PYTHAGOREAN TRIANGLES, THE HYPOTENUSE TO A POWER.

FRED BARNES

It is well-known that if (a, b, c) is a solution to a Pythagorean triangle, where c is the hypotenuse, then the Mersenne prime 3 divides $a b$, and the Fermat prime 5 divides $a b c$. In this section, I show that if $\left(a, b, c^{2^{j}}\right)$ is a solution to a primitive Pythagorean triangle, where j is a non-negative integer, then every Mersenne prime less than or equal to $\left(2^{j+2}-1\right)$ divides $a b$, and every Fermat prime less than or equal to $\left(2^{j+2}+1\right)$ divides $a b c$.

1. Introduction

If (a, b, c) is a solution to the Pythagorean triangle $a^{2}+b^{2}=c^{2}$ then (a, b, c) is a Pythagorean triple. If, additionally, a, b, and c are pairwise relatively prime then (a, b, c) is a primitive Pythagorean triple (PPT), and $a^{2}+b^{2}=c^{2}$ is a Primitive Pythagorean triangle.

All PPT's are given by the parametric equations

$$
\begin{equation*}
a=m^{2}-n^{2}, \quad b=2 m n, \quad \text { and } \quad c=m^{2}+n^{2} \tag{1}
\end{equation*}
$$

where m and n are relatively prime, positive integers of opposite parity, and $m>n$.
When computing the $\operatorname{PPT}\left(a, b, c^{2^{j}}\right)$, it is convenient to express a, b, and c in terms of Gaussian integers $\mathbb{Z}[i]$. To do so, let $m>n$ where m and n are relatively prime, positive integers having opposite parity. Let $z=m+n i$ and $\bar{z}=m-n i$. And let j be a non-negative integer. Then there exists positive integers u and v such that
$u=\left|\frac{z^{2^{j}}+\bar{z}^{2^{j}}}{2}\right|=\left|\frac{(u+v i)+(u-v i)}{2}\right|, \quad$ and $\quad v=\left|\frac{z^{2^{j}}-\bar{z}^{2^{j}}}{2 i}\right|=\left|\frac{(u+v i)-(u-v i)}{2 i}\right|$.

- If $u<v$ then interchange the labels.
- Clearly, $\operatorname{gcd}(m, n)=1$ implies $\operatorname{gcd}(u, v)=1$.
- The parameters m and n have opposite parity. Therefore $2 \nmid\left(m^{2}+n^{2}\right)^{2^{j}}=$ $u^{2}+v^{2}$. Hence u and v have opposite parity.
Thus, all primitive Pythagorean triples of the form $\left(a, b, c^{2^{j}}\right)$ are given by the parametric equations

$$
\begin{gather*}
a=u^{2}-v^{2}=\left|\frac{(m+n i)^{2^{j+1}}+(m-n i)^{2^{j+1}}}{2}\right| \tag{2}\\
b=2 u v=\left|\frac{(m+n i)^{2^{j+1}}-(m-n i)^{2^{j+1}}}{2 i}\right| \\
1
\end{gather*}
$$

$$
\begin{equation*}
\text { and } \quad c^{2^{j}}=u^{2}+v^{2}=\left(m^{2}+n^{2}\right)^{2^{j}} \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
2 a b=\left|\frac{(m+n i)^{2^{j+2}}-(m-n i)^{2^{j+2}}}{2 i}\right| . \tag{5}
\end{equation*}
$$

2. Some prime divisors of primitive Pythagorean triangles.

If a, b, c, k and d are positive integers such that $a^{2}+b^{2}=\left(c^{k}\right)^{2}$ is a primitive Pythagorean triangle, and if d divides k, then we are going to show the following:

- If $4 d-1$ is a prime p, then p divides exactly one of a and b.
- If $4 d+1$ is a prime q, then q divides exactly one of a, b, and c.
- If $d=2^{\alpha}, \alpha$ a non-negative integer, then $2^{\alpha+2}$ divides exactly one of a and b.

I will, first, state and prove a theorem on the divisors of $a b$, and of $a b c$, where $\left(a, b, c^{k}\right)$ is a PPT. Then the case where $k=2^{j}$ will be proven in the corollary. If $k=2^{j}$ in equation (5) then

$$
2 a b=\left|\frac{(m+n i)^{4 k}-(m-n i)^{4 k}}{2 i}\right| .
$$

Theorem 1. Let $a^{2}+b^{2}=\left(c^{k}\right)^{2}$ be a primitive Pythagorean triangle where $k \in \mathbb{Z}^{+}$. Let d be a positive integer divisor of k. Let $p=4 d-1$ and $q=4 d+1$.
(a) If p is a prime then $p \mid a b$.
(b) If q is a prime then $q \mid a b c$.

Proof of part (a). Since $m+n i \in \mathbb{Z}[i]$, then $\left((m+n i)^{\frac{k}{d}}\right)^{4 d}=(M+N i)^{4 d}$ for some $M, N \in \mathbb{Z}$. If $p=4 d-1$ is a prime, then since $-i=i^{4 d-1}=i^{p}$,
$p \mid(M+N i)^{p}-(M-N i)=\left((M+N i)^{p}-M^{p}-(N i)^{p}\right)+\left(M^{p}-M\right)-i\left(N^{p}-N\right)$.
Which implies

$$
p \mid(M+N i)^{p+1}-\left(M^{2}+N^{2}\right) .
$$

Similarly,

$$
p \mid(M-N i)^{p+1}-\left(M^{2}+N^{2}\right)
$$

Which implies

$$
p \text { divides }(M+N i)^{p+1}-(M-N i)^{p+1}=(m+n i)^{4 k}-(m-n i)^{4 k}=4 a b i .
$$

Therefore $p \mid a b$.
Proof of part (b). If $q=4 d+1$ is a prime, then since $i=i^{4 d+1}=i^{q}$,

$$
q \mid(M+N i)^{q}-(M+N i) \text { where } M+N i=(m+n i)^{\frac{k}{d}} \text { and } M-N i=(m-n i)^{\frac{k}{d}} .
$$

Which implies

$$
q \mid(M+N i)\left((M+N i)^{q-1}-1\right) .
$$

Similarly

$$
q \mid(M-N i)\left((M-N i)^{q-1}-1\right) .
$$

Then, if

$$
q \nmid(M+N i)(M-N i)=M^{2}+N^{2}=c^{\frac{k}{d}}
$$

q divides $(M+N i)^{q-1}-(M-N i)^{q-1}=(m+n i)^{4 k}-(m-n i)^{4 k}=4 a b i$.
Therefore $q \mid a b c$.
Corollary 1. Let $a^{2}+b^{2}=\left(c^{2^{j}}\right)^{2}$ be a primitive Pythagorean triangle where j is a nonnegative integer. Let M be any Mersenne prime less than or equal to $2^{j+2}-1$. And, let F be any Fermat prime less than or equal to $2^{j+2}+1$. Then

$$
M \text { divides } a b, \text { and } F \text { divides abc. }
$$

Proof. Let $k=2^{j}$ in theorem (1). Then

$$
\begin{aligned}
d & =\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{j-1}, 2^{j}\right\}, \\
4 d-1 & =\left\{2^{2}-1,2^{3}-1,2^{4}-1, \ldots, 2^{j+1}-1,2^{j+2}-1\right\}, \\
\text { and } 4 d+1 & =\left\{2^{2}+1,2^{3}+1,2^{4}+1, \ldots, 2^{j+1}+1,2^{j+2}+1\right\} .
\end{aligned}
$$

From Theorem (1), part (a), every prime in the set $4 d-1$ divides $a b$. From Theorem (1), part (b), every prime in the set $4 d+1$ divides $a b c$.

3. The DIVISOR $4=\mathbf{2}^{\mathbf{0 + 2}}$

Theorem 2. If

$$
a^{2}+b^{2}=\left(c^{2^{j}}\right)^{2}
$$

is a primitive Pythagorean triangle where j is a nonnegative integer then 2^{j+2} divides $a b$.

Proof. (by induction on j) If $j=0$ then

$$
a^{2}+b^{2}=\left(c^{2^{0}}\right)^{2}=c^{2}
$$

So there exists integers m and n, one odd the other even, such that $a=m^{2}-n^{2}$ and $b=2 m n$. Hence $4=2^{0+2}$ divides $a b$. Assume true for j, then

$$
\left(c^{2^{j+1}}\right)^{2}=\left[\left(c^{2^{j}}\right)^{2}\right]^{2}=\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}
$$

. Let $a_{1}=a^{2}-b^{2}$ and $b_{1}=2 a b$. Then if 2^{j+2} divides $a b, 2^{(j+1)+2}$ divides $a_{1} b_{1}$.

4. Examples

Triangle	k	d	Divisors of a or b	Divisors of a, b, or c
$a^{2}+b^{2}=c^{2}$	1	1	$3,2^{2}$	$3,2^{2}, 5$
$a^{2}+b^{2}=\left(c^{2}\right)^{2}$	2	1,2	$3,7,2^{3}$	$3,5,7,2^{3}$
$a^{2}+b^{2}=\left(c^{3}\right)^{2}$	3	1,3	$3,2^{2}, 11$	$3,2^{2}, 5,11,13$
$a^{2}+b^{2}=\left(c^{4}\right)^{2}$	4	$1,2,4$	$3,7,2^{4}$	$3,5,7,2^{4}, 17$
$a^{2}+b^{2}=\left(c^{5}\right)^{2}$	5	1,5	$3,2^{2}, 19$	$3,2^{2}, 5,19$
$a^{2}+b^{2}=\left(c^{6}\right)^{2}$	6	$1,2,3,6$	$3,7,2^{3}, 11,23$	$3,5,7,2^{3}, 11,13,23$
$a^{2}+b^{2}=\left(c^{7}\right)^{2}$	7	1,7	$3,2^{2}$	$3,2^{2}, 5,29$
$a^{2}+b^{2}=\left(c^{8}\right)^{2}$	8	$1,2,4,8$	$3,7,31,2^{5}$	$3,5,7,17,31,2^{5}$
$a^{2}+b^{2}=\left(c^{9}\right)^{2}$	9	$1,3,9$	$3,2^{2}, 11$	$3,2^{2}, 5,11,13,37$
$a^{2}+b^{2}=\left(c^{10}\right)^{2}$	10	$1,2,5,10$	$3,7,2^{3}, 19$	$3,5,7,2^{3}, 19,41$
TABLE 1. Divisors of primitive Pythagorean triples				

5. Area of a primitive Pythagorean triangle and the perfect numbers

A perfect number is a positive integer that is equal to the sum of its divisors excluding itself. For example 6 is a perfect number since its divisors are 1, 2, 3 and 6 where $1+2+3=6$. All even perfect numbers are of the form $2^{s-1}\left(2^{s}-1\right)$ where $2^{s}-1$ is a prime. Such primes are called Mersenne primes. The first three perfect numbers are 6,28 , and 496. It's not known if there are any odd perfect numbers.

From corollary (1) and theorem (2) we see that it is no coincidence that the area of the $3-4-5$ triangle, the smallest Pythagorean triangle, is $\frac{1}{2}\left(2^{2}-1\right)\left(2^{2}\right)=$ $2^{1}\left(2^{2}-1\right)=6$, the smallest perfect number.

Let t be a positive integer such that $2^{t+1}-1$ is a prime (Mersenne prime). And let $a^{2}+b^{2}=c^{2^{t}}$ be a primitive Pythagorean triangle. Then, as table (1) shows, the area $\frac{1}{2} a b$ is a multiple of the perfect number $2^{t}\left(2^{t+1}-1\right)$.
5.1. Examples. Consider the two primitive Pythagorean triangles $3^{2}+4^{2}=5^{2^{1}}$ and $5^{2}+12^{2}=13^{2^{1}}$. In this case $t=1$.

Since $2^{1+1}-1=2^{2}-1=3$ is a prime, we know that each area must be a multiple of the perfect number $2^{1}\left(2^{2}-1\right)=6$. And indeed, $\frac{1}{2}(3)(4)=\mathbf{6}$ and $\frac{1}{2}(5)(12)=\mathbf{6}(5)$.

Consider the two primitive Pythagorean triangles $7^{2}+24^{2}=5^{2^{2}}$ and $119^{2}+$ $120^{2}=13^{2^{2}}$. In this case $t=2$.

Since $2^{2+1}-1=2^{3}-1=7$ is a prime, we know that each area must be a multiple of the perfect number $2^{2}\left(2^{3}-1\right)=28$. And indeed, $\frac{1}{2}(7)(24)=\mathbf{2 8}(3)$ and $\frac{1}{2}(119)(120)=\mathbf{2 8}(255)$.

Consider the two primitive Pythagorean triangles $164833^{2}+354144^{2}=5^{2^{4}}$ and $815616479^{2}+13651680^{2}=13^{2^{4}}$. In this case $t=4$.

Since $2^{5}-1=31$ is a prime, we know that each area must be a multiple of the perfect number $2^{4}\left(2^{5}-1\right)=496$. And indeed, $\frac{1}{2}(164833)(354144)=496(58845381)$ and $\frac{1}{2}(815616479)(13651680)=496(11224329812535)$.

Note: Since $5^{2^{4}}=\left(5^{8}\right)^{2^{1}}=\left(5^{4}\right)^{2^{2}}, \frac{1}{2}(164833)(354144)$ is also a multiple of each of 6 and 28 .

That is,

- If $a^{2}+b^{2}=c^{2}$ is a primitive Pythagorean triangle then its area is a multiple of the perfect number $\mathbf{6}$.
- If $a^{2}+b^{2}=c^{4}$ is a primitive Pythagorean triangle then its area is a multiple of each of the perfect numbers $\mathbf{6}$ and $\mathbf{2 8}$.
- If $a^{2}+b^{2}=c^{16}$ is a primitive Pythagorean triangle then its area is a multiple of each of the perfect numbers 6, 28, and 496.
- If $a^{2}+b^{2}=c^{64}$ is a primitive Pythagorean triangle then its area is a multiple of each of the perfect numbers $\mathbf{6}, \mathbf{2 8}, \mathbf{4 9 6}$, and 8128.
- If $a^{2}+b^{2}=c^{4096}$ is a primitive Pythagorean triangle then its area is a multiple of each of the perfect numbers $6,28,496,8128$, and 33550336.
- And, in general, if $a^{2}+b^{2}=\left(c^{2^{t}}\right)$ is a primitive Pythagorean triangle where $2^{t+1}-1$ is a Mersenne prime then the triangle's area is a multiple of each perfect number less than or equal to the perfect number $2^{t}\left(2^{t+1}-1\right)$.
E-mail address: fredlb@centurytel.net

