120 DEGREE AND 60 DEGREE TRIPLES AND THE DIVISORS 3, 5, AND 7

FRED BARNES

1. INTRODUCTION

It's well known that if (a, b, c) is a a Pythagorean triple, that is, if (a, b, c) is a solution in positive integers to the 90 degree triangle equation $a^{2}+b^{2}=c^{2}$, then 3 and 4 each divides a or b, and 5 divides a, b or c where, of course, $(3,4,5)$ is the smallest such solution.

A 120 degree triple, (a, b, c), is a solution in positive integers to the 120 degree triangle equation

$$
a^{2}+b^{2}-2 a b \cos 120^{\circ}=a^{2}+b^{2}+a b=c^{2} .
$$

So, naturally, one wonders if a similar relationship exists between the positive integer solutions of 120 degree triangles and the smallest such solution, $(3,5,7)$. To find such a relationship it's necessary to look more closely at the 3,4,5-ness of Pythagorean triangles. We will look at all integer solutions, both positive and negative.

$$
a^{2}+b^{2}=(-a)^{2}+b^{2}=(-a)^{2}+(-b)^{2}=a^{2}+(-b)^{2}=c^{2}
$$

These 4 solutions are plotted in figure (1).

Hence, if (a,b,c) is a Pythagorean triple, saying 3 divides one of $a b,(-a) b,(-a)(-b)$, or $a(-b)$ is saying 3 divides a or b. And since $3,4,5$-ness holds for Primitive triples, the case is the same for the divisor 4 .

Figure 1. solutions to a 90 degree triangle equation

Note that:

$$
\begin{aligned}
a^{2}+b^{2}+a b & =(-a-b)^{2}+b^{2}+(-a-b) b=(a+b)^{2}+(-b)^{2}+(a+b)(-b)=(-a)^{2}+(-b)^{2}+(-a)(-b) \\
& =a^{2}+(-a-b)^{2}+a(-a-b)=(-a)^{2}+(a+b)^{2}+(-a)(a+b)
\end{aligned}
$$

As shown in figure (2). So, similarly, if (a, b, c) is a 120 degree triple then saying a prime p divides one of $a b,(-a-b) b,(a+b)(-b),(-a)(-b), a(-a-b)$, or $(-a)(a+b)$ is saying p divides one of a, b, or $a+b$.

Figure 2. solutions to a 120 degree triangle equation

2. 120 DEGREE TRIPLES AND THE DIVISORS 3,5 , AND 7 .

All primitive solutions to a 120 degree triple (a, b, c), are given by the parametric equations:

$$
\begin{equation*}
a=m^{2}-n^{2}, \quad b=2 m n+n^{2}, \quad \text { and } \quad c=m^{2}+n^{2}+m n . \tag{1}
\end{equation*}
$$

where m and n are relatively prime, positive integers, $m>n$, and $3 \nmid m-n$. See http://www.geocities.com/fredlb37/triples10.pdf for a proof.

If (a, b, c) and (b, a, c) are considered the same solution, then the first 6 primitive solutions in order of smallest value for c are,
(1) $5^{2}+3^{2}+5 \cdot 3=7^{2}$
(2) $8^{2}+7^{2}+8 \cdot 7=13^{2}$
(3) $16^{2}+5^{2}+16 \cdot 5=19^{2}$
(4) $24^{2}+11^{2}+24 \cdot 11=31^{2}$
(5) $33^{2}+7^{2}+33 \cdot 7=37^{2}$
(6) $35^{2}+13^{2}+35 \cdot 13=43^{2}$

Notice that, in each case, 3 and 5 , each, divides one of a, b, or $a+b$, and 7 divides one of $a, b, a+b$, or c.

Claim 1. If (a, b, c) is any 120 degree triple then 3 and 5 divides $a b(a+b)$, and 7 divides $a b(a+b) c$.

Proof. It's sufficient to show it's true for primitive triples. This claim can be proven directly by looking at residues modulo 3,5 , and 7 ; however it gets quite messy for the divisor 7. So, instead, I will use the parametric equations from (1) and the following result from Fermat's little theorem. That is, if s and t are integers, and p is a prime, then

$$
p \text { divides } s t\left(s^{p-1}-t^{p-1}\right) .
$$

From (1),

$$
\begin{aligned}
a b(a+b) & =\left(m^{2}-n^{2}\right)\left(2 m n+n^{2}\right)\left(m^{2}+2 m n\right) \\
& =m n\left(m^{2}-n^{2}\right)\left(2\left(m^{2}+n^{2}\right)-5 m n\right) \\
& =2 m n\left(m^{4}-n^{4}\right)-5\left(m^{4} n^{2}-m^{2} n^{4}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
a b(a+b) c & =\left(m^{2}-n^{2}\right)\left(2 m n+n^{2}\right)\left(m^{2}+2 m n\right)\left(m^{2}+n^{2}+m n\right) \\
& =2 m n\left(m^{6}-n^{6}\right)-7\left(m^{6} n^{2}-m^{5} n^{3}+m^{3} n^{5}-m^{2} n^{6}\right)
\end{aligned}
$$

Therefore, from Fermat's little theorem, 3 and 5 divide $a b(a+b)$, and 7 divides $a b(a+b) c$.
2.1. $\mathbf{1 2 0}$ degree triples and their associated $\mathbf{6 0}$ degree triples. A 60 degree triple, (p, q, r), is a solution in positive integers to the 60 degree triangle equation

$$
p^{2}+q^{2}-2 p q \cos 60^{\circ}=p^{2}+q^{2}-p q=r^{2}
$$

Note that

$$
a^{2}+b^{2}+a b=(a+b)^{2}+b^{2}-(a+b) b=a^{2}+(a+b)^{2}-a(a+b)
$$

Hence, if (a, b, c) is a 120 degree triple then $(a+b, b, c)$ and $(a, a+b, c)$ are 60 degree triples. Here is a "neat" way to construct these three triangles.

On line l layout line segments $A B$ and $B E$ having lengths a and b respectively, where a and b are the adjacent side lengths of a 120 degree triangle. On and below $A B$ construct equilateral triangle $A D B$ with sides of length a. On and above $B E$ construct equilateral triangle $B E C$ with sides of length b. Hence $\angle A B D$ and $\angle C B E$ are each 60 degrees. So point B lies on line segment $D C$ and $\angle A B C$ is 120 degrees. Draw line segment $A C$. Thus, the construction shows the 120 degree triangle $A B C$ and its two associated 60 degree triangles $A E C$ and $A D C$.

3. 60 DEGREE TRIPLES AND THE DIVISORS 3,5 , AND 7 .

Let $u^{2}+v^{2}-u v=w^{2}$. If u, v, and w are positive integers, then (u, v, w) is a 60 degree triple. If, additionally, u, v, and w are pairwise relatively prime, then (u, v, w) is a primitive 60 degree triple. The first seven such triples in order of the smallest value for w are,
(1) $1^{2}+1^{2}-1 \cdot 1=1^{2}$
(2) $8^{2}+5^{2}-8 \cdot 5=7^{2}$
(3) $8^{2}+3^{2}-8 \cdot 3=7^{2}$
(4) $15^{2}+7^{2}-15 \cdot 7=13^{2}$
(5) $15^{2}+8^{2}-15 \cdot 8=13^{2}$
(6) $21^{2}+5^{2}-21 \cdot 5=19^{2}$
(7) $21^{2}+16^{2}-21 \cdot 16=19^{2}$

Notice that, in each case, 3 and 5 , each, divides one of u, v, or $u-v$, and 7 divides one of $u, v, u-v$, or w.
Claim 2. If (u, v, w) is any 60 degree triple then 3 and 5 divides $u v(u-v)$, and 7 divides $u v(u-v) w$.

Proof. It's sufficient to show the claim is true for primitive triples. Clearly it's true for the triple $(1,1,1)$. So let $u^{2}+v^{2}-u v=w^{2}$ where (u, v, w) is a primitive triple, $u v w \neq 1$. Without loss of generality, let u be greater than v, then

$$
(u-v)^{2}+v^{2}+(u-v) v=u^{2}+v^{2}-u v=w^{2} .
$$

Hence $(u-v, v, w)$ is a 120 degree triple. So, from claim (1),
$3 \cdot 5 \mid(u-v) v((u-v)+v)=u v(u-v), \quad$ and $\quad 7 \mid(u-v) v((u-v)+v) w=u v(u-v) w$.

The drawing below shows two 60 degree triangles $A E C$ and $A D C$ along with their associated 120 degree triangle $A B C$.

E-mail address: fredlb@centurytel.net

