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Summary

In learning theory for learning languages, a machine is given words in a lan-
guage and the machine is said to identify the language if it correctly names the
language. In this thesis we study classes of languages where the unions of up to a
fixed number (say n) of languages from the class are identifiable. We distinguish
between two different scenarios: in one scenario, the learner need only to name the
language which results from the union; in the other, the learner must individually
name the languages which make up the union (we say that the unioned language
is discerningly identified). We define three kinds of identification criteria based on
this and by the use of some naturally occurring classes of languages, demonstrate
that the inferring power of each of these identification criterion decreases as we
increase the number of languages allowed in the union, thus resulting in an infinite
hierarchy for each identification criterion. A comparison between the different iden-
tification criteria also yielded similar hierarchies. We define generalized versions
of the identification criteria, and show that the hierarchies continue to hold for
these generalized criteria. We show that for each n, there exists a class of disjoint
languages where all unions of up to n languages from this class can be discerningly
identified, but there is no learner which identifies every union of n + 1 languages
from this class. We give sufficient conditions for classes of languages where the
unions can be discerningly identified. We also present language classes which are
complete with respect to weak reduction (in terms of intrinsic complexity) for our

identification criteria.
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1 Introduction

What exactly is “learning”? When can we say that a person “has learnt some-
thing”? To illustrate, consider a person who tries to learn the game of poker by
watching others play. The person can very well play the game intelligently by sim-
ply remembering every hand ever played, with or without understanding the rules
of the game. It would be difficult to argue that this person has not learnt poker,
especially if this person can consistently beat you. In the spirit of the Turing Test,

learning should be considered in the most straight-forwardly measurable manner.

In the most general form, learning is simply a process where a person attempts
to provide explanations to an observed phenomenon. This does not say anything
about what constitutes successful learning. Much of what we typically mean by
“learning” only comes into the picture when we consider the criteria for saying
“when” a person has learnt something. In the following text we shall first describe
a mathematical framework to simulate the learning process (consisting of a learning

environment and a learner), and then give examples of learning criteria.

We assume that the information obtainable by a learner can be encoded into
the natural numbers. The justification is that at any one time, we can only record
a finite number of datum from nature!, and each of these only to a finite precision.
For this reason, we use formal languages as abstract representation for observable

phenomenon. From here onwards, we shall refer to languages and phenomena

!Note that the number of data may go to infinity as time approaches infinity.



1 INTRODUCTION 2

interchangeably.

Likewise, a learning environment in this regard, can be abstracted to an infinite
sequence of (all or part of, and not necessarily limited to) natural numbers for
a given language (or phenomena). For realism, the numbers in the sequence are
usually allowed to repeat. A common practice is to also allow the sequence to
contain a special symbol representing “null”. This becomes useful for phenomena
that are represented by the empty set, where it can then be represented by a

sequence which consists only of “null” symbols.

We now turn to the learner. In the fashion of the Church-Turing thesis, we
assume that learning is a computable process, and for this reason the learner is a
computable device, called an inductive inference machine in the literature. Thus
we can consider a learner as an algorithmic device which gets as input an infinite
sequence of natural numbers. For each finite initial portion of the sequence, the
device may output a conjecture, possibly a grammar for the language which the
sequence is for. This results in a sequence of conjectures, which we may then use

to determine if the learner has successfully learnt the input sequence.

Note that we have not yet defined the following requirement:

1. What is the correspondence between the phenomena and their representation
sequences?
For instance, there may be assumptions in the data that the learner receives.
Perhaps the data is presented in an ascending fashion, or perhaps there are

inaccuracies in the data.
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2. What is the degree of satisfaction required of the machine’s answer?
There may be imposed restrictions on the behaviour of the learner. Perhaps
we restrict the learner to only make guesses that are consistent with the
input, or perhaps we require the learner to make a correct guess within a
fixed number of tries. On the other hand, we may also relax our requirement,
for example allowing the learner to make mistakes within a range that we

consider tolerable.

Gold [Gol67] introduced the notion of identification in the limit. In his original
work, a learner is given, one by one, with or without repetition, all the numbers
in a language, as well as the special symbol “null”. The learner is said to identify
the language in the limit if and only if regardless of the order and frequency these
elements are presented, at some time the learner outputs a grammar for that lan-
guage and then never changes its mind. The learner is said to identify a class of
languages if and only if it identifies every language in that class. This criterion is
now referred to as TxtEx-identification [CL82], and has been the basis for many

other learning criteria.

Various variations of Gold’s learning criterion have been considered. For ex-
ample, Blum and Blum [BB75] studied more lenient conditions for a learner to
identify a function, and Barzdins [B74] imposed restrictions on the conjectures
that a learner is allowed to make. In all these studies, a key motivation is to
compare the inferring power of learners under the different criteria. The inferring

power of a learner on a given kind of input and under a given criterion is, roughly
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speaking, the class of languages on which the learner meets the requirements of the

criterion.

The majority of the learning criteria in these studies assume that the input
given to the learner consists of elements from a single language. In reality, it is not
unusual for learners to be presented with information that is some sort of mixture.
For example, children growing up in a multi-lingual environment may be exposed
to more than one (natural) language without being explicitly told their origin; or,
in a physical experiment, radiations collected by the same detector may originate

from many different source processes.

In this dissertation we investigate learning criteria which require a learner to
explain the observed phenomena, even when they are presented as a mixture of
several phenomena. In our terminology, the learner must be able to identify unions
of languages. This adds new complications to the definitions of the learning criteria.
For instance, how many languages should be allowed in a union? Does a learner

have to name all of the languages included in the union?

In Chapter 2 we give the necessary background in computational learning the-
ory, including definitions for a few well known learning criteria. Readers already

acquainted with the theory may skip this chapter.

In Chapter 3 we formalize a few notions of “identifying unions of languages”.
This is followed by a survey of related works in computational learning theory. We
then provide some languages which fulfills our learning criteria in Chapter 4, and

show that under the new learning criteria, inferring power of learners in general
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lessen when more languages are allowed in the unions.

In Chapter 5 we attempt to find conditions which are sufficient for learning
unions of languages. In Chapter 6, we extend well known identification criteria
to accommodate learning of unions of languages, and examine how the inferring

power of learners is affected under each of these extensions.

Freivalds, Kinber, and Smith [FKS95] proposed a new method for measuring
the complexity of learning called intrinsic complexity. Since its’ conception, the
idea has been studied actively in the field of computational learning theory [JS96,
KPSW99, JKW00, JKO01]. In Chapter 7, we analyse the intrinsic complexity of a

few classes of languages with respect to the learning criteria defined in Chapter 4.
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2 Notation and Preliminaries

2.1 Notation

Any unexplained recursion-theoretic notation is from [Rog67]. N denotes the set of
natural numbers, N, denotes the set {i € N | i < a}. N denotes the set of positive
integers. S, with or without decorations, ranges over subsets of N. rat denotes
the set of non-negative rational numbers. R denotes the set of real numbers. For
this thesis, functions have their domain and range in N. f and g, with or without
decorations, range over total functions. 7, with or without decorations, ranges over

partial functions.

0, €, C, C, D, D respectively denote empty set, element of, proper subset,
subset, proper superset, superset. max(.), min(.) denote maximum and minimum
of a set, where by convention max()) = 0 and min()) = oco. Cardinality of a
set S is denoted by card(S). Dy, D1,... stand for a computable sequence of all
finite sets [Rog67]. A — B denotes the set {z | z € A and z ¢ B}. AAB denotes
the symmetric difference of A and B, that is, (A — B) U (B — A). For any two
functions 7 and ny, 71 =" 1o means that card({z | ni(z) # ne(x)}) < n; n; and
ne are called n-variants. 1y =* 1y means that card({z | m(x) # n2(x)}) is finite;
m and 1 are called finite-variants. For any two sets S; and Sy, S; =" S5 means

card(S1ASs) < n; Sy and Sy are called n-variants. S; =* Sy denotes card(S;ASs)

is finite; S; and Sy are called finite-variants.

(-,-) stands for an arbitrary, computable bijective mapping from N x N onto
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N. For all z and y, m({z,y)) = = and m({z,y)) = y. We assume without loss
of generality that (-,-) is monotonically increasing in both of its arguments. (-,-)
can be extended to n-tuples in a natural way (including n = 1, where (x) may be
taken to be x). Projection functions 71, ..., 7, corresponding to n-tuples can be
defined similarly (where the tuple size would be clear from context). Due to the
above isomorphism between N™ and N, we often identify the tuple (z1,...,x,)

with (z1,...,2,).

The quantifiers %’o, 0EIO and ! denote, for all but finitely many, there exists in-

finitely many and there exists a unique, respectively.

A computable numbering is a partial computable function from N? to N. The
symbol 1) ranges over computable numberings. We denote by 1;, the partial func-
tion, Az.1)(i,z). Thus 9; denotes the partial function computed by the program
with index 7 in the numbering 1. ¥ denotes an arbitrary Blum complexity measure
for ). Wy denotes domain(v);). Wy is, then, the r.e. set/language (C N) accepted
(or equivalently, generated) by the ¢-program i. We also say that i is a ¢-grammar
for Wy . VVZPS denotes the set {r < s | ¥;(z) < s}. We say that numbering v is
reducible to numbering ¢’ (written ¢ < ') if and only if there exists a recursive
function h such that for each + € N, ¢; = wﬁ(i)- In this case we say that h wit-
nesses that ¥ < 1)'. An acceptable numbering is a computable numbering to which
every computable numbering can be reduced. The symbol ¢ denotes a standard
acceptable numbering [Rog67] and the symbol ® denotes an arbitrary fixed Blum
complexity measure for the p-system [Blu67]. In this thesis we abbreviate W’ to

Wi, and W, to Wi.
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£ denotes the class of all r.e. languages. R denotes the set of all recursive func-
tions, that is total computable functions. Symbol L, with or without decorations,

ranges over £. The symbol £, with or without decorations, ranges over subsets of

£.

KC denotes the diagonal halting problem set, that is, K = {z | x € W,}. (K is

a recursively enumerable, non-recursive set.)

We often use the following classes:
SINGLE denotes the class {{z} | x € N}.
FIN denotes the class {D C N | D is finite}.

INIT denotes the class {{z | x <a} |a € N}.

A class £ of r.e. languages is said to be recursively enumerable if there is S € £
such that £ = {W; | i € S}; in this case S is said to be an r.e. index set for
L [Rog67]. For each non-empty, recursively enumerable class of languages L, there

exists a total recursive function f such that £ = {Wyu |i€ N}.

L is said to be 1-1 recursively enumerable if and only if (i) £ is finite or (ii) there
exists a recursive function f such that £ = {Wyq) | ¢ € N} and Wy # Wy, if
i # j. In this latter case we say that W), Wy(), ... is a 1-1 recursive enumeration

of L£.2

A vpartial function d from N to N is said to be partial limiting recursive, if

and only if there exists a recursive function F from N x N to N such that for all

2A 1-1 recursively enumerable class of languages is sometimes also called r.e. indezable without
repetition.
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z, d(z) = limy_,o F(z,y). Here if d(z) is not defined then lim,_, F(z,y) must
also be undefined. A partial limiting recursive function d is called (total) limiting
recursive, if d is total. | denotes defined or converges. 1 denotes undefined or

diverges.

2.2 Preliminaries

2.2.1 Language Identification

We now present concepts from language learning theory. The next definition in-

troduces the concept of a sequence of data.

Definition 1 [Gol67]

(a) A sequence o is a mapping from an initial segment of N into (VU {#}). The
empty sequence is denoted by A.

(b) The content of a sequence o, denoted content (o), is the set of natural numbers

in the range of o.
(c) The length of o, denoted by |o|, is the number of elements in . So, |A| = 0.

(d) For n < |o], the initial sequence of o of length n is denoted by o[n]. So, o[0] is

A

Intuitively, #’s represent pauses in the presentation of data. We let o, 7, and
v, with or without decorations, range over finite sequences. SE(Q denotes the set

of all finite sequences.
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Definition 2 [Gol67]
(a) A text T for a language L is a mapping from N into (N U {#}) such that L is

the set of natural numbers in the range of 7.

(b) The content of a text T, denoted by content(T'), is the set of natural numbers

in the range of 7T'; that is, the language which 7" is a text for.

(c) T'[n] denotes the finite initial sequence of 7" with length n.

Unless stated otherwise, we let 7', with or without decorations, range over texts.

T denotes the set of all texts.

Definition 3 [Gol67] Let 0,7 € SEQ be given.
(a) The result of concatenating 7 onto the end of o is denoted by oo7. Sometimes
we abuse notation slightly and write o ¢ z (where z € N U {#}) to denote the

sequence formed by adding x at the end of o.

(b) We write “o C 77 if o is an initial segment of 7, and “oc C 7”7 if o is a proper
initial segment of 7 (we also say that 7 is an extension of o). Likewise, we write
o C T if ¢ is an initial sequence of text 7.

0 0l,02%, ... be given such that 0° C o' C 0% C ...

(c) Let finite sequences o
and lim;_,, |0!| = co. Then there is a unique text 7 such that for all n € N,

o™ =TJ|o"|]. This text is denoted |J,, 0.

Definition 4 [Gol67] An inductive inference machine (IIM) is an algorithmic

device which computes a mapping from SEQ into N.
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We let M, with or without decorations, range over the IIMs. M(T[n]) is
interpreted as the grammar (index for an accepting program) conjectured by the
machine M on the initial sequence T[n]. We say that M converges on T to i

(written M(T)| = 1) if for all but finitely many n, M(T[n]) = 1.

Gold [Gol67] introduced the following language learning criterion known as

TxtEx-identification.

Definition 5 [Gol67]
(a) M TxtEx-identifies a text T just in case there exists ¢ € N such that W; =

content(T), and M(T)| = i.

(b) M TxtEx-identifies an r.e. language L (written L € TxtEx(M)) just in case

M TxtEx-identifies each text for L.

(c) M TxtEx-identifies a class £ of r.e. languages (written £ C TxtEx(M)) just

in case M TxtEx-identifies each language from L.

(d) TxtEx ={L C & | (IM)[L C TxtEx(M)]}.

This is easily generalized to the following, called anomalous TxtEx-identification.

Definition 6 [OW82] Let a € N U {x}.
(a) M TxtEx“-identifies a text T just in case there exists i € N such that W; =°

content(T'), and M(T)| = i.

(b) M TxtEx"-identifies an r.e. language L (written L € TxtEx"(M)) just in

case M TxtEx%identifies each text for L.

(c) M TxtEx"-identifies a class £ of r.e. languages (written £ C TxtEx"(M))
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just in case M TxtEx“-identifies each language from L.

(d) TxtEx®* ={L C & | (3M)[L C TxtEx"(M)|}.

It is clear that TxtEx® is simply TxtEx. We now introduce some technical

notions which are useful in the study of learning capabilities of the ITMs.

Definition 7 [BB75] Let a € N U {x}. o is a TxtEx"-locking sequence for M on
L if and only if

(a) content(c) C L,

(b) Wa(ey =* L, and

(c) For all extensions 7 of o, if content(r) C L, then M (1) = M (o).

We often refer to TxtEx“-locking sequences as simply locking sequences (a will
be clear from context). We now present a very important lemma in learning theory

due to L. and M. Blum.

Lemma 1 [BB75] Let a € N U {x}. If M TxtEx"-identifies L, then there is a

TxtEx"-locking sequence for M on L.

Osherson and Weinstein [OW82] introduced another infinite hierarchy of identi-
fication criterion called TxtBc-identification which we describe below. “Bc¢” stands
for behaviourally correct. Case and Lynes [CL82] independently introduced a sim-

ilar notion.

Definition 8 [OWS82, CL82] Let a € N U {x}.
(a) M TxtBc“-identifies an r.e. language L (written L € TxtBc®(M)) just in case

for all texts T' for L, for all but finitely many n, W) =* L.
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(b) TxtBe® = {£ C £ | (3M)[L C TxtBe®(M)]}.

(c) TxtBc? is abbreviated to TxtBc.

Thus a learner M TxtBc®-identifies language L just in case M, fed any text for
L, produces an infinite sequence of hypotheses, all but finitely many of which are
for a-variants of L. It is not required of a successful TxtBc” learner to converge
to a single index. For a > 1, the successive conjectures of the successful TxtBc*
learner need not even be for the same language. A stricter criterion would allow the
learner to only vacillate around some finite number of conjectures. Case [Cas88]

captured this notion through the following language learning criterion.

Definition 9 [Cas88] Let a € N U {x} and b € N U {x}.
(a) We say that M on T finitely converges to a finite set D just in case (i) for all
but finitely many n, M(T'[n]) € D, and (ii) for all : € D, there exists infinitely

many n such that M(T'[n]) = i.

(b) M TxtFexj-identifies L (written L € TxtFex;(M)) just in case for all texts
T for L there is a finite, non-empty set D of cardinality at most b such that M

finitely converges to D and, for each 1 € D, W; =° L.

(c) TxtFex? = {£ C & | (3M)[L C TxtFex?(M)]}.

Thus, M TxtFexj;-identifies L just in case for every text 7" for L there is a
non-empty, finite set Dy of no more than b indices for a-variants of L such that all

but finitely many of M’s conjectures are drawn from Dy.

Lemma 1 has an analogue for TxtFex and TxtBc learning also.
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We now state some of the basic results relating the different types of identifica-

tion criteria introduced above.

Theorem 2 [Cas88, CL82] For all i,n € N.
(a) TxtEx"*' — TxtFex" # ().

(b) TrtEx™"' — TxtBc" # (.

(c) TxtEx™ C TxtBc".

(d) TxtFex) , — TxtFex; # 0.

(e) U,cn TxtFex; C TxtFex;.

(f) UneN TztBc" C TxtBc'.

Parts (a), (d) and (e) are due to Case [Cas88, Cas99]. Parts (b) and (c) are

due to Case and Lynes [CL82]. Part (f) is due to Case and Smith [CS83].

Data presented to learners may suffer from inaccuracies. In [FJ89, FJ96] Fulk
and Jain considered three kinds of possible corruption to texts. They are, (a)
intrusions of erroneous data, (b) omissions of data, and (c) both. Affected texts

» “©y

are called “noisy”, “incomplete”, and “imperfect” respectively.

Definition 10 [FJ96] Let L € £ and a € (N U {x}) be given.
(a) A text T is a-noisy for L just in case L C content(T) and card(content(T) —

L)<a.

(b) A text T is a-incomplete for L just in case content(T) C L and card(L —

content(T)) < a.

(c) A text T is a-imperfect for L just in case card(LAcontent(T)) < a.
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Definition 11 [FJ96] Let a,b € (N U {x}) be given.
(a.1) M N*TxtEx’-identifies L € £ (written L € N*TxtEx"(M)) just in case for

all a-noisy texts T for L, M(T)| and Wy =" L.
(a.2) N*TxtEx’ = {£ | (AM)[£ C N*TxtEx’(M)]}

(b.1) M In"TxtEx-identifies L € £ (written L € In*TxtEx"(M)) just in case for

all a-incomplete texts T for L, M(T)} and W) =" L.
(b.2) In"TxtEx’ = {£ | GM)[£ C In"TxtEx’(M)]}

(c.1) M Im*TxtEx"-identifies L € £ (written L € Im*TxtEx’(M)) just in case

for all a-imperfect texts 1" for L, M(T)} and Wy =° L.

(c.2) Im*TxtEx’ = {£ | GM)[£ C Im*TxtEx’(M)]}

Using the same principle we can define the following identification criteria:

N*TxtFex?, In“TxtFex’, Im*TxtFex’, N*TxtBc’, In®TxtBc’, Im*TxtBc’.

Theorem 3 [FJ96] For alli € N.

(a) Im* TxtEx't" — TxtFex. # (.

(b) Im’ TxtBx" — U,y TxtFex! # ().
(¢) Im* TxtFex;,, — TxtFex; # .
(d) Im* TxtEx>' — TxtBc' # (.

(e) Im* TxtBc — TxtFex] # ().

(f) Im* TetBc' ™ — TxtBc' # .

(9) Im' TxtEx — [N'*! TxtBc* U In'"' TxtBc*] # 0.



2 NOTATION AND PRELIMINARIES 16

2.2.2 Learning From Informants

What if texts presented to a learner contains not only the information of whether a
word is in a language, but also information of whether a word is not in a language?
In learning by informant, data presented to the learner is a characteristic function

for a language.

Definition 12 [Gol67, BB75, CL82] We say that a text G for a 0—1 valued function

is an informant for L just in case content(G) = {(z,1) |z € L} U {(z,0) | = ¢ L}.

Definition 13 [Gol67, BB75, CL82] Let a € N U {x}.
(a) M InfEx“-identifies L (written L € InfEx®(M)) just in case on all informants

G for L, M(G)\L and WM(G) =* L.

(b) InfEx® = {£ | (3M)[L C InfEx*(M)]}.

Proposition 4 [Gol67] InfEx — TxtEx # ().

2.2.3 Standard ITM Enumeration

Unless stated otherwise, we let My, My, ... denote a recursive sequence of total
IIMs, such that every class of languages in every identification criteria introduced

in this chapter is identified by at least one of the machines in the sequence [OSW86].
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3 Identification of Unions of Languages

3.1 Introduction

We start our analysis of the identification of unions of languages in this chapter.

In the past, the studies of identifying unions of languages were largely motivated
by problems in pattern languages [Wri89, SA00, GK99]. These studies are restricted
in the sense that the propositions are devised only to answer the specific problems in
pattern languages. Since the pattern languages are recursive, their results generally

apply only to languages that are recursive.

We claim that in reality, it is not unusual for learners to be presented with a
mixture of information consisting of data from many different languages. One ar-
gument is that, in a multi-lingual environment, children may very well be exposed
to more than one (natural) language at one time; or, in a physical experiment,
radiations collected by the same detector may come from many different source
processes. We therefore consider it worthwhile to investigate the problem of iden-

tifying unions of languages beyond the context of the pattern languages.

To arrive at a general definition of “identification of unions of languages”, we
need to note first that a few interpretations are possible for what “dentification”
may mean for a language which is the union of other languages. For instance, it
could mean “dentifying the unioned language”, or more demandingly, “identifying
the languages which made up the unioned language”. In the latter case, suppose

there exists more than one possible sets of languages which combines to give the
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unioned language, should the learner be required to supply all the possibilities, or
just one of them, or should such a scenario be considered unidentifiable? In this

chapter we will choose a few definitions to work with.

3.2 Defining The Unions of Languages

We now give formal definitions for notions of “unions of languages”.

Definition 14 [SA00] Let k € N™ and £ C £.

(a) Define the union language of L, Ly = Uy, L-

(b) Define the class of at most k unions of L, L¥ = { Ly | L' C L A card(L') < k}.

3.3 The Paradigm UTxtEx

We define our first notion for “learning the unions of languages” with the following

identification criterion.

Definition 15 Let K € NT and £ C €.

(a) M UFTxtEx-identifies® £ just in case £* C TxtEx(M).

(b) UFTxtEx = {£ C £ | (3M)[M U*TxtEx-identifies £]}.

UTxtEx coincides with the definition of “identification of unions of languages”

in [Wri89, SA00].

3The U in UTxtEx stands for Unioned.
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3.3.1 Known Results in UTxtEx Identification

Definition 16 [Ang80b]
A collection of non-empty languages £ = {L; | i € N} is an indexed family of
recursive languages* just in case there exists a computable function f such that for

each 7 € N and for each z € N,

fli,x) =

0 otherwise

The following concept of finite elasticity, originally (incorrectly) defined in

[Wri89], is from [MSWI1].

Definition 17 [Wri89, MSW91] A collection of languages £ has infinite elasticity
just in case there exists an infinite sequence of pairwise distinct numbers, {w; € N |
i € N}, and an infinite sequence of pairwise distinct languages, {4; € L | i € N},
such that for each k € N, {w; | i < k} C Ay, but wy & Ag. L is said to have finite

elasticity just in case £ does not have infinite elasticity.

Theorem 5 [Wri89] Let L be an indexed family of recursive languages. If L has

finite elasticity, then for alln, £ € U" TxtEx.

Corollary 6 [Wri89] Let L be the class of all pattern languages, then for all n,

L e U'TxtEx.

‘In [dJK96], de Jongh et. al. generalized the term indezed family to refer to any infinite,
recursively enumerable class of r.e. languages.
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Shinohara and Arimura in [SA00] noted that this result does not apply to the
class £* of unions of unbounded number of languages, and showed that the class

of unbounded unions of pattern languages is not TxtEx-identifiable.

Definition 18 [Ang80a] A collection of languages £ has finite thickness just in

case for each n € N, card({L € L | n € L}) is finite.

The following is a concept frequently rediscovered in the literature.

Definition 19 [Kru72] Let = be a preorder over a set A. An infinite anti-chain
over A with respect to 2 is an infinite sequence ag,ay,...,a;, ... such that a; € A
for any 7 > 0, and ¢ # j implies ¢; and a; are incomparable; that is, neither a; 2 a;

nor a; = a;.

Theorem 7 [SA00] Let L be an indexed family of recursive languages with finite

thickness. If L has no infinite anti-chain with respect to the set inclusion C, then

L e U TxtEx.

3.4 The Paradigm DUTxtEx

We now define an identification criterion, where the learner must furthermore iden-

tify each of the languages in the union.

Definition 20 Given £ C & where card(L) < oo.
(a) We say a set of indices {x1, %2, ..., Tcara(c)} € N is a representation index set

of £ just in case {Wy,, Way, .o, Wa 0} = L.
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(b) Let Z, = {I | I is a representation index set of L}.

(c) Let Z={I| (3L CE,card(L) < o0)[I € I]}.

Any representation index set {x1,Z2,...,Tqr(c)} can be represented by a nat-
ural number k£ where Dy = {1,%2,...,Tcara(c)}- This representation is implicit

whenever the context requires such an interpretation.

Proposition 8 Given L C &, for every L', L" C L, L' # L" implies that Ly N

Iyl = @

Definition 21 Let k€ NT and £ C €.
(a) M DU*TxtEx-identifies® £ just in case for each £' C £, where card(L') < k,

for every text T for Ly, M(T)} and M(T) € Z.

(b) DU*TxtEx = {£ C £ | (3M)[M DU*TxtEx-identifies £]}.

Hence a DU*TxtEx learner, upon every text for the union of up to k languages,
is able to tell exactly what these languages are. As an example, it is easy to
verify that the class of all singleton languages, SINGLE = {{z} | z € N} is in

DU"TxtEx.

We explain a limitation to the kind of classes that can be in DUTxtEx, with

the following proposition.

Proposition 9 Given £L C £. If there exists finite L', L" C L, L' # L, but

Lp = Lgn, then £ ¢ DU* TatEx for k = max(card(L'), card(L")).

5The D in DUTxtEx stands for Discernible.
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PROOF. A text for L, is also a text for Ly». But Zp:NZ» = () and an IIM cannot

converge to indices for both an I' € Z,» and an 1" € Z». |

For the purpose of avoiding Proposition 9, it is useful to introduce the following

terminology.

Definition 22 Let L C £ and k € NT. The class of languages £* is said to be
uniquely definable from L just in case for all L € £*, there exists a unique £' C L,

where card(L') < k, such that Ly = L.

Hence for a class £ that is uniquely definable from £, every collection of up to

k languages from £ uniquely generates a language in £F.

3.5 The Paradigm WDUTxtEx

There are other conceivable ways of defining identification criteria similar to
DUTxtEx which do not lead to a situation like that in Proposition 9. One pos-
sibility is that when there exist distinct classes of languages L', L" C L, each of
cardinality at most k, such that L, = L.», we might allow the learner which learns
L* the freedom to choose either £ or £" to conjecture. The following identification

criterion captures precisely this notion.

Definition 23 Let £k € Nt and £ C €.

(a) M WDU*TxtEx-identifies’ £ just in case for each L € LF, for every text

6The W in WDUTxtEx stands for Weakly.
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T for L, M(T)], and there exists L' C L, where card(L') < k, and T is a text for

L, such that M(T) € Z.

(b) WDU*TxtEx = {£ C £ | (3M)[M WDU*TxtEx-identifies £]}.

It is clear from the definitions that WDU'TxtEx = DU'TxtEx = U!TxtEx =

TxtEx.

3.6 The Paradigm SDUTxtEx

Another way to avoid complications similar to Proposition 9 is to require the learner
to suggest all the possible unions for which the text is for. To us, this seems
exceedingly demanding, and we include the following identification criterion only

for completeness.

Definition 24 Let k€ Nt and £ C €.
(a) M SDU*TxtEx-identifies” £ just in case for each L € L, for every text
T for L, M(T){ and for all £' C &, if

(1) £'CL,

(2) card(L') <k, and

(3) T is a text for L,

then card(Zy N Wiy(ry) = 1; otherwise card(Zz N Waery) = 0.

(b) SDU*TxtEx = {£ C £ | 3M)|M SDU*TxtEx-identifies £]}.

"The S in SDUTxtEx stands for Strongly.
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Hence an SDU*TxtEx learner, upon a given text T, for each set of at most k
languages from £ which generates content(7T), the learner outputs a representation

index set for that set of languages.
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4 Basic Hierarchy Results

4.1 DUTxtEx Hierarchy

Proposition 10 DU? TatEx C TxtEx.

ProOOF. That DU?TxtEx C TxtEx is immediate from definition. Consider
the collection of finite languages, FIN. It is clear that FIN € TxtEx. Choose
distinct sets Di, Dy, D3 € FIN such that D; U Dy = Ds;. By Proposition 9,

FIN ¢ DU’TxtEx. i

We now extend this result to DU TxtEx ¢ DU"TxtEx for any n € N.

First some preliminary results need to be obtained.

Definition 25 Let n € N, n > 2.

(a) A coordinate in an (n — 1)-space® is written (zy,...,7,_1). For any point A, let
z;(A) (where 1 < ¢ < n — 1) denote it’s position along the z; axis.

(b) We define a (convex) simplex G in an (n — 1)-space by the set of all the points

(21, ..., Zp_1) in a finite region which satisfy n linear equations [Cox63]

( Vg1

Vg2
'($1,$2,...,$n_1)§bk (k:1,2,,n)

K Vgn—1

8Unless stated otherwise, we assume Euclidean spaces in this thesis.
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where by, ..., b, are co-efficients in R. The inequality for each k£ defines a bounding
hyperplane for the simplex, where each vector ( vx1 Vg2 -+ Vgn—1 ) represents
an (assumed unit) outward normal for the bounding hyperplane. The intersections
of each hyperplane with G forms a simplex in (n — 2)-space, and is called a facet

of G.

(c) Let G, be an arbitrary, fixed simplex of n vertices in an (n — 1)-space.

(d) Let T,, = {T | T is a (vector) translation in (n — 1)-space}.

(e) For each T € T,, and each simplex G, G + T denotes the simplex with vertices
at {A+T | Ais a vertex of G}.

(f) Let T, ={G, + T | T € T,,}. Hence I, is the set of all the simplexes that G,

can transform into under only translations.

(g) For G €Ty, let V(G) ={A | Ais a vertex of G}.

The following gives an important result which is used, in part or in full, in

several propositions throughout this thesis.

Claim 11 Let n > 2. Given G € T',, with vertices at Ay, Ay, ..., A,. Let C be a
— —
point in G — V(G). For eachi € N, 1 <i<mn, let g; = (1/| CA; |) CA; and for
d € R, let Gi(6) = G + 604z;. There exists a collection of
(1) n simplexes G1(€1), Go(€2), - - ., Gp(€,) where each €; € R e; > 0, and

(2) n numbers &,&s, ..., &, € R where each & € R0 < & < ¢,

such that for each k,1 < k < n, for all § € R where 0 < 6 < &, Gi(0x) C

U= Gi(&)-
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ProOOF. For n = 2, given G with V(G) = {(y1), (y2)}, let 6 = €2 = & = & =
|(y2—v1)/2| and we are done. We now show the case for n > 3. Let n > 3 be given.
We use the notations introduced from the beginning of the claim statement, up to
(and including) G;(9). For each 7, 1 < i < n, let F* denote the facet with vertices
at V(G)—{A;}, and let 7; denote F"’s outward unit normal. We demonstrate these

notations with 2-D examples in Figure 1 and Figure 2.

Figure 2: G1(9) in 2-D.

Let by, bs, ..., b, be such that the simplex GG are the points X which fulfill the

n inequalities 7; - X < b; for i = 1,...,n as in part (b) of Definition 25.

We now present a few sub-claims for use in the proof.
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Sub-claim 1 For each i € N,1 <i<mn, and § € R, the simplex G;(0) is defined
by the points X which satisfy n inequalities V; - X < b+ 6(@;-v;) forj=1,...,n.
Proof. Let i, 1 <i < nand 0 € R be given. A point X is in G;(¢) if and only
if it is translated by —d/; to a point in G. Hence, for each X in G;(J), we have

Ui - (X —6f1;) < bj (or equivalently, vj - X < b; +(7; - v;)) for j=1,...,n. O

Sub-claim 2 For any point X in G, the shortest path from X to any hyperplane
with normal 7; where 1 < i < mn, is (1) along v;, and (2) this shortest distance is
given by |7; - X — b;].

Proof. Let i, 1 < i < n be given. Part (1) follows from that 7; is the (outward)
normal of F'. For (2), let T be any translation that translate X, a point in G to
some point in F* say X'. The component of T along 7} is |7; - T| = |7, - (X' — X)|

= |7 (X — X" = |7 X — 7+ X'|. Since 7 X' = b, |7,-T| = |7- X —b|. O

Sub-claim 3 For each i,j € N,1<1,5 <n, i # j, we have vj - ji; > 0.

Proof. Let j, 1 < j < n be given. Any point C' in G must satisfy v; - C < b;.
However, for all « € N,1 < ¢ < n where 7 # j we have v; - A; = b;. The two
statements combine into v - C < ;- A;. Hence v} - (A; — C) > 0. It follows that

— —
foralli,j e N,1<4,j<n,i#j,wehaverv;-@;=v;- (1/|CA; |)CA; >0. O

Sub-claim 4 Foreachie N, 1<i<mn, ;- -v; <0.
Proof. First observe that for each i, 1 <1 < n, A; is the furthest point in G from
F*. Hence by Sub-claim 2, for each point C # A; in G, |7, - A; — b;| > |7, - C — by

We note that 7; - A; — b; and 7; - C' — b; are either zero or negative values (due to
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the inequality 7; - C < b; for all points in G), and hence |7 - 4; — b;| > |7 - C — by
becomes 7; - A; — b; < v; - C — b;. Subsequently, this evaluates to 7j; - (4; — C) < 0.

— —
Hence for any choice of the point C, 7; - i; = v; - (1/| CA; |) CA; < 0. d

Sub-claim 5 Given i,j7 € N, 1 <1i,j <n, and non-negative 6;,0; € R. If for all
k where 1 <k <n, k#1, k# j, we have §;(f7; - vi,) < 6;(41; - k), then the region
Gi(0;) — G;j(6;) can be defined as the points X which fulfill the inequalities

(1) 7 X > by + 6,08 - ), and

(2) Uk - X < b+ 0;(j7; - ;) for k =1,2,...,n (the n inequalities for G;(;)).
Proof. Let i, j, 0;,6; be as given in sub-claim. By Sub-claim 1, G;(;) is the region
which fulfills n inequalities v - X < by + 6;(/7; - V) for k = 1,...,n, while G;(4,)
is the region which fulfills n inequalities vy, - X < by + 9;(p5; - vg) for k =1,...,n.
The region not in G(9;), is the union of n regions, each of which satisfy one of the
n inequalities

v+ X > b+ 6;(11; - Uk) k=1,2,...,n. — (A)

Since for each k where k # j, 6;(11; - vk) > 6;(/%; - vk) (note that the case of
k =i,k # j is given by Sub-claims 3 and 4), each inequality in (A) where k # j
must have U} - X > by +0,(4; - Vi) > by + 6;(Z; - V&), and hence defines a region not

in G;(0;). Such inequalities are obviously redundant.

It follows that G;(0;) —G,(9;) is sufficiently defined by the points X which fulfill

vj - X > b+ 6,;(47; - v;) in addition to the n inequalities for G;(6;). a

We now proceed with the proof of the claim. We shall carry out this proof in two

parts. In the first part, we shall first select a set of n simplexes, G1(€1), ..., Gn(€,)
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which fulfill certain properties. These properties will be defined at the end of this
part of the proof. We shall make use of these properties in the second part, to
demonstrate the existence of a set of n numbers &;,&,,...,&, which fulfills the
conditions as in claim.

Part I. Let non-zero, positive €},¢,,..., e, € R be given. Let the intersection

’tn
point of the n — 1 hyperplanes
U - X =b; + €1 - ;) i1=1,...,n—1
be denoted by Z,,. We illustrate this in Figure 3. When all ¢, for 1 <7 <n —1

approach 0, Z, is at A,. As each of these €, increases, Z, tends away from A,

towards some point in G, until eventually it leaves G entirely.

Figure 3: The intersection point Z,, in 2-D.

We denote the distance between Z,, and A, by 7,. We want to let €, €,,... €
be so small such that the following holds
(1) Z, is within G, (€,), and

(2) ¢ < ndnzbu=m (o1 equivalently, |1 - Ap — ba| — €, |10 - vn| > ).

|l1n'l’_7:1.‘
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|V_7"L'An*bn‘77ln
|tinVn|

Clause (2) is possible since |y, - v;,| # 0 (by Sub-claim 4), and since can

only increase as each €, decreases. It is clear that both clauses can be fulfilled for

sufficiently small €;s. Note that for any set of €/, ..., €, where the conditions hold,
they continue to hold for any set of positive €, ..., € where for each i, €/ < €.
This shows that the following choice of €1, €, ..., €, € R is possible.

We first generalize notations. For any k € N,1 < k < n and any set of positive
real numbers 6 = {d1,...,0,}, let the intersection point of the n — 1 equations
v+ X =b; 4+ 0,15 - ;) j=1....,n,j#k
be denoted Zj 5. (This generalizes Z,, defined earlier). Figure 4 demonstrates these

new notations. For each Zj 5, we denote the distance between Ay and Zj 5 by 5.

Figure 4: Z; 5 for i =1,2,3 in 2-D.

Finally, let € = {e1, ..., €,} be a set of non-zero positive reals so small such that

for each k£, 1 < k < n,

Zy,e is within Gy(ex), and ——— (Condition I)

Uk - Ap — bi| — €xlptk - Vk| > Tk e ——— (Condition II)
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These are our selected Gy(€1), ..., Gn(€).

End of Part 1. O

In the next part, we shall first find a set of values &1, &, ..., &, € R For arbitrary
k € N, 1<k <n,we will consider the two regions: (1) Gx(&) — Uy<icnizr, Gi(€),
and (2) Gi(&) — Gi(ex). We will show, using the values of €1, ..., ¢, and &,...,&,
chosen, that these two regions do not intersect, resulting in G (&) —U, <;<,, Gil€:) =
0, and hence G (&) C U, <<, Gil€i)-
Part II. We will now find the values for &1,&,,...,&, € R as in claim. For each 1,
let &, 0 < & < ¢; be a value so small such that for each j, k, 1 < j, k <n, k # j,
& (- k) < € (- ;). (Figure 5 illustrates this condition in 2-D.) Since €1,..., €,

are non-zero, such &;,&, ... &, exist.

Figure 5: & (7, - 1) < min(e; (7, - 1), e3(s - 13)).
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Let k€ N, 1 <k <n be given.

Consider the region G (&) — U <j<pizx Gi(€:). By Sub-claim 5, this region is
defined as the points X which fulfill the set of (n — 1) + n inequalities
(A) 7;- X > b; + €, (j7; - 7;) where 1 <4 <n, i # k, and
(B) 7; - X < b; + & (g - ;) where i =1,...,n.
Intuitively, the set of hyperplanes in (A) bound G (&) — Ui<icp ik Gi(€i) to

only a region around A. This is shown in Figure 6.

Gs(e)

Figure 6: The region Gl(fl) — {GQ(GQ) U G3(€3)}.

The furthest point in this region from A hence, extends only to the intersections
of the hyperplanes in (A). Recall that we have, in Part I of the proof, denoted this
intersection point by Zj ., and denoted it’s distance to Ay by ..

Hence in conclusion, the region Gy(&k) — U cicy iz Gi(€) do not extend
beyond a distance of 7, from A;.

Consider now the region G (&) — Gi(ex). By Sub-claim 5, this region is defined

as the points X which fulfill the set of n + 1 inequalities
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(C) 7 X > by + ex(fi - %), and
(D) 7; - X < b + & (g - v;) where i =1,...,n.

Hence intuitively, this region is bounded beyond Ay by the hyperplane in (C).
We illustrate this in Figure 7. By Sub-claim 2, the nearest point in G(&) —
G (ex) from Ay is at a distance of at least

Vi - Ag — bg| — ex|pik - Vi

away, that is, the shortest distance from Ay to the hyperplane in (C).

Hyperplane (C)

As

Gl(EJ)‘Q (81) Gl(EJ)

G, (e)

Figure 7: The region G1(&) — G1(e1).

However, by our choice of ¢ in Part I (Condition II), |} - A — b| — €x| ik - Vk|

is strictly larger than 7 !

It follows that the two regions

L. Gr(&) — Ulgign,i;ék Gi(€i), and

2. Gk(é-k) — Gk(6k)

do not intersect. Hence, Gx(&) — Ui, Gi(e:)) = 0 = Gi(&) C Ui, Gi(e)-
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End of Part II. O

It is easy to verify that the argument in Part II holds forall k € N, 1 < k < n,

and for all 6, € R, 6, < &. Hence, for all £, 1 < k < n, and for all §, € R,0 <

0k < &, Gi(0k) € U, Gile))- 1

The following sub-claim gives auxiliary results which we will use in proving the

next claim (Claim 12).

Sub-claim 6 Given G € I',, with vertices at Ay, Ag, ..., A,. For eachi,1 <i<n,
let F* denote the facet with vertices at V (G) —{A;}, and let 7, denote F'’s outward
normal. Let G' = G+ T where T € T,, and G' # G, then for each i,1 < i < n, the
following holds:

(a) T-v;<0= (V(G)—{4A}H) NG =0.

(b) A, €G' =T -7 <0.

(¢c) Aie G = forallj#i,1<j<n,T-v;>0.

(d) card(V(G)NG") < 1.

ProoF. Let G, G', T, A,...,A,, F',...,F" and vj,...,v, be as defined in sub-
claim. Let by,bs,...,b, be such that each point X in G fulfills the n inequalities
U;- X <b;fori=1,...,n as in part (b) of Definition 25.

Let 2 € N,1 < i <n be given.

For part (a), note that each point X in V(G) — {A;} lies on F", and hence

fulfills the hyperplane equation 7; - X = b;. On the other hand, if T - ; < 0, then

each point X in G' would have to fulfill the inequality ;- X < b; + T - ; < b;, and
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hence G' does not include V(G) — {4;}.

For part (b), suppose A; € G', then there exists a point C' in G where C' # A;
and C +T = A;. Now we know that A; is the furthest point in G' from F* along
v;, so by Sub-claim 2 in the proof of Claim 11, |7 - A; — b;| > |7 - C' — b;|. Since
U; - A; — b; and 7; - C — b; are either zero or negative values (due to the inequality
U;- X < b; for all points X € @), this becomes 7;- A; — b; < ;- C'— b;. Substituting
C=A;,—-T,wegetv;-A; —b; < ;- (A; —T) — b;, which gives us 7; - T < 0.

For part (c), observe that for each j, 1 < j < n, each point X in G’ is bounded
by the inequality v - X < b; + T - v;. Since for each j # i, vj - A; = b; (that is,
since A; lies on F7), if T-v; < 0, then A; would not be in G'. Hence for each j # 1,

1<j<n,T-7,>0.

Part (d) follows from part (a) and part (b). |

The following claim gives an important result which we shall use, to various
extents, throughout this thesis. Basically, we want to show that every set of up to
n distinct simplexes in I';, uniquely define a region that is definable by at most n

simplexes from I',,.

Claim 12 Let T, T? C T,, where max({card(T'"), card(T?)}) < n. Then
(1) Uger V(G) € Uger: G, and
(2) Uger V(@) € Uger G

if and only if Tt = T2

PrRoOOF. The if direction is obvious. We now show the only if part.
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By way of contradiction suppose there exist I'!, > C T,,, each with cardinality

at most n, where I'" # I'? but the conditions (1) and (2) in claim holds.

Let G be a simplex in I'! —I'? with vertices at A;,..., A,. Foreachi,1 <i < n,
let 7; denote the (unit) outward normal of the facet in G with vertices V(G)—{A;}.
Let bq,...,b, be such that each point X in G fulfills the n inequalities 7; - X < b;

for i =1,...,n as in part (b) of Definition 25.

By Part (d) of Sub-claim 6, unless card(I'?) = n (so that each simplex in I'?
includes a point in V(Q)), V(G) € Uger2 G'- For this reason, let I'? be a collection
of n simplexes, {G +T', G+T?,..., G+T"}, where for each 4,1 <7 <n, T"is a
translation such that 4, € G + T".

By Part (b) of Sub-claim 6, for each 7, T?-77; < 0. Note first that each translation
—T" translates the simplex G + T* to G. Since —T" - 77; > 0, by Part (b) of Sub-
claim 6, the vertex in G+T* at the position A;+7", is not in G. Figure 8 illustrates

these vertices in 2-D.

A+T L AT
G+T

Figure 8: The vertices A; + T for i = 1,2, 3.
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Each G + T* hence contributes a vertex positioned at A; + T¢, which is not
in G. We claim that there is no simplex in I',, that can include two vertices in
{A;+T"|1<i<n}

To see this, towards a contradiction, let 7, be where 1 < 4,7 < n and i # j,
and let simplex G’, translation 7" be where G’ = G + T", such that the vertices at

A;+T"and A; +T7 are in G'. Since A; + T" is in G', by Part (b) of Sub-claim 6,

(T'—T" -7, <0 (. T"—T" translates G + T" to G')
= T -7,<T -7

= T-7,<0 (T -7 <0)

Now each point X in G’ must fulfill n inequalities, one of which being

v - X <b;+T"-7

= - X <b (. T"- 7; < 0 from the previous result)

However, the point A; + 77 lies on the hyperplane defined by the equality

G- X =b+T0 -7
= ;- X > b (- T7-7;, >0, by using A; € G +T7
on Part (c¢) of Sub-claim 6)

This shows that 4; + 77 is not in G', a contradiction.

Hence, any simplex in T, can contain at most one vertex in {4;+7% | 1 <14 < n}.
However, there are less than n simplexes in the set I'! — {G}, hence not all of the

n vertices in {4; +T% | 1 < i < n} can be in Jgem G'. Claim follows. |



4 BASIC HIERARCHY RESULTS 39
It is clear that Claim 12 implies that every set of up to n distinct simplexes in
[, uniquely define a region that is definable by at most n simplexes from I,,.
We now restrict our geometrical definitions to allow only rational values.
Definition 26 Let n € N, n > 2.
(a) Let v1,v9,...,v,_1 be unit vectors along each axis of an (n — 1)-space.
(b) Let G,, be a simplex with vertices at vy, v, ..., v,_1 and —wv; from origin O.

(c) Let Tn = {D 1<icp, @i | @; € rat}. Hence T, is the set of all (vector) transla-
tions with only rational valued components. 7, is a proper subset of 7}, in Defini-

tion 25.
(d) Let Ay ={Gn +T | T € T}

(e) Let RAT, denote the set of all the points in (n — 1)-space with only rational
valued coordinates. Let coderat,(.) be an effective bijective mapping from RAT,

to N. Let decoderat,(.) be the inverse function of coderat,(.).
(f) For G € A, define the language of G, L(G) = {coderat,(C) | C € GNRAT,}.
(g) For AC A, L(A) ={L(G) | G € A}.

(h) Let TRANSIM, = L(A,).
We now extend Proposition 10 to all n € N.
Proposition 13 For alln € NT, DU"™ TxtEx C DU" TxtEx.

ProOOF. The case of n =1 is shown in Proposition 10. We now show the case for
n > 2. Fix an n > 2, that TRANSIM,, € DU"TxtEx is seen by M below, where

for each text T" and each m € N,
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M(T[m]) :
Let S™ « {A]| coderat,(A) € content(T[m])}.
(This step converts input into coordinates.)
If there exists a collection A™ C A,, of at most n simplexes such that
(A) Ugean V(G) € S™, and
(B) 5 € Ugenn G.
(Note that since S™ is finite, this check is recursive.)
Then output {L(G) | G € A™}.

Otherwise, output (.

To see that M DU"TxtEx-identifies TRANSIM,,, let A’ C A,, be any collection
of n simplexes. By Claim 12, is is easy to verify that at some stage ¢ when all of
Ugea V(G) has appeared in S*, the only set of (at most n) simplexes (from A,,)
that can fulfill conditions (A) and (B) in the definition of M is A’, hence A* = A".

Thus M, given a text for L., outputs L£(A') in the limit.

To show that TRANSIM, ¢ DU TxtEx, note that by Claim 11, there exists
A, A" C Ay, where card(A) = card(A') < n+1 such that A # A" but Lgy = Leay-

Hence by Proposition 9, TRANSIM, ¢ DU "' TxtEx. |

4.2 UTxtEx Hierarchy

Proposition 14 For alln € N*, UM TxtEx C U" TxtEzx.
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PRrROOF. That for all n € Nt, U™ TxtEx C U"TxtEx is immediate from defi-
nition. To show TxtEx —U?TxtEx # (), let £ = {K} U SINGLE. 1t is easy to
see that £ € TxtEx. However, it is known that { U {z} | z € N} ¢ TxtEx
(Proposition 4.7 in [JORS99]). Since {K U {z} |z € N} C £?, £ ¢ U’TxtEx.
We now show the case for n > 2. Let PRIMES be the set of all the prime

numbers and p;, py, ... be an enumeration of PRIMES in ascending order. Let

be a computable numbering for which for all s € N, sz, =W,

For each G = G,, + T where T € T,, let X;(G) = T - vy, and let Lang(G) =
{0,z) | z € L(G)} U {(1,y) |y € W,Z/’(XI(G))}, where h(a) is the denominator of
rational ¢ in reduced form. Clearly, h is a recursive function. Let ExtTRANSIM,, =

{Lang(G) | G € A, }.

To see that FxtTRANSIM, € U"TxtEx, consider each L € ExtTRANSIM,, as
consisting of two parts, A = {x € L | m(z) =0} and B = {z € L | m(x) = 1}.
It is easy to verify that an index for B can be obtained given an index for A. Now
using the proof for Proposition 13, it is easy to see that we can obtain n indices for
all the A parts for any given n languages from ExtTRANSIM,. The respective B
parts can then be obtained from these indices. It follows that all n languages can
be identified, and hence FxtTRANSIM, € U"TxtEx.

Let the simplex G in Claim 11 be G,, and let C' be the origin O. Let A C A,
be a collection of n simplexes as in that claim. Without loss of generality, we
require that the numbering 1) has it that for all G € A, W;f(XI(G)) = (). Let £ € rat,

£ > 0 be such that for all § € R,0 < § <&, G, + 0v1 C [Jgea G- Such £ exists
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by Claim 11. Let A' = {G, +av; | @ € rat A0 < a < &} (It is clear that
A" C A, and that for each simplex G, + av; in A, X;(G, + av;) = «.) Let
L' = {Lang(G") UUgep Lang(G) | G" € A'}.

Note that for each G' € A', Lang(G') U Jgep Lang(G) = {(0,y) | y €
Ugea LG)} U {{Ly) |y € W;f(XI(G,))}. Hence for each z € rat where X;(G,) <
z < X1(Gp + &vy), there exists a language in £ which differ from (J,, Lang(G)

only by the set {(1,y) |y € W;f(z)}

Now there exists an m € N such that (Vp € PRIMES wherep >m)(31 € N |1

is co-prime with p)[X1(G,) < < Xi(G, + &v1)]. Thus the set {W,f’(z) | z € rat,

L
P
X1(Gn) € 2 < X1(Gn+E€v1)} includes all the r.e. languages. Thus if £’ is in TxtEx,
then the set of all the r.e. languages would be in TxtEx. It is known that no IIM

can TxtEx-identify the set of all the r.e. languages [Gol67]. Hence £’ cannot be

in TxtEx. Since £' C ExtTRANSIM," ™, ExtTRANSIM, ¢ U""'TxtEx. |

Proposition 15 For alln € N*, DU" TxtEx — U™ TxtEx # ().

PrOOF. The case of n = 1 is shown by that {K} U SINGLE € TxtEx —

U?TxtEx.

Let ExtTRANSIM, be as defined in the proof for Proposition 14. Using the
proof method in Proposition 14, it is easy to verify that for alln > 2, Ext TRANSIM,,

is in DU"TxtEx but not in U TxtEx. |
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4.3 WDUTxtEx Hierarchy

Proposition 16 For alln € Nt, WDU"" TetEx ¢ WDU" TxtEzx.

ProoOF. That for all n € NT, WDU" ' TxtEx C WDU"TxtEx is immediate

from definition. Proposition 15 then completes the proof. |

4.4 Inter-paradigm Comparisons

Proposition 17 Letne€ N*.

(a.1) (WDU* TxtEx N DU" TxtEx) — DU TxtEx # ().
(a.2) (U* TxtExN DU" TxtEx) — DU TxtEx # 0.

(a.3) (U* TztExN WDU" TxtEx) — WDU""' TxtEx # (.
(b.1) DU" TxtEx — WDU" TxtEx # (.

(b.2) WDU" TxtEx — U TxtEx # 0.

PrOOF. Part (b.1) and (b.2) are corollaries of Proposition 15. Part (a.2) is a

corollary of part (a.l).

We now show part (a.1). For n = 1, it is easy to see that FIN witnesses the
separation. Let n € N and n > 2. Let {G1,Gs,...,G,} C A, be a collection
of n simplexes and let Gy ¢ {G1,Gb,...,G,} be such that Gy C J;_, G;. (Such
Gy, Gy, ...,G, exist by Claim 11.) Let £ = {L(G;) | 0 <1i < n}. It is easy to verify
that £ € DU"TxtEx N WDU*TxtEx. However, since a text for |J_, L(G;) is

also a text for | JI_, L(G;), by Proposition 9, £ ¢ DU TxtEx.
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We now show part (a.3). We first observe that while a UTxtEx learner, in
learning a class of languages £, is allowed to conjecture languages outside of L, a
WDUTxtEx learner is allowed to conjecture only languages in £. The following

proof exploits this weakness in WDU TxtEx identification.

Let n € N*t. For i,k € N, let A;p = {{|i/(n+1)] - (n+1)+7,(,k)) | j€
N, 0 < j <n}U{{i,z) | z € N}. Intuitively, each A;; has the information
(i, k) deposited on n + 1 tracks, that is, from track [i/(n + 1)] - (n + 1) to track

li/(n+1)]| - (n+ 1)+ n; and has the track i completely filled.

Given total g : N — N and i € N, let Liy = A;44). Let L, = {L;y | i €
N}. Since for any g, for any collection of n languages £ C L,, each (i, ¢(¢)) can
be easily obtained from a text for L., it is easy to verify that for all g, £, €

U'TxtEx N WDU"TxtEx.

Note that for alle € N, and total g, ¢', Uy<j<n Lnt1)xetig = Uocjcn Lnt1)ret i’
={@,z) | (n+1)xe<i< (n+1)*(e+1)and z € N}. That is, intuitively, track

(n+1) x e to track (n+ 1) *x e + n are completely filled.

We now define f such that for all e, {L(nti)setjr | 0 < 7 < n} is not the
set of languages to which M, converges on a text T, for {(i,z) | (n + 1) xe <i <
(n+1)*(e+1) and x € N}. For this purpose, let total g, ¢’ be such that for allz € N,
{g(z) | (n+1)xe <z < (nt+1)x(e+1)} #{g'(2) [ (n+1)xe <z < (n+1)x(e+1)}.

For each e € N, for all z € N where (n+1)xe <z < (n+1)x*(e+1), let

g(z) if M.(T,) converges to a representation
flz) = index set for {Lyt1)retjg | 0 < 7 < n}

g'(z) otherwise
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Since for all e, M, on the text T, does not converge to a representation index

set for {Lini1yeetss | 0 < j < n}, Ly is not in WDU" ' TxtEx. |

Corollary 18 Foralln € Nt,n> 2, DU"TxtEx C WDU" TxtEx C U" TxtEzx.

ProoFr. That DU"TxtEx C WDU"TxtEx C U"TxtEx is trivial. Proposition

then follows from part (a.1) and (a.3) of Proposition 17. i
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5 Sufficient Conditions For DU TxtEx Identifica-

tion

5.1 Disjointness

It may be argued that languages in a union only fail to be discerningly identifiable as
a result of crucial information regarding one language being lost within the other
languages; that is, when all the “important” members (such as EztTRANSIM,
in the proof of Proposition 14) of one language are also members of some other
languages in the union. It is natural to ask if disjointness would be a sufficient
condition for unions of languages to be discerningly identifiable. The following

result answers this in the negative.

Lemma 19 There exists L € TxtEx where
(a) O & L, and

(b) for ol L,L' e L, LNL' =10

such that L ¢ U* TxtEx. °

ProoF. Unless stated otherwise, let e, %, with or without decorations, range over
N. Let o and 7, with or without decorations, range over SEQ. For each IIM M.,

we construct finite set S, and languages L., L, C {{e,z) | x € N} such that
Le={(e,0)}U{{e,z) | x € S},

and L/ satisfies the following two properties:

9 Note that L2 s uniquely definable from L.
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L L, = {(e,2) | # € Wain({ma(w)werin }»

2. min({me(z) | x € LL}) > max(S,).
Let £L = {L., L, | e € N}. It is clear that for any pair of languages L,L' € L,
LN L = 0. Since given any e, (1) L, is finite and contains (e, 0), while (2) L. is
(in a sense) self-describing'® and does not contain (e, 0), it is easy to verify that

L € TxtEx.

We now show that £ ¢ U*TxtEx. For each M, here is the construction to show
that M, does not U?TxtEx-identify £. By Kleene’s Recursion Theorem [Rog67]
there exists an index ¢’ > 0 such that W, may be defined in stages s =0,1,2...,
as below. For each s, W) denotes the finite portion of W, enumerated just before
stage s.

Stage 0: Let W/} = {€'} and o' = (e,0) ¢ (¢, €'). Go to stage 1.
Stage s:  Search for 7 where content(7) C {{e,4) | i > max(WS)} such that
M,(0°) # M(0®°o7). If and when 7 is found, enumerate {i | (e, i) €

content(r)} into W5, and let 0**! = 0* o 7. Go to stage s + 1.

If the search for 7 failed at any stage s, let L, = content(c®), let an index
¢ > max(W}) be such that min(We») = €” and let L, = {(e, i) | i € Wer}. Since

stage s does not succeed, M, does not identify at least one of L, and L, U L..

1In inductive inference, classes such as {L C N | Wynin(zy = L} are called self-describing since
grammar for languages in these classes are coded inside the language in a simple way. L here
satisfies similar properties.
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If the search is successful in all stages, then let L, = {(e,0)} and L, = {{e, z) |

z € We}; now M, fails to converge on the input | J, 0°, a text for L, U L. |

The following extends this result to U"TxtEx for any n € N. The proof uses

similar ideas as those in the proof we just described.

Theorem 20 For alln € N, there exists L € DU" TxtEx where
(a) 0 & L, and

(b) forall L,L' e L, LNL' =0

such that £ ¢ U™ TxtEex.

PrROOF. Let n € Nt be given. Unless stated otherwise, let e, 1,7, k, with or
without decorations, range over N, and S, with or without decorations, range over
finite sets. ¢ and 7, with or without decorations, range over SEQ. For each IIM

0 1 n
M., we construct S, L., L., ..., L} where

LY ={{e,0,0)}U{{e,5,7) | 1 <i<m, j€S,}

e —

and for 1 < i < n, L! satisfies the following two properties:

(1) Lt = {(e,4,7) | 7 € Wanin({ms(@)|weLi})}

(2) min({m3(z) | z € Lt}) > max(S,).

Let £L={L% L., ...L" e € N}. Itisclear that forall L,L' € £, LNL' = . We

shall first show that £ € DU"TxtEx. We define an auxiliary recursive function
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g: N3 — N as follow. For each e and j,

Wye,5) = 1(e,0,00} U {{e, 4, k) [ 1 <i<nAk € D;}

and for each 7 > 1 and e, 7,

Wg(eyi’j) = {<e’r[:’ k> | k € W]}

Now £ € DU"TxtEx is witnessed by following M. For each text 7" and each

mée N,

M(T[m]) :
S« 0.
A «— {j| (3w € content(T[m)))[m (w) = j|}
For each e € A do
B <« content(T[m]).
If (e, 0,0) € content(T[m]) then
C « {j|(Vi,1 <i<n)[{ei,j) € content(T[m])]}.
Let j be such that D; = C.
S +— SuU{g(e0,5)}.
B — B = Wgeo,)-
Fori < 1tondo
If exists jp such that (e, i, jo) € B, then

For minimum such jg, let S < S U {g(e,1, )}
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Output S.

It is easy to verify that M DU"TxtEx-identifies L.

We now show that £ ¢ U""'TxtEx. For each M, here is the construction
to show that M, does not U"*'TxtEx-identify £. By Kleene’s Recursion The-
orem [Rog67] there exists an index e’ such that W, may be defined in stages
5§=0,1,2..., as below. For each s, W, denotes the finite portion of W, enumer-
ated just before stage s.

Stage 0: Let o' = (e,0,0) o (e, 1,€') o (e,2,€')o...0(e,n,€). Let W} = {e'}.

Go to stage 1.

Stage s: Search for 7 where content(r) C {{e,7,j) |1 <i<n A j>
max(WS5)} such that M.(c°) # M.(o® ¢ 7). If and when 7 is
found, enumerate {j | (3i',1 < i' < n)[{e,7,j) € content(r)]} into
W, and let o**! be an extension of ¢ such that content(o*™!) =
{{e,0,0)} U {{e,i,7) | 1 <i<nAjé€ W enumerated up to now}.

Go to stage s + 1.

If the search for 7 failed at any stage s, then let LY = content(c*), let an index
e” > max(W}) be such that min(Wes) = €”. For each i € N, 1 < i < n, let
L = {{e,i,j) | j € Wen}. Since stage s does not succeed, M, does not identify at
least one of L2 and (LS U U7, L%).

If the search is successful at all stages, let LY = {(e,0,0)} and for each 7 € N,

1 <i<nlet L! = {{ei,z) | z € Wy}, then M, fails to converge on the input
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U, o*, a text for LU J;_, LE. [

In obtaining the above result we have used a class of languages that is not
recursively enumerable. It remains to be seen if for recursively enumerable classes of
languages, disjointness can be sufficient as a condition for U"TxtEx identification

for all n > 0. The following example, however, shows the contrary.

Example 21 For z,y € N, let

Lo = {(z,0)}U{(z,y) [ (Vz € N,z <y)[p(2)d1}
{zy+ 1} if (@, y+1) € Lag

Lpy1 =
Lgo otherwise

Let L={L,, | z,y € N}. It is clear that L is recursively enumerable and pairwise

disjoint. That £ € TxtEx is observed by M below. For each sequence o,

M(o) :
Search for x € N such that (z,0) € content(o).
If and when found, return the standard index for the language L, .

If no such z exists, return the standard index for the language content (o).

Towards a contradiction suppose there exists M’ such that £2 C TxtEx(M'). Now
for each x € N, if

0; € R, then L, o = {(z,y) | y € N}. (More precisely, for all z € N, L, , =

{{z,y) | y € N}.) Since L,o € TxtEx(M'), by Lemma 1, there exists

a sequence o where content(o) C Lo, such that for all extensions 7 of o

where content(1) C {{z,y) |y € N}, M'(1) = M'(0).
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©; & R, then there exists z € N such that L,, € L,,. Since M' TxtEx-
identifies both L, and (L, o U L, ,), for all sequences o where content(o) C
Ly,
1. if Wy (o) # Layp, then there exists an extension 7 of o, where content () C
Ly, such that Wy () = Ly, and
2. if Wapr(s) = Ly, then there exists an extension 7 of o, where content(r) C
(Lgp U Ly ), such that Wap(r) = (Lgo U Ly ).
In summary, if ¢, € R, then for all sequences o where content(c) C Ly,
there exists an extension 7 of o, where content(r) C {{(z,y) | y € N}, such
that M'(7) # M'(o).
Hence we have

0y € R & (Jo € SEQ | content(o) C Lyp)
(V7 D o | content(r) C {{z,y) |y € N}) [M'(1) = M'(0)]]

Now the condition on the right hand side is ¥y to check. However, the set {z |

@y is recursive} is not ¥, a contradiction. O

5.2 Functions That Enumerate Distinguishing Elements

Let recursively enumerable £ C £ be given. Suppose for all L € L, there is an
effective procedure to enumerate an element which is uniquely in L, that is, no
other language in £ contains this element. Can we then identify every collection

of languages drawn from L£? An answer is attempted in the following proposition.

Proposition 22 Let L be a 1-1 recursively enumerable class of languages as wit-
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nessed by the numbering 1. If there exist a limiting recursive function d: N — N
and total recursive F : N> — N for which d(i) = lim;_,, F(3,t) such that

(a) for alli € N, d(i) € W7,

(b) for alli,j € N, d(i) € W/ = i=j, and

(c¢) for all j € N, card(range(F)N W;p) < 00.

Then L € DU* TxtE=zx.

Proor. Let L, ¥, F, d be as in proposition. Let recursive function A witnesses
that ¥ < ¢. Unless stated otherwise, we let 7, j, with or without decorations, range

over N. Define M as follows, such that for each text 7" and for each m € N,

M(T[m]) :
S « 0.
For i =0 to m do
If [F(i,m) € content(T[m]) N VV;pm]
and =[(Fi, ) <m AN j<mANi" £
A F(i,m) € W, n W, ]
Then insert A(i) into S.

Output S.

We claim that M DU*TxtEx-identifies £. Let £ C L be a finite collection
of languages. Let D be such that {W | i € D} = £'. Let T be a text for
L = Uen WY, and let A = range(F) N L. By clause (c) in the proposition,

card(A) < oo. Intuitively, A contains all the potential “distinguishing element”s

M will encounter during the identification process. Since D and A are finite, there
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exists n € N so large that

(1) For alli € D, (Vt € N,t > n) [F(i,t) = d(i) A d(i) € content(T[t]) N VV:‘;]

(2) Forallz € A—{d(k) | k € D}, (Yn' € N,n' >n) [(Fj € N— D)z € W;,pn,]

= (3,5 <n) [ #j Az eWS, NnW ]
Clause (1) ensures that all ¢ € D will eventually be output by M. Clause (2)
ensures that all programs j & D, which enumerate some element in A are excluded
from consideration (note that every element in A is enumerated by some program
in D).
Hence for all n' € N where n' > n, i € D if and only if i € M(T'[n']). Tt follows

that M DU*TxtEx-identifies L. |

Corollary 23 Let L be a class of languages for which there exists a 1-1 numbering
and that

(a) D & L.

(b) forall L' e L, L#L = LNL =0

then L € DU* TxtEzx.

PROOF. Let £ = {WY | i € N} where ¢ is a 1-1 numbering for £. For i,t € N,
let F(i,t) = min(W},) and let d(i) = lim;_,o F(i,t). Clearly,

(a) for all i € N, d(i) € WY,

(b) for all i,j € N, d(i) € W} = i = j, and

(c) for all j € N, card(range(F)N W;p) < 0.

d thus fulfills all the conditions for Proposition 22. Hence £ € DU*TxtEx. |
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In Proposition 22, some weaker conditions for (a) and (b) may not be suffi-
cient, even if d is a recursive function. For instance, if we have only the following
conditions:

(a) for alli € N, d(i) € WY,

(b) for alli € N, card({j € N | d(i) € W;p}) < 00,

(c) d is recursive.

then identifiability for £2 cannot be guaranteed, as the following example shows.

Example 24 For i € N, let
Ly ={{0,z) |re N}u{(l,z) |z € K}
{(0,i+ D)YU{(1,i)} U{(2,5)} ifiek
Liyn =
{(0,i+ 1)} U {(1,4)} otherwise
Let £ = {L; | i € N} and define d such that for all x € N, d(z) = (0,z). It is
easy to verify that (a) £ is 1-1 recursively enumerable, (b) £ € TxtEx, (c) £? is
uniquely definable from £, and (d) d satisfies all the conditions given above for L.
However, for all £ € N, the language {(0,7) |i € N}U{(1,z) |z € CU{k}} isin

L?, hence (by Proposition 4.7 in [JORS99]) £? is not in TxtEx. O

A similar set of weaker conditions for (a) and (b), where instead of a single
unique element d is required to name only a set of elements which is unique to each
language in the class, as in the following:

(a) for all i € N, Dgay C Wy,

(b) for all 4,5 € N, Dyyy C W =i = j.

(c) d is recursive.
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then such a function will also fail to guarantee that £? € TxtEx, as demonstrated

by the following example.

Example 25 For i € N, let

Ly ={(0,00}u{(l,z) |z € N}

Ly ={L1)}u{0,z) [z e N}U{(2,2)|z €K}

L {0,i+2)}Uu{(l,z) |z e N}U{(2,0)} U{(3,9)} ifie K

o {(0,i+2)}U{(l,z) |z € N}U{(2,9)} otherwise

Let £L={L; |i € N} and define d such that for all z € N, d(z) = {(0, z), (1,z)}.
It is easy to verify that £ is a 1-1 recursively enumerable class of languages in
TxtEx where all the languages in £? are uniquely definable from £, and that
d satisfies all the conditions above for £. However, for all £ € N, the language
{0,4),(1,7) | i € N} U{(2,z) | 2 € KU{k}} is in £?, thus (by Proposition 4.7

in [JORS99]) £? is not in TxtEx. O

5.3 Restrictions On Structures Of Languages

Proposition 26 Given n € N*. Let L be a class of languages such that
(a) every language in L™ is uniquely definable from L,
(b) forall L€ L, card({L' € L|L'NL #0}) < oo,
(c) there exists a computable numbering 1 for L such that:
(1) for all L € L, card(L) = 0o = card({i | W’ = L}) = 1.

(2) for all L € L, card(L) < oo = card({i | W/ = L}) < .

then L € DU" TxtEx.
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PROOF. Let n € NT be given. Let £ be as in proposition. Unless stated otherwise,
we let 7, 7, k, m,n, with or without decorations, range over N. We let A and B,
with or without decorations, range over FIN. Let h witnesses that 1 < ¢. Define

IIM M as follows such that for each text 7T,

M(T[m]) :
Let C"={i|i<m A I/Vzwm N content(T[m]) # 0}.
Let Candidates™ = {S C C™ | card(S) < n}.

Let sp = max({s € N | (35S € Candidates™)[ | VV;”S C content(T[m))

icS
A Uses W 2 content(TIs])]}).
Output {h(7) | 7 € Dy}, where kg = min({k | Dy € Candidates™
A Uiep, WY C content(T[m)])

2,80

A Uien, Wigm 2 content(TT[so])})-

Intuitively, M outputs the seemingly best grammar set in Candidates™ which
describes the input text. We claim that M DU"TxtEx-identifies £. Let £' C L
be where card(L') < n. Let B be such that {W |i € B} = £'. Let T be a text
for L = J,.z WY. We divide B into two groups, By = {i € B | W/ is finite}
and B, = {i € B | W/ is infinite}. By the requirement of v, for each i € B,
there exist only finitely many j such that W;p = W;z’, and for each 7 € By, for all
j# i, WY # W;z’. Let A= {A | Ui W/ = Uien, WY¥}. Since £" is uniquely
definable from L, the only sets of languages which are capable of generating L are

{BoUA| A€ A}. Let Correctind = {ByUA | A€ A}.
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Let C' = {i | W’ N content(T) # 0}. Since each language in {W | i € B}
intersects with only finitely many other languages in £, C’ is finite. It is easy to
verify that there exists ng such that for all n’ > ng, C" = C"*! = C'. Let ny > ng

be so large that

(Vi € C")[WY is finite = WY = W

7,Mm1

A WY N content(T[n1]) = WP N content(T)]

Let Candidates' = Candidates™. Clearly, for all ' > no, Candidates” =

Candidates™ ' = Candidates'. Let ng > ny be so large that

—[(3A € Candidates' — CorrectInd)[ (U;cs Wi, € L)

7,n2

A Uiea Wi 2 content(T[ny)))]]

Let ng > ny be so large that

[ U W;,pn2+1 C content(T[ns3]) A U WY D content(T[ng + 1])]

%,M3
t€EB i€EB

Clearly, for all n' > ng, {D € Candidates' | Ucp W/;,pm“ C content(T[n']) A
Uien WY, D content(T[n, + 1])} = CorrectInd. Hence for all n’ > ng, M outputs

i,n’

min({k | Dy € CorrectInd}). It follows that M DU"TxtEx-identifies L. |

Corollary 27 Fixn € N*. Let L={L; | i € N} be a 1-1 recursively enumerable
class of languages where
(a) every language in L™ is uniquely definable from L.

(b) for alli e N, card({j | LinL; #0}) < o0
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Then L € DU" TxtEzx.

The conditions in Proposition 26 are not necessary — as is evident by TRANSIM,,,

which is 1-1 recursively enumerable but every language in the class intersects with

infinitely many other languages within the class.
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6 Hierarchies For Other Criteria of Identification

In this chapter we extend our study of the learning of unions of languages, be-
yond the context of TxtEx identification, to other identification criteria. We are
mainly interested in identification criteria similar to TxtBc, TxtFex, NTxtEx,

InTxtEx, ImTxtEx and InfEx.

6.1 Generalizing The U, DU and WDU Paradigms

For the purpose of this chapter, we assume an identification criterion to include (1)
a procedure of relating a language with a text which is used as an (infinite) input
stream to an IIM, and (2) a definition of what constitute an acceptable sequence

of output by the IIM, upon given the input text.

6.1.1 Input Text

Given an identification criterion Z, a text T is T-admissible for language L just in

case in Z identification, T" is used as input (to IIMs) to represent the language L.

6.1.2 Sequence of Grammars

We say that an infinite sequence of grammars, G, is Z-admissible for language L on
text T just in case G is an infinite sequence of grammars witnessing Z-identification

of L on input 7. We denote the j-th grammar in the sequence G by G(j).

In this chapter, we further make the following assumption.
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Assumption 1 An identification criterion Z in this chapter is assumed to satisfy
the following conditions.

(a) An IIM M is said to Z-identify a text T for language L just in case T is
an Z-admissible text for L, and M (T[0]), M (T'[1]), M(T[2]),... is an Z-admissible

sequence of grammars for L on 7.

(b) An ITM M is said to Z-identify a language L just in case M Z-identify each

T-admissible text T for L.

(c) An IIM M is said to Z-identify a class of languages £ just in case M Z-identify

each L € L.

This assumption immediately precludes identification criteria where the learner
is expected to identify languages outside of the identifiable class. For n € N, the
identification criteria UMM TxtEx, DU" 2 TxtEx and WDU""?TxtEx fails the

assumption.

This assumption also precludes some identification criteria where a learner
is expected to respond in certain ways even on texts for languages outside of
the identifiable class. For example, reliable learning [Min76] or refutable learn-

ing [MA93, LW94, MA95, Jaiog].

We also note that for all i,m,n € N, this assumption is valid for the identi-
fication criteria TxtEx", TxtBc", TxtFex , N‘TxtEx"”, In'TxtEx" and

Im'TxtEx".
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6.1.3 Text Translation and Text Decomposable Identification Criteria

Given a set of languages £ and a sequence o for L, we want to be able to express

a sequence which is relevant to only one language in £, which preserves the order

of data presentation in o. Towards this end we define the function tr below.

Given a sequence o, f,g,h € R and L, L' € &, let tr(o, f, g, h, L, L") denote a

sequence where for all : € N,

e

tr(o, f,g,h, L, L") (i) = 4

\

flo(@) ifo(i) € L
9(a (7))

h(o(7)) otherwise

ifo(i) e L' — L

For any given text T, we also let tr(T, f, g, h, L, L') be a text where for alli € N,

tr(T, f,g,h, L, L") (i) = {

Let ERASERS = {f € R | (Vz €

if (i) € L
ifT(i)e L' =L
otherwise

N)[f(x) is either x or #]}. We say that

an identification criterion Z is text decomposable just in case for all £L C &, if T

is an Z-admissible text for L., then for all L € £ and for all f € FERASERS,

tr(T, Ax[z], \x[#], f, L, L) is an Z-admissible text for L. Intuitively, ERASERS

is used to allow adversary flexibility outside the relevant (L) region.

It is easy to verify that for all ¢, m,n € N, the identification criteria TxtEx",

TxtBc", TxtFex;,, NTxtEx", In‘TxtEx”, Im'TxtEx" are text decomposable.
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6.1.4 Sequence of Conjectures (Sequence of Sets of Grammars)

In attempting to discern the languages in a union, each conjecture of the learner
may consist of several grammars. Given 4,5 € N, we denote the j-th conjecture
in a sequence G by G(j), and denote the i-th grammar in the j-th conjecture
by G(j)[i]. A sequence of conjectures is then an infinite sequence of sets of gram-
mars {G(0)[0], G(0)[1], G(0)[2], ...}, {G(1)[0], G(V)[1], G(1)[2], .. .}, {G(2)[0], G(2)[1],
G(2)[2],...}, ... Unless stated otherwise, we let G, with or without decorations,
range over sequences of conjectures. For any conjecture G(j), card(G(j)) is the

number of grammars conjectured in G (7).

Given text decomposable identification criterion Z and a finite collection of
languages £ = {L1, Ly, ..., Learac)}- We say that a sequence of conjectures G is
T-admissible for £ on input T just in case there exists n € N such that
(1) for all m € N where m > n, card(G(m)) = card(L),

(2) for each m € N, m > n, there exists a permutation 0515 s Uara(c) of
0,1,2,...,card(L) — 1, such that for each £ € N, 1 < k < card(L), G(n +
D[], G(n + 2)[ip™2],G(n + 3)[if?], ... is Z-admissible for L; on the texts
tr(T, \x[z], \x[#], f, Ly, Lc) for all f € ERASERS."!

Intuitively, this says that any sequence of conjectures can be re-arranged into

n sequences of grammars, such that each sequence of grammars is Z-admissible

for a language in L.

UNote that since Z is text decomposable, each text tr(T, \z[z], \x[#], f, Lk, Lc) where f €
ERASERS is T-admissible for Ly.
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6.1.5 The Generalized U Paradigm

Definition 27 Given n € NT, text decomposable Z, and £ C &.
(a) M U"Z-identifies £ just in case for all L € L", for all Z-admissible T for L,
M(T[0]), M(T[1]), M(T[2]), ... is an Z-admissible sequence of grammars for L on

T.

(b) U"Z = {L | (IM)[M U"Z-identifies L]}.

6.1.6 The Generalized DU Paradigm

Definition 28 Given n € NT, text decomposable Z, and £ C &.
(a) M DU"Z-identifies £ just in case for all £ C L where card(L') < n, for all
Z-admissible text T for L., M(T[0]), M(T[1]), M(T[2]),... is an Z-admissible

sequence of conjectures for £’ on T

(b) DU"T = {£ | (3M)[M DU"Z-identifies £]}.

6.1.7 The Generalized WDU Paradigm

Definition 29 Given n € N1, text decomposable Z, and £ C £.

(a) M WDU"Z-identifies £ just in case for all £ C £ where card(L') < n, for
all Z-admissible text T for L./, there exists £” C L where card(L") < n such
that 7" is an Z-admissible text for Lz», and M(T[0]), M(T[1]), M(T[2]),... is an

Z-admissible sequence of conjectures for £” on T'.

(b) WDU"Z = {L | (3M)[M WDU"Z-identifies L]}.

It is easy to verify that these definitions are consistent with our earlier defini-
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tions for UTxtEx, DUTxtEx and WDU TxtEx.

In this chapter we consider identifications dependent only on total IIMs. We
let My, M1, ... denote a recursive sequence of total IIMs, such that every class of
languages in every identification criteria in this chapter is identified by at least one

of the machines in the sequence [OSW86].

6.2 General Results

It is difficult to derive results for all identification criteria in general since their
definitions may be conceivably erratic. Much of this section is hence, devoted to

abstracting attributes of identification criteria required for our results.

6.2.1 Text Insensitivity

Definition 30 An identification criterion Z is said to be text insensitive just in
case for all sequences of grammar G and all L € &£, if there exists Z-admissible text
T for L such that G is Z-admissible for L on T, then for all Z-admissible text 7"

for L, G is T-admissible for L on T".

Hence for a text insensitive identification criterion Z, saying that a sequence of
grammoars 1s Z-admissible for L means the same thing as saying that the sequence

of grammars is Z-admissible for L on input 7'.

It can be verified that for a text decomposable, text insensitive identification
criterion Z, for alln € N*t, K € {U,DU, WDU}, for all sequences of conjectures

G and all £ C &, if there exists K"Z-admissible text 7" for L, such that G is
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K"Z-admissible for £ on T, then for all X"Z-admissible text 7" for L., G is K"Z-

admissible for £ on T".

We note that for all 4,m,n € N, TxtEx", TxtBc", TxtFex", N'TxtEx",
In‘TxtEx”, Im‘TxtEx" are all text insensitive, while identification criteria which
places restrictions on the conjectures learners are allowed to make based on the

input (e.g., consistent [Ang80b] and set-driven learning [WC80]) are typically not.

6.2.2 extCyl-cylindrification

Below we define a cylindrification method required for our result.

Definition 31 Given k € N* and a class of languages £L = {L; | i € N}.

(a) Let extCyl(L, k) = {{k,z) | x € L} U{{0,y) | y € N}.
(b) Let extCyl(L, k) = {extCyl(L;, k) | i € N}.

(c) An identification criteria Z is unaidable by extCyl-cylindrification just in case

L ¢ 7T implies that for all k£ > 0, extCyl(L, k) & Z.

(d) A text insensitive identification criteria Z is unhindered by extCyl-cylindrification
just in case there exists recursive function f : N2 — N (we say f witnesses that Z
is unhindered by extCyl-cylindrification) such that if j1, js, js . . . is an Z-admissible
sequence of grammars for L, then for all £ > 0, f(j1, k), f(j2, k), f(js,k),... is an

Z-admissible sequence of grammars for extCyl(L, k).

(e) An identification criteria Z is said to use extCyl-decylindrifiable text just in case
for all £k > 0, if T is an Z-admissible text for extCyl(L, k), then tr(7T, \x[ma(z)],

Az[#], A\x[#],{z € N | m1(z) = k},0) is an Z-admissible text for L.
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It is easy to verify that for all i,m,n € N, TxtEx", TxtBc", TxtFex;,,
N'TxtEx”, In‘TxtEx", Im'‘TxtEx" are unaidable by extCyl-cylindrification.
Suppose otherwise. Let Z € { TxtEx", TxtBc", TxtFex],, N‘TxtEx",
In'TxtEx", Im'TxtEx"}, k € Nt and £ ¢ T be given, where extCyl(L, k) € T
as witnessed by M. For all 0 € SEQ, let 7, be a sequence where content(,)
= {{k,z) | © € content(o)} U{(0,z) | < |o|}, and let M'(c) = e, where
We = {z | (k,z) € Wy,)}.'? Clearly, if M Z-identifies extCyl(L, k), then M’
Z-identifies £, a contradiction.

To see that for all i,m,n € N, TxtEx", TxtBc", TxtFex” K N'TxtEx",
In'TxtEx”, Im‘TxtEx" are unhindered by extCyl-cylindrification, let total func-
tion f be such that for each j,k € N, Wiy = {(0,2) | z € N}U{(k,z) | x € W;}.
It is easy to verify that, for T € {TxtEx", TxtBc", TxtFex”, N'TxtEx",
In'TxtEx", Im'TxtEx"} and k € N7, if the sequence of grammars ji, ja, js, . . .
is Z-admissible for L, then f(j1,k), f(j2, k), f(J3, k), - - . is a sequence of grammars
Z-admissible for extCyl(L, k).

It is easy to verify that for all ¢,m,n € N, TxtEx", TxtBc", TxtFex,,

N'TxtEx", In'TxtEx", Im‘TxtEx" uses extCyl-decylindrifiable text.

6.2.3 Clean Text

Definition 32 An identification criterion Z is said to use clean text just in case

for all texts T, for all L € £, T is Z-admissible for L = content(T) C L.

12To ensure syntactic convergence, here we assume e is dependent only on M (7).
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As example, for i,n € N, In'TxtEx" uses clean text, while N°'TxtEx" and

Im‘TxtEx" do not.

Proposition 28 Let T and J be two identification criteria where 7
(a) is text decomposable,
(b) unhinderd by extCyl-cylindrification (and thus text insensitive), and

(c) uses clean and extCyl-decylindrifiable text,

while J is unaidable by extCyl-cylindrification. Then T —J # 0 = (3L CE)[L €

DU'T - J).

PRroor. Given L € Z— 7, we show how to construct £’ such that £' € DU*Z— 7.

Suppose £ = {L; | i € N} (if £ is finite, let £L = {L; | 0 < i < card(L)}
instead). Since £ ¢ J, for each m € N, M, does not J-identify £. Since J
is unaidable by extCyl-cylindrification, M, does not J-identify extCyl(L, m + 1).
Since M, does not identify extCyl(L, m~+1), Assumption 1 implies that there exists
at least one language in extCyl(L, m+ 1) which M, does not J-identify. Let total
[ be such that for all m € N, M, does not J-identify extCyl(L s(m), m + 1). The

collection £' = {extCyl(Lf(my, m + 1) | m € N} is then J-identified by no IIM.

To show that £' € DU*Z, let M be an IIM which Z-identifies £, let g witness
that Z is unhindered by extCyl-cylindrification, and define M’ as below, such that

for each o € SEQ),

M'(o) :

S « 0.
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Let A={i € N |i#0A 3z € content(o))[m (z) = i]}.
For each i € A do
7i(0) = tr(o, Aa[ma(x)], Az[#], \z[#], {z € content(o) | m(z) = i},
{z € content(0) | m(z) # i}).
Insert g(M(7i(c)),4) into S.

Return S.

Let finite £” C L' be given, and let 7" be an Z-admissible text for L. Since 7
1. uses clean text,
2. is text decomposable, and

3. uses extCyl-decylindrifiable text,

it can be verified that for each m € N, |J, 7™ (T[s]) is a text Z-admissible
for Ly@y). Subsequently, since M Z-identifies each Ly, € L, it outputs an Z-
admissible sequence of grammars for Ly,). From here it is easy to see that M’

will output an Z-admissible sequence of conjectures for L. |

Corollary 29 For allm € N*, DU* TztFex,, | — TxtFex), # 0.

PROOF. Follows from Proposition 28 and that for all m € NT, TxtFex), ; —

TxtFex, # () .[Cas88] i

6.2.4 Identification By Conjecturing Grammar For Text

We now introduce a concept required for our next result.
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Definition 33 An identification criterion Z is said to be based upon conjecturing
a grammar for the input text just in case:

(a) for all texts T', for all L € £, T is Z-admissible for L = content(T) = L.

(b) for all L € &, for all j € N, W; = L = (for each sequence of grammars G)

(Vi € N)[G() = j] = G is T-admissible for L.

It is easy to verify that TxtEx", TxtBc", TxtFex;, are based upon conjec-
turing a grammar for the input text, but N'TxtEx", In‘TxtEx", Im'TxtEx" are

not.

Proposition 30 Letn € N, n > 2. Given Z, J, two identification criteria where
T is based upon conjecturing a grammar for the input text and J s unaidable by
extCyl-cylindrification. Then (AL C E | L & J) = 3L CE| L € DUV'T —

U ).

PROOF. Suppose £ = {L; | i € N} (if £ is finite, let £ ={L; | 0 < i < card(L)}
instead). Since £ ¢ J, for each m € N, M,, does not J-identify £. Since J
is unaidable by extCyl-cylindrification, M, does not J-identify extCyl(L, m + 1).
Since M, does not identify extCyl(L, m~+1), Assumption 1 implies that there exists
at least one language in extCyl(L, m+ 1) which M, does not J-identify. Let total

[ be such that for all m € N, M,, does not J-identify extCyl(L sy, m + 1).

Forn,i,m,k € N,n > 2, define A7, , = {(i+7,k) | 0 < j <n} U {{{xn+m,x) |

2

[,z € N}. Intuitively, has the number k£ on n tracks (that is, from track i

n
1,m,k

to track ¢ +n — 1), and has tracks m,n +m, 2n + m, ... completely filled.
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Fixann > 2. Fori,m € N,0 < m < n, let k; ,, be such that Wy, . = {(i+1,z) |
z € Ly} U{(0,y) |y € ALy k.. } and let Wi, be denoted L; .. (That for each
i,m € N, such k; ,, exists is given by Kleene’s Recursion Theorem. [Rog67])

Let £'={L}, |0<m<nAie N} That £ isin DU™ 'T (irrespective of f

chosen) is observed by M below:

M(o) :
S « 0.
Let A={i € N |i# 0A (3x € content(o))[r1(x) = i|}.
For each x € A do
If exists y € N such that (Vz € N,z < z < 2+ n)[(0, (z,y)) € content(0)].
Then insert y into S.

Return S.

Since Z is based upon conjecturing a grammar for the input text, it is easy to
verify that for all £ C L' where card(L") < n, for each L € L", M will output an
Z-admissible sequence of conjectures for L.

However, for all i € N, Uj<,c Lim = extCyl(Lyg), 7 + 1) is not J-identified

by M;. Hence L' ¢ U"J. |

Corollary 31 For alln € N*, DU" TxtEx — U™ TxtBc* # ().
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6.3 Learning Unions of Languages In The Presence of In-

accuracies

For i € N, n € Nt, let DU"N‘TxtEx, DU"In'TxtEx and DU"Im'TxtEx be

as given by Definition 28 for T € {N'TxtEx, In‘TxtEx, Im'TxtEx}.

Definition 34 Giveni e Nt, L e &, L CE.
(a) Let COPY(L,i) = {(k,z) |r € LAk € N,1 < k <i}.

(b) Let COPY(L,7) = {COPY(L,?) | L € L}.

Intuitively, for any language L and i € N, COPY(L, i) makes 7 copies of L, each

on a different track.

We first look at how having more noise will affect DUTxtEx learning.

Proposition 32 For alli € N, DU*N TxtEx — N'"' TxtEx # (.

PROOF. Fixi € N. Let £ = COPY(SINGLE,i+1). To see that £ € DU*N'TxtEx,

define M, where for each o € SEQ),

M(o) :
S « 0.
Let A={x € N| (Vke N,1 <k <i+1)[{k,x) € content(o)]}.
For each z € A do
Insert the standard index for the language COPY({z},7 + 1) into S.

Return S.
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It is easy to verify that M DU*N‘TxtEx-identifies £. We now show that
L ¢ N""'"TxtEx. Let Ly = COPY({0},i+ 1) and L, = COPY({1},7 + 1). It is easy
to see that there exists at least one text T', where content(T) = L U Ly, such that
T is N""' TxtEx-admissible for both L; and L,. However, no IIM can converge

on T to an index for both L; and L. It follows that £ ¢ N* ' TxtEx. |

Proposition 33 Givenn € N* and £L € DU TxtEx. For alli e N,
(a) COPY(L,i+1) € DU"N' TxtEzx.
(b) COPY(L,i+ 1) € DU"In' TxtEzx.

(c) coPY(L,i+1) € DU"ImY? TxtEx.

PROOF. Let M which DU"TxtEx-identifies £ be given. We construct M*, M?,
M3, such that M' DU"N'TxtEx-identifies COPY(L,i + 1), M? DU"In'TxtEx-
identifies COPY(L,i + 1), and M? DU"Im'¥? TxtEx-identifies COPY(L,% 4+ 1). On
input o, for all j, 1 < j < i+ 1, let W’ = {ma(x) | z € content(c) A mi(z) = j}.
Let 7', 72, 7% be sequences where

content(t') ={x € N | card{j |1 <j<i+ 1Az e W'})>i},

content(t?) ={r e N|(FJe N |1<j<i+ 1)z € W]}, and

content(13) ={x € N|card({j | 1<j<i+1AxzeW})>[i/2]}].
(These are, intuitively, attempts at restoring “accurate” sequences.)

M, then, outputs a standard representation index set of COPY({W; | i € M (71)}, i+
1); M?, a standard representation index set of COPY({W; | i € M(7?)},i+ 1); and

M3, a standard representation index set of COPY({W; | i € M(73)},i + 1). [
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Corollary 34 Forallie N,ne Nt.
(a) DU"N' TxtEx — U'"' TxtEx # (.
(b) DU In' TxtEx — U™ TxtEx # (.

(c) DU"Im/ TxtEx — U™ TxtEx # ().

PROOF. Let £ € DU"TxtEx—U""'TxtEx. Then COPY(L,i+1) € DU"N'TxtEx
N DU"In'TxtEx and COPY(L,2i + 1) € DU"Im'TxtEx. However, it is easy
to show (by contradiction) that neither COPY(L,7 + 1) nor COPY(L,2i + 1) is in

U™ ' TxtEx. |

6.4 Learning Unions of Languages From Informants

Since the text presentation of an informant is not decomposable in the exact sense
defined earlier, we are unable to use the generalized definitions to obtain UInfEx

and DUInfEx. Hence we make the following definitions.

Definition 35 Let K € N* and £ C €.
(a.1) M U*InfEx-identifies £ just in case for all L € £*, for all informants G for

L, M(G)l, and WM(G) = L.
(a.2) U*InfEx = {£ C £ | (3M)[M U*InfEx-identifies £]}.

(b.1) M DU*InfEx-identifies £ just in case for all £' C £, card(L') < k, for all

informants G for Ly, M(G)] and M(G) € Z,.

(b.2) DU*InfEx = {£ C £ | (3M)[M DU*InfEx-identifies £]}.
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By extending Assumption 1, as well as the notions of text decomposability, text
insensitivity, text extCyl-decylindrifiability, use of clean text, and identification
criterion based upon conjecturing a grammar for the input text, to informants, one

can extend Propositions 28 and 30, to get the following corollary.

Corollary 35 For allm € N*.
(o) DU"InfEx — U InfEx # 0.

(b) DU InfEx — TxtEx # .

6.4.1 (In)Sufficient Condition for DUInfEx Identification

The following result is analogous to Theorem 20.

Proposition 36 For alln € N*, there exists L € DU" InfEx where
(a) D & L.

(b) forall L,L' e L, LNL' =0

such that £ ¢ U™ InfEx.

Proor. The following proof, while tedious, follows almost exactly the proof of

Theorem 20, and is included here in entirety only for completeness.

Let n € Nt be given. Unless stated otherwise, let e,1, 7, k, with or without
decorations, range over NV, and S, with or without decorations, range over finite
sets. o and 7, with or without decorations, range over informants. For each IIM

0 1 n
M., we construct S, L., L., ..., L] where
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Lo = {{e,0,0)} U {(e,i,7) | 1 <i<n, j€ S}

and for 1 < i < n, L! satisfies the following two properties:

(1) Li = {{e,4,7) | 7 € Wnin({ms(@)|weri})}

(2) min({m3(z) | z € L'}) > max(S,).

Let £L={L% L!,...,L" e € N}. Tt is clear that for all L,L' € £, LN L' = .

Since £ € DU"TxtEx (recall the proof of Theorem 20), it is easy to see that

L € DU"InfEx.

We now show that £ ¢ U™ InfEx. The following construction follows exactly
the same method as in the proof for Theorem 20; except that where previously we

constructed texts, here we construct informants.

For each M, here is the construction to show that M, does not U InfEx-
identify £. By Kleene’s Recursion Theorem [Rog67] there exists an index e’ such
that W, may be defined in stages s = 0,1,2..., as below. (We highlight the

positive data to enhance readability.)

Stage 0: Let o' = ((,0,0),1) o ({e,1,0),0) o ({e,1,1),0) o ... o
(e, 1,¢ — 1),0) o ((6,2,0),0) o ({,2,1),0)... o ({e,2,¢' —
1),0)... o ({e,1,0),0) o ({e,n,1),0)... o ((e,n,e’ — 1),0) o
((e,1,€),1) 0 ((e,2,€),1)o...0((e,n,e),1). Let W} = {e'}.

Go to stage 1.
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Stage s:  Search for 7 where
(a) content(t) C {({e,1,j),z;) |1 <i<nAje NAz;€{0,1}}
U {((e,7,7),0) | 4,7 e NA(GE >nV(i=0Aj#0)}U
{({e",4,7),0) | " #eNi,j € N}, and
(b) (V({e,i,7),x), ({e,7,7),2") € content(o®* o) | 1 < 1,7 < n)
[t = 2']. Note that this is sufficient to avoid all possible
inconsistencies in content(o® o 7).
such that M.(c®) # M.(o® o 7). If and when 7 is found,
1. enumerate {j | (3,1 < ' < n) [((e,1,]j),1) € content(T)]}
into W
2. Let a**t = max({j | (3,1 < ¢ < n) 3k)[({e,7,7),k) €
content(o® o 7)]}).
Let X be W, enumerated up to now.
3. Let o*™! be an extension of o® such that content(o**!) =
{((e,0,0),1)} U {({e,i,j),1) | 1 < i < nAje X} U
{({e,i,7),0) | 1 < i < nA0<j<at'AjgX}U
{((6,7,5),0) [ (n <i<sA0Lj<s)V(Ei=0A0<j<s)}
U {({e",i,7),0) | " £eA0<i,j<s).
Go to stage s + 1.
If the search for 7 failed at any stage s, then let LY = {z | (z,1) € content(c*®)},
let ¢” > a® be such that min(W.r) = €”. For each i € N, 1 < i < n, let L} =

{{e,i,7) | j € Wen}. Since stage s does not succeed, M, does not identify at least
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one of LY and (L2 UJ!, L?).
If the search is successful at all stages, then let L2 = {(e,0,0)} and for each
i€N,1<i<mn,let L' = {{e,i,z) | * € Wg}; now M, fails to converge on the

input |J, 0*, an informant for L2 U (J;_, L¢. 1



7 INTRINSIC COMPLEXITY 79

7 Intrinsic Complexity

7.1 Introduction

The concept of intrinsic complexity is an attempt to describe the relative hardness
of identifying a class of languages under the requirement given by an identification
criterion. The idea is to reduce the task of Z-identifying a class of languages to the
task of J-identifying another class. To be able to reduce the Z-identification of £
to that of J-identifying L', we should be able to transform Z-admissible texts 7" for
languages in £ to J-admissible texts 7" for languages in £’ and further transform

J-admissible sequences for 7" into Z-admissible sequences for 7.

7.2 Preliminaries

The following definitions are from [FKS95, JS96]. We define an enumeration oper-
ator (or just operator), O, to be an algorithmic mapping from SEQ into SEQ such
that for all o, 7 € SEQ, if 0 C 7, then ©(0) C O(7). We further assume that for
all texts T, lim,,_,o |©(T'[n])| = co. By extension, we think of © as also defining a

mapping from T to T such that ©(T) = |, ©(T[n]).

7.3 Weak Reductions

Jain and Sharma [JS96] distinguished between two kinds of reductions, called weak

and strong reductions. We consider only the former here.
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7.3.1 Definitions

Definition 36 [JS96] Let £;, L, C & be given. Let Z; and Z, be two identification
criteria. Let 71 = {T | T is a text for L € £;}. Let T = {T | T is a text for
L € L;}. We say that £, §£IG;CIQ Lo just in case there exist operators © and 2
such that for all 7' € 7; and for all infinite sequences of grammars G the following
hold:

(a) ©(T) € Ts, and

(b) if G is an Z,-admissible sequence for ©(T), then Q(G) is an Z;-admissible
sequence for 1.

We say that £, <L L, if and only if £, <=L £,.

— weak

We extend the above definition for our generalized U, DU and WDU paradigm
as follows, so that instead of just reducing the task of Z-identifying every language
in a class L1, to tasks of J-identifying languages in another class £, we want to
reduce the task for Z-identifying every language in L7, to tasks of J-identifying

languages in L3', for some m,n € N.

Definition 37 Let £y, Ly C £ be given. Let Z; and Z, be two text decomposable
identification criteria where Assumption 1 (in Chapter 6) applies. Let K1, Ky €
{U,DU,WDU} and n,m € N* be given. Let 7; = {T | T is a text for L € L}}.
Let 7o = {T | T is a text for L € LJ'}. We say that £, giCiIl’}anIQ Ly just

in case there exist operators © and €2 such that for all 7" € 7; and for all infinite

sequences of conjectures G the following hold:

(a) ©(T) € Ty, and
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(b) if G is an KJ'Zy-admissible sequence for O(T'), then Q(G) is an K7Z;-admissible
sequence for 7.

n n
We say that £, <X"T £, if and only if £, gﬁf”c z Lo.

Definition 38 [JKWO00] Let Z be an identification criterion. Let £ C £ be given.
(a) Iffor all £' € T, £' <L £, then £ is <Z_-hard.

— weak

(b) If £ is < _hard and £ € Z, then £ is <Z_-complete.

7.3.2 Hard/Complete Languages

Proposition 37 Foralln € NT,
(a) INIT is <U"TxtEX_ 0pniete.

weak

(b) INIT is <WDU"TXtEX (o p/cte.

weak

(¢) INIT is <DU"TXtEX 1.

—weak

ProOOF. Fix n € Nt. We first note that INIT™ = INIT.

Given £ € U"TxtEx. Since INIT is <TZET_complete [JS96], there exist ©
and Q which observe that £" <TZEx INTT Tt follows that £ <U. T#tEz [NTT.

Clearly, INIT € U"TxtEx. Thus part (a) is proven.

Parts (b) and (c) can be proved using a technique similar to the one in the proof
for Theorem 9 in [JS96]. We only sketch the idea here. Note first that whereas in
[JS96], only a single index needs to be dealt with, here there are up to n indices.
This is, however, easily solved as follows. Given M which DU"TxtEx-identifies
L, we combine the n indices conjectured by M using an n-ary pairing function.

The problem hence becomes identical to that in [JS96], and the same technique can
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be applied. Restoration of the indices can be easily done via projection functions
Tly«--, M. Every L' C L where card(L') < n can hence be shown to reduce to a

language in INIT. Thus part (c) follows.

Similarly it can be shown that INIT is < WDU"TZtEZ arq  Part (b) then

follows from that INIT € WDU"TxtEx. |

The following geometrical property is needed in our next theorem. Terms and

notations not defined here are from Definitions 25 and 26.

Definition 39 Let n € N, n > 2.
(a) Let vy, vg,...,v, 1 be as in part (a), O and G, be as in part (b) of Definition 26.
Let Aq, As, ..., A, be the vertices of G, at vy, vs,...,v,_1, —v; respectively.
(b) For each i, 1 < i < n, let 7; denote the (unit) outward normal of the facet in G,
with vertices V(G,) — {A;}. Let by,...,b, be such that each point X in G, fulfills
the n inequalities 7; - X < b; for i =1,...,n, as in part (b) of Definition 25.
— — —
(c) For 1 <i<mn,let mz;=(1/| OA; |) OA;. Since for each i, | OA; | = 1, it is clear
_),
that @; = OA;. For 1 <i<mn, e€R let Gi(e) =G, + €z
_),
(d) For each § € R, § > 0, let G be a simplex with vertices at (1 +J) OA; from O

for i = 1,...,n. Intuitively, G is an enlargement of G, by a factor of 1+ 4.

Note that by letting G' and C in Claim 11 be G,, and O respectively, we can let
our definitions of f;, 7, b; and G;(€) here coincide with the definitions of /1, 77}, b;
and G;(¢€) in the proof of Claim 11 (for each 7, 1 < ¢ < n). This allows us to use

the sub-claims therein in a straight-forward manner.
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Claim 38 Let 0,0 € R where 0 < ¢’ < & be given. For each 4,5,k where 1 <

i, 5,k <n, i #k,j#k, we have §'(17; - Vi) < 8(17; - Ur,).

PRrROOF. Let k € N where 1 < k < n, and 6§, € R where 0 < §' < ¢, be given. Let
F¥ be the hyperplane given by the equality v, - X = by, and F¥ be the hyperplane
in G2 with normal ;. Since for each i where 1 < i < n and i # k, §/7; translates a
point in F¥ (namely, A4;) to a point in F¥, the distance between FF and FF along
Ui, can be written 0(; - V%) for any ¢ where 1 <7 < n, i # k (see Figure 9). Hence,
each of the n — 1 inequalities

U - X < by + (1 - V) j=12,....,n,7#k

defines the same bounding hyperplane in G°. Tt follows that for each i, j, i # k,j #

[V
(1+3)|0A, || Az H, Y,
9, 63
9’
ﬁs As A1 ﬁl
(@)

Figure 9: The hyperplane with normal 73 in GJ.

Similarly, the hyperplane in gg’ with normal v} is equivalently defined by the
n — 1 inequalities

Z/—];XSbk‘i‘él(/lj}V_l’c) ]:1:277717]#]{:

Thus for each 4,7, 1 # k,j #k, 0'(@; - vi) = 6" (15 - k).
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Since ¢’ < 6, and for all j # k, ;- v > 0 (by Sub-claim 3 in the proof of
Claim 11), it is trivially true that for all j # k, 0'(4; - v) < 6(4j - vi). It follows

that for all iaja 1< Z,] <n, i %kaj #k’ 5,(/1; Z/_];) < 6(/17; lj]::)

Since this holds for each k£, 1 < k < n, claim follows. O

Claim 39 There exists w* € R, w* > 0 such that for all w,w' € R where 0 < w' <

w<w, U Gi(w) € Uiz Gi(w).

PROOF. Let Gi(€1),---,Gn(€,) where each ¢; € Rj¢; > 0, and &, ...,&, € R where
each & > 0, be such that for all 3,1 < ¢ < n, for all §;, 0 < §; < &, Gi(d;) C

Uj—1 Gi(e;) (such values exist by Claim 11). Let w* € R be a non-zero positive

value smaller than min({&y,...,&,}).

Let w,w" € R be where 0 < w' < w < w*. For each i, since w' < &;, by Claim 11,
Gi(w'") CUj-1 Gj(ej). We show that G;(w') C Uj_, G;(w)-

Let 1 € N, 1 <7 <n be given.

By Claim 38, for all j,k where 1 < jok < nand i # k,j # k, w'(i7; - 73) <

—

w(f; - V). Hence, for any j, 1 < j < n, Sub-claim 5 (in the proof of Claim 11)
applies, and the points in G;(w') — G;(w) is bounded by the inequality

vj - X > bj + w(i - vj), (1)

plus the n inequalities for G;(w'). Similarly, for any j, 1 < j < n the region G;(w')

— G,(€j) is given by the inequality

vj - X > bj + (155 - j), (2)

plus the n inequalities for G;(w').
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Given j, 1 < j < n, since w < ¢; and g - 7; < 0 (Sub-claim 4 in the proof of
Claim 11), €;(s7j - ;) < w(g; - ;). The region in (2) hence includes the region in
(1), and thus G;(w') — G;(w) is a subset of G;(w') — G,(¢;). We give an illustration

of a 2-D example in Figure 10.

>

W L] gw)- g(w)
A, L+l g@)-g(e)

w

&
Figure 10: G;(w') — Gj(w) C Gi(w') — G;(€;)-

Repeating this on each G;(w) and G;(¢;) for j = 1,...,n, we have G;(w') —
Uj—1 Gi(w) C Gi(w') — Uj-, Gi(€;). However, by Claim 11, Gi(w') — U;_, G;(¢;) =
0. Hence G;(w') € Uj_, G;(w). Since this holds for each i = 1,...,n, it follows that

Uiz Gi(w') € Uiz, Gi(w). |

We now give a <P U' TztEx

— weak

-complete language. Terms and notations not de-

fined here are from Definition 26.

Theorem 40 For alln € N,n > 2, TRANSIM,, is §DUnTXtEX—complete.

weak

PRrOOF. Let n € N, n > 2. Let (.,.), be a 1-1 pairing function with range in the

prime numbers. For any £ C DU"TxtEx, we construct © and 2 which witness
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that £ <DU"T2tEx TRANSIM,. Let M DU"TxtEx-identifies £. Let £' C L,
card(L") < n and let T be a text for Lp. Without loss of generality, assume that
M(T|0]) =?.

For each € € rat, let XL(e) denote the language | J; , L(G;(¢)). Let XTRANSIM

= {XL(e) | € € rat}. It is clear that XTRANSIM C TRANSIM,".
Let w* be as in Claim 39, and w € rat be such that 0 < w < w*.

Define © as follow, such that for each text 7" and each s € N,

o(TIo]) :
Let w° = 0.

Return #.

O(T[s+1]):
If M(T[s + 1)) = M(T][s]) return ©(T[s]).
Else
Find least m € N, and corresponding
[ € N where [ is co-prime with (M (T'[s + 1]),m),

such that w® < < w.

l
(M(T[s+1]),;m)p

s+1 __ l
Let ™" = g rmm, -

Return ©(T[s]) ¢ o, where content(c) = {z |z < s+ 1Az € XL(w*)}.

For any i,j € N where i < j, since w® < w?, by Claim 39, XL(w’) C XL(w?).
Hence at each stage s, content(©(T[s])) C XL(w®*). If M DU"TxtEx-identifies

L/, then at some stage ¢, M stops changing it’s mind (that is, M (T'[t]) = M (T)),
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and O(T) is a text for the language XL(w").

To obtain operator 2 transforming a sequence of conjectures for XL(w') into
a sequence of conjectures for L./, observe that it is possible to restore the value
M(T) from a sequence of conjectures for XL(w'). Let C = C(0)C(1)C(2)... be an
infinite sequence of conjectures, define Q(C) = C' where for each s, C'(s) is defined
as follows. Let z, = max({z;(decoderat,(w)) — 1 | w € Uy We,s}) (the
function z; is defined in Definition 25 and decoderat,, is defined in Definition 26).
Intuitively, here z, attempts to restore the value w® from C(s), a conjecture for
XL(w?).

Finally, let C'(s) = m1(h(zs)) where h(a) is the denominator of rational a in re-
duced form. It is easy to verify that if M DU"TxtEx-identifies T', and C converges

to a conjecture for content(©(T)), then Q(C) converges to M (T).

That TRANSIM, € DU"TxtEx then completes the proof. |
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