is a distinct script (الخط رسم)

• Nastaleeq alone is acceptable for Urdu

• Unicode Standard does not support Nastaleeq script

• Unicode makes Urdu sublanguage of Arabic

In its arrangement of characters, Unicode is script based and not language based. This
makes sense too. Many languages share the same script and same characters. Instead of
grouping the characters repetitively for numerous languages, these are all grouped
together in the sub-range of the relevant script. Thus all the characters of languages based
on Arabic script are grouped in the Arabic sub-range. Unicode is as much Arabic as it is
Roman. It is like English speaking people turning down Unicode because it is Roman
based or that it shows English as sublanguage of Roman.

Unicode is simply a character encoding system. It has nothing to do with how these
characters finally get displayed on the computer screen. Thus it cannot be Naskh based or
for that matter Nastaleeq based. Naskh and Nastaleeq are type style issues relating to

 11

rendering which is handled by operating system and applications and not by encoding
scheme.

There also exists this confusion as to script (الخط رسم) and a writing style (خط يا کتابت).
Naskh and Nastaleeq are not two distinct scripts (not even subscripts, for that matter),
like Arabic, Roman or Devanagari are. Instead these are just two of the many different
writing styles (others being Kufi, Diwani, Jilli, Maghribi, Taleeq, etc.) of the same Arabic
script.

That Nastaleeq and not Naskh should be the writing style used for computers is also
based on this misconceived “Nastaleeq or Naskh” notion – which in turn is an
unfortunate legacy of Urdu word processing packages which supported one style or the
other. So far as Unicode is concerned, for example word Pakistan would always comprise
of characters Pay, Alef, Kaf, Seen, Tay, Alef and Noon. And that is what is encoded by
Unicode, or for that matter, that is what will be encoded by UZT 1.01 too. Now how does
one encoding system (Unicode) become Naskh based, while the other (UZT) Nastaleeq
based? Since the encoding system has little to do with the issue, at the best this criticism
is misdirected. And before this article ends we shall show that based on the Unicode
Standard and the rendering technology used in MS Windows, it is possible to use Naskh
as well as Nastaleeq on the computers.

A simple example should settle the issue. If you ask a calligrapher to write word Pakistan
in Nastaleeq and then in Naskh what will he do? He will first write the word in Nastaleeq
and then using same characters, employing same rules of joining the characters and same
Arabic script, he will write it in Naskh style. That is exactly what happens under the
Unicode Standard implementation. It gives the system or application a text file containing
characters which make up the word Pakistan. These are just Arabic script letters which
form word Pakistan. There is no writing style involved at this stage. The
system/application, like the calligrapher, renders those characters into a form that can be
displayed or printed. The form can be Nastaleeq or Naskh. Unicode only deals with
characters; it is the system or application which renders those letters into a form which
we finally see.

Apart from the misconceived and misdirected criticisms discussed above, the Unicode
Standard has also been criticized on following grounds:

• That Urdu alphabet has not been encoded in its natural order and Unicode does
not specify collating sequence.xii

• That Unicode does not fully represent the Urdu character set.xiii
• Its use of double-byte encoding system increases the document size.

First two criticisms relate to Urdu and these are discussed at some length in the sections
that follow. Here we shall briefly deal with the last criticism and then move on to the
other two points.

This raises the issue of storage and transmission speeds. Larger the size of file, the more
space it requires and longer it takes to transmit these. With the hard drive sizes running
into gigabytes, 1.4 megabyte floppy being replaced by inexpensive 550 megabyte
CDRWs, we hardly find occasion or reason to complain about the size or cost of storage
media. The internet speeds are increasing too. If this criticism were to be extended, a case

 12

could even be made for using the applications as were used 10 or 15 years ago just
because these are fraction of the size of applications used today. But all said and done,
there are Unicode transformation formats (UTFs), which can be used to represent the
Unicode text in streams of bytes, thereby satisfactorily addressing this issue of document
size.

Sorting order and related issues
It is correct that Urdu alphabet has not been encoded in its natural order in the Unicode
Standard. But then neither does the Standard profess to address the sorting issues of the
languages nor does it do so in respect of any other language. By ‘sorting’ we mean
arranging words in an alphabetic order which in turn is based on some agreed upon
standard. Such an arrangement is normally used in storing information (lists, dictionaries,
tables of contents, etc.) to facilitate later retrieval, either electronically or manually.

Unicode has, for very good reasons, left the collating sequence be handled at software
level which, properly speaking, is the place to address these. The sorting and collating
issues can be addressed at the operating system and/or application level without any
technical, schematic or logical problems. This approach also does away with the need to
modify the code page each and every time some issue relating to collation is raised or
settled.

Let us now see how the characters of various languages can be encoded in their natural
order within a universal encoding scheme like Unicode. There can be two possible
approaches:

1. All characters of all languages sharing the script (Arabic script in our case) be
arranged in such a manner as to satisfy needs of all languages.

2. Group the characters in sub-ranges by language and not by script and then, within
the sub-range, arrange these as per natural order of the language.

First of all, asking for any such changes in the Unicode Standard shows ignorance of its
professed policy regarding character encoding stability. This policy requires that once
encoded, a character cannot be moved, remove or renamed. Nevertheless, let us see if the
two approaches are otherwise feasible.

As different languages sort same characters in different order, it is not possible to come
up with a universal encoding order which would also agree with sorting order of all
languages using Arabic script. Let us just consider how two languages, Urdu and Sindhi
in this case, belonging to the same region, differ in their collating approaches. In the table
that follows we have listed 4 characters that these two languages share, and then shown
the relative collating sequence (other characters have been left out to simplify the
comparison):

 13

Sindhi ب ت ث پ

Urdu ب پ ت ث

As can be seen in Urdu پ precedes ت and ث while in Sindhi پ follows ت and ث. This
shows that it is not possible to handle the issue in respect of scores of languages sharing
Arabic script. A few years ago, when the code page for Urdu was being standardized, at
one stage the standardization committees considered a code page as would also support
Balochi, Punjabi, Pashto and Sindhi. Then this idea was shelved observing:

…each language has its own identity, character set and collating sequence, so each should be
considered independently.xiv

If collating sequence of just 5 languages of the same region cannot be addressed in one
code page, how does one expect accommodating all the languages of the world in one
code page? This shows that it is neither possible nor feasible to use the first approach.

The second approach requires that there be as many sub-ranges as there are languages to
be supported. There being thousands of languages, the feasibility as well as functionality
of such approach is very questionable. How many problems would such approach solve
and how many more would it create in its wake? The second approach too is neither
practical nor efficient.

While discussing the demand that Unicode address the issue and handle the sorting for
Urdu, let us also look at the experience of the developers of UZT (the Urdu code page),
and see how well they succeeded in doing so. This team of experts of computer science
and linguistics admitted:

Sorting is a complex issue in Urdu because it is achieved through the characters and aerab [i.e.
diacritics]… To enable correct sorting of words using computers, both levels of sort must be
effectively implemented. It was not possible to achieve both levels of sorting directly through the
code page… Level two sort[ing] must be achieved through software.xv

If sorting could not be implemented in a code page made just for one language, how
could one expect it to be implemented in a code page which deals with all the languages
of the world? Moreover, if some level of sorting needs in any case to be done at the
software level, then what could be the justification or logic for splitting the task and
having it done in parts at two places? Anyhow, we may now ask: Is it possible at all for
an encoding scheme to satisfactorily resolve this issue, especially in case of complex
scripts like Arabic? The answer is a resounding no.

We observed that the Standardization Committee for Urdu found it impossible to make a
common code page for Urdu and four other languages of the region. Later it even
admitted that it was not possible to completely address the sorting issue at code page
level even for Urdu. This is because Arabic is a complex script and the languages do vary
as to the character sets and collating sequence. These very arguments, inter alia, provide
the reasons for Unicode not attempting to handle this issue at the code page level.

 14

Finally, let us face that any attempt to address this sorting issue at code page level must
inevitably presuppose an existence of standard character sets and collating sequences for
the languages to be supported. Do such standards exist for languages of this region?

Let us begin with Urdu which, apart from being the National and Official language of
Pakistan, is also the most widely used and spoken Arabic script language in the world
after Arabic itself. While discussing the development of Urdu Computing Standards, the
leading experts in the field conceded that:

Different authors have quoted different number of characters in Urdu alphabet (e.g. even the
elementary books for children do not agree on the same alphabet. Kifayat (1993), Siraj (1999),
PTBB [Punjab Text Book Board] (2000), BUQ (1999) and KUQ(1999) have 36, 51, 53, 47, and
37 characters respectively…) … As no general agreement was available, the [standardization]
committees agreed to consider the alphabet used by the National Language Authority (NLA),
which contains 57 characters…xvi

As late as year 2000, there was no agreement as to the number of characters in Urdu
alphabet. This is a very basic issue which always needs to be settled before one can move
on to consider collating sequence – whether at code page level or at software level. It is
strange that the Unicode Standard is criticized for failing to encode Urdu alphabet in its
natural order when that very order has been lacking.

Here is the grave ramification for languages of the region. Presently scores of languages
using Arabic script have been included in the Unicode and of these only a few have this
issue sorted out, viz. Arabic, Persian, Sindhi, and may be Pashto. If sorting could
somehow be handled at code page level, then before these languages could be included in
the code page, there had to be an agreed upon or formally standardized character set and
sorting order for the languages. And if there is no such standard, as there is not for most
of the languages of the region, then these languages would remain from being included in
the code page. How would this in any way help the languages of the region? This would
have meant exclusion of all those languages from the Unicode Standard till such time that
sorting related matters have all been resolved and standardized.

How Microsoft implements linguistically sensitive sorting
Microsoft Windows implements linguistically sensitive sorting in the NLS (National
Language Support) layer of the operating system. This means that it is possible to have
different sorting orders for different languages which otherwise are using the same
Unicode sub-range for their character sets. Presently Windows ships with collation
support for Arabic. Collation support for Urdu and Sindhi is being considered and may be
available in future updates of Windows Xp. It also becomes incumbent upon the users of
a language to raise these issues with Microsoft and get support for their language.
Official bodies, such as Language Authorities set up by the governments in this region,
can play an effective role to guide and assist the Windows International development
team in their effort to research and implement linguistic collation for the language. Thus,
it is possible to use the operating system support for languages of Pakistan and get the
sorting done in proper order.

 15

But how do we get the sorting done till then? Implementation of sorting at the application
level is always possible. Not only that, where necessary, the applications can override the
system or provide alternate methods of sorting too. Operating systems and application
developers can also evaluate the possibility of user determined sorting. As of writing this,
it may not be possible to do sorting for Urdu and Sindhi in Microsoft applications like
Word, Excel or Access, but it is always possible to develop database applications which
use the Unicode encodings as reference points to implement the linguistically appropriate
sorting order. While bemoaning the temporary lack of this feature for these languages in
MS Office suite programs, one must not overlook the fact that use of all other features of
these applications became available only through implementation of Unicode.

Representation of Pakistani languages in the Unicode
Now we can discuss the criticism that the Unicode Standard does not fully represent the
Urdu character set. Earlier we discussed the disagreements as to what constitutes Urdu
character set. Such disagreements exist in respect of other languages also where formal
standardizations remain to be implemented.

The Unicode Standard is committed to an encoding arrangement which caters to the
needs of all written languages of the world. This does not mean that all the characters and
letters of all the scripts and languages are actually represented in the Unicode. The
developers of the Standard seem to have undertaken considerable research to fulfill their
commitment to comprehensively represent all the languages of the world, but their
success, or lack of it, also depends upon the extent of participation by users of the
languages. Many of these languages lack not only the computing standards but also the
standards and agreement as to the content and arrangement of alphabet. The
responsibility to standardize the character set and then see to it that it is adequately
represented in the Unicode Standard, falls squarely on the shoulders of the users,
proponents and custodians of the language. Unicode is an evolving standard which also
relies on feedback from the users of the languages to fulfill its basic commitment.

The Unicode Standard version 1.0.0 came out in 1991. Its major update, version 3.0.0,
was released in September 1999. At that time in Pakistan, the Urdu text books taught in
the elementary schools, did not even agree as to the number of letters of Urdu alphabet.
This number varied from 36 to 51. Failure of a Standard to properly represent character
set is always judged with reference to a well established standard at home. Suffice to
point out here that by that time there was hardly any such standard at home.

By this time, based on the characters included in the Unicode and the multilingual
support available in MS Windows, it had already become possible to use computers for
Urdu. At any rate, a study was done that concluded:

An exercise was done to identify the Urdu characters in Arabic block and draw up a table of
comparison. The result is given in Table 1. After the exercise was completed it was found that 25
characters do not have a representation in Unicode.xvii

Following is the list of these missing characters:xviii

 16

Missing Character Remarks

1 Decimal Sign Dropped

2 Colon Sign Resubmitted

3 Hard Space Dropped

4 Hamza e Izafat Dropped

5 Kasra e Izafat Dropped

6 Alef Below Accepted

7 Pesh Above Dropped

8 Inverted Pesh Accepted

9 Zare Below Dropped

10 Small Tah Resubmitted

11 Sakoon Resubmitted

12 Reverse Sakoon Accepted

13 No Diacritic Sign Dropped

14 Ligature Bismillah Resubmitted

15 Ligature Alahe as Salam Accepted as mark

16 Ligature Radiallah Accepted as mark

17 Ligature Rehmatullah Accepted as mark

18 Takhallus Sign Accepted as mark

19 Misra Sign Resubmitted

20 Footnote Sign Accepted

21 Safah Sign Resubmitted

22 Number Sign Accepted

23 Sanah Sign Accepted

24 Long Madd Dropped

25 End of Section Dropped

 17

It may be observed that none of the letters of the alphabets has been found missing.
Mainly diacritical marks, punctuation marks, special signs, etc. have been missing. Of
these 10 were accepted for inclusion in Unicode, while nine were dropped after
discussing and conferring the matters with technical experts. This left six that have been
made part of another proposal (along with 10 other characters – the 10 digits) which has
recently been sent to the technical committee of Unicode.

This shows that the initial view that 25 characters were missing was not accurate. Since
then at least nine characters went out of the list and 10 new made their way in. This
simply shows a possibility that the analysis regarding less than perfect representation of
Urdu characters in Unicode could itself also be less than absolute.

Since the Unicode Standard is committed to defining codes for characters of all the major
languages of the world, there is no reason why Urdu characters would be left out. It is
only matter of proper research, presentation, coordination and understanding.

However, depending again on the nature of these missing characters, a deficiency in the
encoding system should not prevent users from taking advantage of it. For decades,
ASCII served as code page for English despite the fact that it did not contain codes for
such frequently used typographic marks as true single quotes, double quotes, en dash, em
dash etc. Urdu character set present in the Unicode is indeed much more comprehensive
than ASCII character set was for English. The smart approach would be to make use of it
and at the same time to get it improved.

The following table lists the alphabets of Pashto, Urdu and Sindhi, the three major
languages of Pakistan, and shows the corresponding Unicode code points for each of the
characters. This shows that the alphabets of these languages are fully represented in the
Unicode.

Urdu Sindhi Pashto

 ا
0627

 ا
0627

 ا
0627

 ٓا
0622

ٓ ا
0622

 ب
0628

 ب
0628

 ب
0628

 ٻ
067B

 18

 بھ
0628 + 06BE

 ڀ
0680

 پ
067E

 پ
067E

 پ
067E

 پھ
067E + 06BE

 ڦ
06A6

 ت
062A

 ت
062A

 ت
062A

 تھ
062A + 06BE

 ٿ
067F

 ٹ
0679

 ٽ
067D

 ټ
067C

 ھٹ
0679 + 06BE

 ٺ
067A

 ث
062B

 ث
062B

 ث
062B

 ج
062C

 ج
062C

 ج
062C

 ځ
0681

 جھ
062C + 06BE

 جھ
062C + 06BE

 19

 چ
0686

 چ
0686

 چ
0686

 چھ
0686 + 06BE

 ڇ
0687

 څ
0685

 ح
062D

 ح
062D

 ح
062D

 خ
062E

 خ
062E

 خ
062E

 د
062F

 د
062F

 د
062F

 دھ
062F + 06BE

 ڌ
068C

 ڈ
0688

 ڊ
068A

 ډ
0689

 ذ
0630

 ذ
0630

 ذ
0630

 ھڈ
0688 + 06BE

 ڍ
068D

 ر
0631

 ر
0631

 ر
0631

 رھ
0631 + 06BE

 20

 ڑ
0691

 ڙ
0699

 ړ
0693

 ھڑ
0691 + 06BE

 ز
0632

 ز
0632

 ز
0632

 ژ
0698

 ژ
0698

 ږ
0696

 س
0633

 س
0633

 س
0633

 ش
0634

 ش
0634

 ش
0634

 ښ
069A

 ص
0635

 ص
0635

 ص
0635

 ض
0636

 ض
0636

 ض
0636

 ط
0637

 ط
0637

 ط
0637

 21

 ظ
0638

 ظ
0638

 ظ
0638

 ع
0639

 ع
0639

 ع
0639

 غ
0634A

 غ
063A

 غ
063A

 ف
0641

 ف
0641

 ف
0641

 ق
0642

 ق
0642

 ق
0642

 ک
06A9

 ڪ
06AA

 ک
06A9

 کھ
06A9 + 06BE

 ک
06A9

 ګ
06AB

 گ
06AF

 گ
06AF

 گھ
06AF + O6BE

 گھ
06AF + 06BE

 ل
0644

 ل
0644

 ل
0644

 لھ
0644 + 06BE

 22

 م
0645

 م
0645

 م
0645

 مھ
0645 + 06BE

 ں
06BA

 ھن
06BA + 06BE

 ن
0646

 ن
0646

 ن
0646

 نھ
06BA + 06BE

 ڼ
06BC

 و
0646

 و
0646

 و
0648

 وھ
0646 + 06BE

 ه
0647

 ه
06BE

 ه
06BE

 ي
064A

 ة
0629

 ې
06D0

 ء
0621

 ء
0621

 ۍ
06CD

 23

 ی
0649

 ي
064A

 ئ
0626

 ی
0649

 ے
06D2

 ے
06D2

Better Choice
Having discussed the criticisms against Unicode, an observation is in order as to the
choice of better solution for computerization of languages of the region. Not many
choices are there. Urdu is the only language for which at least a code page has been
recently standardized, so apparently that might be seen as an alternate choice of
implementing it on computers.

Implied in all these criticisms against Unicode is a hint, if not assertion, that relative to
Unicode the UZT (Urdu code page) may be better suited to meet the needs of Urdu
language. It may be so, but we must not overlook the fact that an encoding system,
however good, needs an efficient rendering engine to complement it and make it usable.
In case of Unicode, a tested and developed rendering engine is available complete with
an operating system and a set of applications which implement it. As of writing these
words and to our knowledge, no such rendering engine, OS or set of applications are
available to complement UZT and thereby make it available, either now or in
immediately foreseeable future, for computerizing Urdu, let alone other languages of the
region which it does not even profess to support.

Without discussing the relative merits and demerits of the two encoding schemes, if
nothing else its immediate usability makes Unicode a better choice – that is, if the
immediate computerization of the languages is the objective. It is obvious that it will be a
while before UZT can acquire the functionality and usability to make itself as useful for
Urdu as Unicode and Windows environment are at this time. As far as the rest of the
languages of the region are concerned, no solution other than Unicode is in sight.

 24

The Character/Glyph Model and Rendering on Windows OS
As explained in earlier sections, Unicode is a character based encoding system. In this
section we will explain how these characters get rendered into readable text which is
finally displayed on the computer screen or printed on the paper. At the very outset, we
would like to explain two terms, viz. character and glyph, as used in this article. The
distinction between the two is very important to understand before we can grasp the
concept and process of rendering.

Character is defined in Unicode as the smallest component of written language that has
semantic value, while glyph is defined as the shape that a character or characters can take
when they are rendered or displayed. Natural language consists of characters, while a
digital font contains glyphs. A Unicode text file always contains reference to characters,
never to glyphs.

The Unicode standard requires that the Unicode text strings be input and stored in a
simple logical sequence. Thus if we wish to write “Pakistan” we would press in
succession the keys corresponding to the characters which make up Pakitan and the text
file would store the Unicode code points of these characters. The code in the backing
store of the text file would look like this (underneath we show the corresponding
characters for illustration purpose only and these would not be in the file):
0050 0061 006B 0069 0073 0074 0061 006E
P a k I s t a n

What happens when this file or text needs to be displayed? The glyphs corresponding to
each of the successive code points are displayed in the default left-to-right order without
any reordering, regrouping or substitution whatsoever. There is ususally one to one
relationship between characters and glyphs in case of Roman script. This is what makes
handling of Roman script straight forward and simple.

If we write in Urdu a word, such as پاکستان, again we would press in succession the keys
corresponding to the characters that make up the word. The text file would store the
Unicode code points of these characters in logical order, as in the earlier case. The code
in the backing store of the text file would look like this (the characters underneath are
only for illustrations purpose):
067E 0627 06A9 0633 062A 0627 0646
 ن ا ت س ک ا پ

Now when an application or an operating system has to display this file or text on screen,
unless it has some rendering engine, it will be displayed just as it is. But if the Arabic
script text is displayed as it is, it will appear as follows:

پ ا ک س ت ا ن

This would be far from acceptable as neither the ordering is correct nor the shapes of the
characters are as per rules of the script. But that is how it would appear if there is no
rendering engine to process the text. That is why the Unicode Standard also presumes
existence of some kind of rendering mechanism, operating either at system level or at
application level, which can layout the complex script text in proper order (i.e. right-to-

 25

left in this case) and also substitute proper glyphs that represent the initial, medial, final
or isolated form of the character as its context requires.

In Microsoft Windows environment, the rendering is accomplished by integrated use of
three system tools or technologies, viz.:

• OpenType font format

• Windows’ Unicode Script Processor (Uniscribe)

• Open Type Library Services (OTLS)

Using simple terminology, we will try to explain how these three elements work together
to render text properly and in accordance with the prevalent rules and norms of the
script/language. This would also expose us to the potential of this technology and how it
can be used for Pakistani languages. We must however keep in mind that all these three
sophisticated tools/technologies, which have evolved into what these today are after years
of extensive testing, make use of and are based on the Unicode Standard.

To understand how Windows rendering tools layout and display the text, we will follow
progress of a simple word in Urdu and see how it makes way from input to rendering. We
start with characters and finally see the word made up of appropriate glyphs.

Let us now follow the journey of word پاکستان from input to rendering. Here are the
characters in the backing string of this simple word, as input by user:

Character Code Point

 067E پ

 0627 ا

 06A9 ک

 0633 س

 062A ت

 0627 ا

 0646 ن

The back store of the file would contain the code points as shown in the right column in
the right-to-left order as under:
067E 0627 06A9 0633 062A 0627 0646

 26

The rules relating to the layout and processing of Arabic script characters are explained in
the Unicode Standard.xix Unicode also standardizes the properties of the characters.
Uniscribe contains the needed information and rules regarding shaping and rendering of
the text of various scripts. There are basically two kinds of operations which Uniscribe
carries out to render the text properly, viz.

1. Correct ordering of text.

2. Shaping:

a. Substitution

b. Positioning

For example, when Uniscribe encounters the code point 067E, it right away knows that it
is dealing with a script that is written right-to-left. Accordingly it reorders the character
for display in right direction. At this point, if it were to display the text without carrying
out shaping operations, it might appear like this:

ان ت س اک پ

It would be because shaping rules have not yet been applied and normally in a font the
glyphs representing the isolated forms are mapped to the code points of the characters.

Next, Uniscribe analyzes the character for contextual shapes and, using OTLS, substitutes
and positions the correct glyph obtained from the OpenType font. As Uniscribe
encounters each character, it analyzes its properties, the properties of its neighboring
characters, and determines which of the four (initial, media, final or isolated) forms is
needed and using OTLS retrieves the appropriate glyph from OT font and displays it. For
example in case of Pay, Uniscribe would know that its initial form is needed and the OT
font is asked to provide the required glyph. This way, all the glyphs needed to represent
the characters are obtained and instead of the glyphs representing the isolated forms, the
glyphs representing the appropriate are substituted and used to form the word. We first
tabulate the position and then show the word finally rendered on screen:

 Text Entered Rendered

Character Code Point Form Needed Glyph Used

 پ 067E Initial پ

 ا Final 0627 ا

 ک 06A9 Initial ک

 س Medial 0633 س

 ت 062A Medial ت

 27

 ا Final 0627 ا

 ن Isolated 0646 ن

This table lays out the rendering process in a simplistic way. Column on the left shows
the character key pressed by the user. Next column shows the corresponding Unicode
code point which is put in the file and later used by system to render the text. Third
column describes the appropriate form of the character needed in the given context as
determined by Uniscribe, the rendering engine. Finally, using OTLS, Uniscribe gets the
glyphs which represent the required forms of these characters and displays these as
under:

تان کسـپا
Previously the code pages usually contained code points for all the shapes of a character
and the fonts would map the glyphs in one to one relationship with all the shapes encoded
in the code page. When the OS or application needed to render the character it would be
simple matter of retrieving and displaying the corresponding glyphs. Or, if the code page
did not encode all the forms, it would then specify the mapping of the font, so that proper
glyphs could be used.

But Unicode and OpenType architecture have changed this. Unicode not only does not
bind the fonts as to the location or mapping of the glyphs, it does not bind it as to the
number of glyphs either. The actual number of glyphs needed to display the text properly
would depend on the orthographic style supported by the font. A simple Urdu font may
have glyphs numbering less than hundred and these may be enough to adequately display
the text. While a Nastaleeq font may need thousands of glyphs.

Under the OpenType architecture, all of the decisions as to number of glyphs, types of
ligatures, substitution and positioning rules, are left to the discretion of the font designer.
Of course a font is expected to conform to the standards and specifications, but beyond
those minimum requirements, it is left to the discretion of the font designer. For example,
an Urdu font must contain glyphs which could provide various shapes needed as per rules
of script and language.

An OpenType font contains tables which include all the information that is needed for the
interaction with the operating system tools and/or applications. These tables incorporate
all the substitution and positioning rules, mapping structure of the font etc. Uniscribe uses
OTLS to interact with an OpenType font and apply these features relating to substitution
and positioning of the glyphs accordingly.

OpenType font technology has literally opened up the doors to creative and flexible
typography without in any way compromising the standards or norms. That which was
once impossible to achieve employing the relatively simpler, but at the same time
constrictive, digital font architecture as typified by the original TrueType format, can
now be easily done using the flexible and powerful OpenType architecture. Once the
potential of OpenType architecture is understood, then it is easier to visualize how it can
be employed to implement complex scripts like Arabic and handle intricate writing styles

 28

like Nastaleeq. Special relevance of this technology with reference to Pakistani languages
will also then become apparent.

Now we can discuss why and how is it that not having a fixed standard as to mapping of
glyphs within a font makes the architecture more suitable for complex script languages.
This gives the font designer flexibility of design and choice which he/she can take to the
limits using the OpenType features and the willingness of application developers to
support these features. The designer has the choice to use as many or as few features as
are needed for the particular font.

To explain this we will now compare two fonts. Times New Roman, so far as its Arabic
script part is concerned, is a simple design functional font which makes use of just those
features as must be used to render text properly. As against that, Arabic Typesetting is a
sophisticated Naskh font which makes extensive use of the OT features to achieve a very
high degree of typographic excellence. By examining the differences between these two
fonts we shall learn about the flexibility and the potential of OpenType font architecture.

For letter Bay, the Times New Roman has just two glyphs, which are used for four
different positions: initial, media, final and isolated. Examine the following sample:

ببس ب سب

The glyph at far left is used for initial form as well as for the medial form. In earlier
original architecture, we could use one shape but we would have to create two glyphs,
albeit identical: one for the initial and one for the medial forms. But in an OpenType font
we may have just one glyph, in one address. In the OT tables we just say that this same
glyph is to be used for these two positions. Similar is the case with its isolated and final
position. Same glyph is used for both the positions:

بس ب

The glyph at the left is used for isolated as well as for final positions of Bay.

Before moving on to Arabic Typesetting font let us examine another font which has four
different glyphs, each for the initial, media, final and isolated forms.

 29

Isolated Final Medial Initial

ب ب ب ب

When Uniscribe asks for a glyph for a particular position, the font examines its tables and
supplies the appropriate glyph. Thus, it is an internal design and arrangement issue for the
font. The number of glyphs it has for a particular form will depend on the font design.

Let us now finally look at the examples from Arabic typesetting font which has in all nine
different glyphs for Bay. There is one each for the isolated and the final positions, three
for initial position and as many as four for medial position. Before discussing which
glyph is used when and why, let us look at the examples showing these shapes.

بس ب
 رب لب سب
 ےبل ضبن تلابم ببس

As can be seen, there are three varieties of initial form of Bay and four different glyphs
for its medial form. When Uniscribe needs the initial form, it just asks for it, so to say. If
the font does not have any rules to supplement the basic rules of character/glyph
substitution, it simply provides the only glyph which its table links to the character as its
initial form. But if a sophisticated font has further rules, these may define that if initial
Bay precedes certain glyph, or a set of glyphs, then a particular glyph should be used.
Similarly if the medial form is used in a given context, then a particular glyph may be

 30

used. The initial Bay before Seen is not the same as one before Ray. Same goes for the
medial shapes. Detailed rules define which glyph would be used in which context. This
shows the potential of OpenType. All these levels of simplification or complexities are
not bound by the parameters of the system, instead these are left for the font designers to
put in place and system faithfully implements these rules as and when it finds them.

The examples which we have just examined use the substitution feature of OpenType
font architecture. There is another very powerful implementation of this feature and that
is in respect of ligatures. Ligature is simply a glyph representing an alternate rendering of
a group of glyphs. In Arabic script there is at least one general case where the rules of
writing demand use of ligature, otherwise the formation would be incorrect. Whenever a
Lam is followed by an Alef, the normal rules of joining are not used, instead a ligature is
used. This is what happens:

 0627 0644 لا=ا ل =ا + ل

 0627 0644 لا =ا ل =ا + ل

Whenever a glyph representing initial or medial forms of Lam is followed by Alef, the
one would expect that the glyph representing final form of Alef would be used. But the
ligature rules in place in the font would substitute the two glyphs with the glyph
representing the appropriate ligature form. On the left we show the code points in the
backing store. Note that despite all these substitutions taking place, just one glyph being
used, the backing store would always contain reference to two characters: Lam and Alef.
Whatever glyph or glyphs may be used, Lam and Alef remain Lam and Alef.

This is known as required ligature as per rules of scribing and it must always be used
instead of normal joining forms. But if we look at examples of calligraphy, we would
find extensive use of ligatures, which may be called optional or discretionary ligatures.
These ligatures may or may not be used depending on the writing style.

Earlier, the font structure and the code page used to lay down strict rules in this regard
and would provide what ligatures may be used. The font design had to conform to these
rules and was accordingly restricted by it. Like it or not, use it or not, glyphs for the
ligatures had to be put in place. The Unicode Standard, following a strict character
approach, does not deal with ligatures at all. This simply means that there are no
restricting rules imposed by the encoding scheme. On the other hand, the OpenType
architecture also has left this issue totally open for the font designer. The font designer
may choose to have no ligatures in a font or he/she may choose to have as many ligatures

 31

as the design of the font demands. Creativity of the designer and not the technology
defines the limits. So far as the system and applications are concerned, these also do not
deal with this issue directly. When a font is used, all the rules of substitution and
positioning, as incorporated in the font, get automatically executed. Let us now look at
some more examples of such ligatures as used in Arabic Typesetting font (incidentally
the Arabic Typesetting font, which is scheduled to be bundled with Office .NET, includes
complete Arabic character set covering all the languages such as Urdu, Sindhi, Pashto,
etc. that use Arabic script):

Above we have given just a few examples of ligatures just to show what is possible to
achieve using OpenType font architecture. The font from which above examples have
been taken actually has more than 800 ligatures in its repertoire. A good thing is that,

 32

depending of course on the kind of implementation provided in the applications, the user
is not bound to use the ligatures if there are instances warranting use of normal joining
forms. In the above table, same font is used but in the column on the left, MS Publisher’s
option to disable Optional Ligatures has been used. Thus one may use ligature for a word,
and then turn it off for the next. Then there are also discretionary ligatures or forms,
where the user, as he enters the text, is given choice to use one of the alternate forms.
This advanced typographic feature has been included in some applications, such as
Adobe’s InDesign. Corresponding version with Arabic support has not been released as
yet, hence it is not possible to say what level of support will be included for Arabic script.

Substitution is one feature which is used for the flexible typographic design. Positioning
is another feature which can be used to fine tune appearance of Arabic script text.
Positioning features are extensively used for accurate positioning of diacritic marks (the
a‘erab). Following example shows how the positioning of diacritics can enhance the text:

The font on the first of these two lines has taken care of positioning of the diacritic
marks, whereas the font on the bottom line has yet to implement the positioning of marks.
These features let the font designer set the position of marks relative to glyphs or other
marks precisely. These features that can now be implemented on personal computers and
in very simple applications like WordPad and NotePad, were earlier the domain of high
end typesetting applications using proprietary codepages. This is the kind of flexibility
and the level of control which OpenType font architecture gives to the font designer.

Positioning feature can also be used for kerning, that is relative positioning of two
characters. In the following example, we show how kerning can be used to enhance the
text and give it more natural look.

Figure 1 - Left side does not have kerning applied. Right side has kerning applied

Unlike the traditional kerning, in which only horizontal position could be manipulated,
now it is possible to adjust the positioning in any direction. This feature can also be used
to greatly enhance visual appearance of text and implementing writing styles like
Nastaleeq.

Now finally, we can look at the following example. There is no such word, but we have
formed it just to exemplify the capability of OpenType structure.

 33

 بيسـبببببب
Using cursive positioning feature it is even possible to adjust the vertical connective
positioning of the glyphs. It is no more necessary to have all the glyphs sitting on the
baseline. The font designer can define the exit point of the glyphs and have them connect
at levels other than baseline, as is done in above case.

OpenType format has plenty of features which can be used in the design of the font to
achieve the typographic excellence which once was handled by the sophisticated
typesetting applications. New features, to meet the needs of font designers, can always be
added to the already rich repertoire of features presently offered. If we have to write a
word such as نستعليق we can employ either of the following styles:

 نستعليق
 نسـتعليق

In all these cases it is the same set of character code points (that is code points for ت س ن
 which gets rendered using same code page, same rendering engine but only (ق ي ل ع
different font each time.

All these nice features, as someone has very aptly put it, are there not merely to prettify
the text but to articulate itxx. All the time, the digital typography aims at emulating the
excellence and visual eloquence achieved by human genius of master calligraphers. We
may still be far from that goal, but the present set of tools has certainly brought us closer
to it.

 34

Conclusion
Computer users in Pakistan are poised at a junction and they have to make choice and
make it before it is too late. The facility to use mainstream computing for all computing
needs, from word processing to publishing on the web, from chatting on the internet to
web commerce and database management, and even creating developmental tools in
regional languages, is readily available. Computer technology is for the first time
available in local languages and it can be used in businesses, offices, schools and homes
alike. Either one can take advantage of it, and then use the available resources and
energies to go from this point forward; or one may choose to employ these resources to
reinvent the wheel, duplicate what others have already done and indulge in redundant
activities. All this will, at the best, get us where we are right now. At some date in future
we will commence the same journey which we can commence today, only then we will
be a few years late. And by that time the technology will have already taken another leap
forward, we will again be struggling to catch up (if we can) and all the while the masses
will be deprived of the use of this technology.

About the Author
Abdul-Majid Bhurgri belongs to Larkana, a town in Sindh. In the 1980s, Abdul-Majid was the first
to implement a solution for Sindhi on Apple Computers. He was also a part of the civil service of
Pakistan. In 1972 Abdul-Majid was selected for Income Tax Service on the basis of the
Competitive Superior Civil Services exam. Later, he resigned from the service. Abdul-Majid
currently lives near Seattle in the USA.

 35

i Afzal, M. and Hussain, S. 2001 Urdu Computing Standards: Development of Urdu Zabta Takhti (UZT)
1.01
ii Ethnologue Languages of Pakistan http://www.ethnologue.com//show_country.asp?name=Pakistan
iii See the Unicode Consortium website at http://unicode.org
iv Afzal, M. and Hussain, S. 2001 Urdu Computing Standards: Development of Urdu Zabta Takhti (UZT)
1.01
v From interview of developers of first Urdu Database for Libraries, published in Jan/Feb Issue of National
Language Authority of Pakistan’s periodical Akhbar-e-Urdu Jan/Feb 2002 Issue
vi ibid
vii p 99 Akhbar-e-Urdu, Jan/Feb 2002
viii p 101 ibid
ix p 101 ibid
x p 101 ibid
xi p 104 ibid
xii Zia, Dr. Khaver Towards Unicode Standard for Urdu
xiii ibid
xiv Proceedings of Standardization Committee for Urdu as quoted by Afzal, M. and Hussain, S. 2001 Urdu
Computing Standards: Development of Urdu Zabta Takhti (UZT) 1.01
xv Afzal, M. and Hussain, S. 2001 Urdu Computing Standards: Urdu Zabta Takhti (UZT) 1.01
xvi Afzal, M. and Hussain, S. 2001 Urdu Computing Standards: Development of Urdu Zabta Takhti (UZT)
1.01
xvii ibid
xviii ibid
xix The Unicode Standard Version 3.0.0 § 8.2, pp 189-198
xx Hudson, John, Windows Glyph Processing Microsoft Typography Website

