
MULTIPLYING PYTHAGOREAN TRIPLES

FRED BARNES

Usually when people speak of multiplying Pythagorean triples they are referring
to multiplying the hypotenuses of of two triples to generate another Pythagorean
triple. For example, if (a1, b1, c1) and (a2, b2, c2) are Pythagorean triples then
(a1a2− b1b2, a1b2 +a2b1, c1c2) is also a Pythagorean triple. However, Pythagorean
triples can be generated by multiplying the other sides of two triples as well. That
is, not only does c1c2 generate a Pythagorean triple, so does a1a2, b1b2, b1a2, and
a1b2.

Preliminaries

We will first derive identities for multiplying the sums of two squares and for
multiplying the differences of two squares to give the sum of two squares and the
difference of two squares respectively.

Let a± bβ and c± dβ be elements of an integral domain. Then,
(
a2 − b2β2

) (
c2 − d2β2

)
= (a + bβ)(a− bβ)(c + dβ)(c− dβ)

=
(
(a + bβ)(c + dβ)

)(
(a− bβ)(c− dβ)

)

=
((

ac + bdβ2
)

+ (bc + ad)β
)((

ac + bdβ2
)− (bc + ad)β

)

=
(
ac + bdβ2

)2 − (
bc + ad

)2
β2

=
(
(a + bβ)(c− dβ)

)(
(a− bβ)(c + dβ)

)

=
((

ac− bdβ2
)

+ (bc− ad)β
)((

ac− bdβ2
)− (

bc− ad
)
β
)

=
(
ac− bdβ2

)2 − (
bc− ad

)2
β2 .

Hence, we have
(1)(
a2 − b2β2

) (
c2 − d2β2

)
=

(
ac+bdβ2

)2−(
bc+ad

)2
β2 =

(
ac−bdβ2

)2−(
bc−ad

)2
β2.

Set β = i =
√−1 , and substitute into equation (1) to get Fibonacci’s Identity

for multiplying the sums of two squares,

(2)
(
a2 + b2

) (
c2 + d2

)
= (ac− bd)2 + (bc + ad)2 = (ac + bd)2 + (bc− ad)2.
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Set β = 1, to get an analogous identity for multiplying the differences of two
squares,

(3)
(
a2 − b2

) (
c2 − d2

)
= (ac + bd)2 − (bc + ad)2 = (ac− bd)2 − (bc− ad)2.

Each of these identities is a special case of Brahmagupta’s identity,
(4)(−na2 + b2

) (−nc2 + d2
)

= (nac + bd)2−n (bc + ad)2 = (nac− bd)2−n (bc− ad)2

Set n = −1 and n = 1 in (4) to get equations (2) and (3) respectively.

Multiplying Pythagorean triples

Note that a2 = c2− b2, b2 = c2− a2, and a2 + b2 = c2 are equivalent methods of
writing a Pythagorean triangle.

If (a1, b1, c1) and (a2, b2, c2) are two Pythagorean triples then, from equations(2)
and (3), we have

(a) c2
1c

2
2 =

(
a2
1 + b2

1

) (
a2
2 + b2

2

)
= (a1a2 − b1b2)2 + (a1b2 + b1a2)2 = (a1a2 +

b1b2)2 + (a1b2 − b1a2)2

(b) a2
1a

2
2 =

(
c2
1 − b2

1

) (
c2
2 − b2

2

)
= (c1c2 + b1b2)2 − (c1b2 + b1c2)2 = (c1c2 −

b1b2)2 − (c1b2 − b1c2)2.
(c) b2

1b
2
2 =

(
c2
1 − a2

1

) (
c2
2 − a2

2

)
= (c1c2 + a1a2)2 − (c1a2 + a1c2)2 = (c1c2 −

a1a2)2 − (c1a2 − a1c2)2.
(d) b2

1a
2
2 =

(
c2
1 − a2

1

) (
c2
2 − b2

2

)
= (c1c2 + a1b2)2 − (c1b2 + a1c2)2 = (c1c2 −

a1b2)2 − (c1b2 − a1c2)2.
(e) a2

1b
2
2 =

(
c2
1 − b2

1

) (
c2
2 − a2

2

)
= (c1c2 + b1a2)2 − (c1a2 + b1c2)2 = (c1c2 −

b1a2)2 − (c1a2 − b1c2)2.

From which we will define the following multiplications where (a1, b1, c1) and
(a2, b2, c2) are Pythagorean triples. And the over bars designate multiplier and
multiplicand.

(1) (a1, b1, c̄1)⊗ (a2, b2, c̄2) = (a1a2 − b1b2, a1b2 + a2b1, c1c2).

(2) (ā1, b1, c1)⊗ (ā2, b2, c2) = (a1a2, c1b2 + c2b1, c1c2 + b1b2).

(3)
(
a1, b̄1, c1

)⊗ (
a2, b̄2, c2

)
= (c1a2 + c2a1, b1b2, c1c2 + a1a2).

(4)
(
a1, b̄1, c1

)⊗ (ā2, b2, c2) = (c1b2 + a1c2, b1a2, c1c2 + a1b2).

(5) (ā1, b1, c1)⊗
(
a2, b̄2, c2

)
= (c1a2 + b1c2, a1b2, c1c2 + b1a2).

(6) (a1, b1, c̄1)¯ (a2, b2, c̄2) = (a1a2 + b1b2, a1b2 − a2b1, c1c2).

(7) (ā1, b1, c1)¯ (ā2, b2, c2) = (a1a2, c1b2 − c2b1, c1c2 − b1b2).
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(8)
(
a1, b̄1, c1

)¯ (
a2, b̄2, c2

)
= (c1a2 − c2a1, b1b2, c1c2 − a1a2).

(9)
(
a1, b̄1, c1

)¯ (ā2, b2, c2) = (c1b2 − a1c2, b1a2, c1c2 − a1b2).

(10) (ā1, b1, c1)¯
(
a2, b̄2, c2

)
= (c1a2 − b1c2, a1b2, c1c2 − b1a2).

If a1 = a2 = a, b1 = b2 = b, and c1 = c2 = c then, from items 1− 10,
i. (a, b, c̄)⊗ (a, b, c̄) =

(
a2 − b2, 2ab, c2

)
.

ii. (ā, b, c)⊗ (ā, b, c) =
(
a2, 2cb, c2 + b2

)
.

iii.
(
a, b̄, c

)⊗ (
a, b̄, c

)
=

(
b2, 2ca, c2 + a2

)
.

iv.
(
a, b̄, c

)⊗ (ā, b, c) = (ā, a, c)⊗ (
a, b̄, c

)
=

(
ca + cb, ab, c2 + ab

)
.

v.
(
a, b̄, c

)¯ (ā, b, c) = (ā, a, c)¯ (
a, b̄, c

)
=

(
ca− cb, ab, c2 − ab

)
.

Examples

The ordered triples (3, 4, 5) and (5, 12, 13) are Pythagorean triples, hence from
1− 10, we get the resultant Pythagorean triples,

• (3, 4, 5̄)⊗ (5, 12, 1̄3) = (33, 56, 65).
• (3̄, 4, 5)⊗ (5̄, 12, 13) = (15, 112, 113).
• (3, 4̄, 5)⊗ (5, 1̄2, 13) = (64, 48, 80).
• (3, 4̄, 5)⊗ (5̄, 12, 13) = (99, 20, 101).
• (3̄, 4, 5)⊗ (5, 1̄2, 13) = (77, 36, 85).
• (3, 4, 5̄)¯ (5, 12, 1̄3) = (63, 16, 65).
• (3̄, 4, 5)¯ (5̄, 12, 13) = (15, 8, 17).
• (3, 4̄, 5)¯ (5, 1̄2, 13) = (14, 48, 50).
• (3, 4̄, 5)¯ (5̄, 12, 13) = (21, 20, 29).
• (3̄, 4, 5)¯ (5, 1̄2, 13) = (27, 36, 45).

Let a be odd. Then clearly, from items i through v, if (a, b, c) is a primitive
Pythagorean triple (PPT) then so are

(∣∣a2 − b2
∣∣ , 2ab, c2

)
,
(
a2, 2cb, c2 + b2

)
,

(
ca,

b2

2
,

c2 + a2

2

)
,

(
ca + cb, ab, c2 + ab

)
, and

(
|ca− cb| , ab, c2 − ab

)
.

Example: Since (3, 4, 5) is a PPT, so are

(7, 24, 25), (9, 40, 41), (15, 8, 17), (35, 12, 37), and (5, 12, 13).
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Claim 1. Let (a1, b1, c1) and (a2, b2, c2) be vectors in 3-space. Then, if (a1, b1, c1)
and (a2, b2, c2) are also primitive Pythagorean triples, where a1 and a2 are of op-
posite parity, the scalar product

[
a1 b1 c1

]



a2

b2

c2


 = a1a2 + b1b2 + c1c2

is a perfect square.

Proof. Without loss of generality let a1 be odd and a2 even. So, since both vectors
are also PPTs, there exists positive integers m1, n1, m2, and n2 such that

a1 = m2
1 − n2

1, b1 = 2m1n1, and c1 = m2
1 + n2

1

a2 = 2m2n2, b2 = m2
2 − n2

2, and c2 = m2
2 + n2

2

Where mi and ni are relative prime, have opposite parity, and mi > ni for i = 1
and 2.

Hence we have,

a1a2 + b1b2 + c1c2 =
(
m2

1 − n2
1

)
a2 + 2m1n1b2 +

(
m2

1 + n2
1

)
c2

=m2
1(c2 + a2) + 2m1n1

√
c2 + a2

√
c2 − a2 + n2

1(c2 − a2)

=
(
m1

√
c2 + a2 + n1

√
c2 − a2

)2

=
(
m1(m2 + n2) + n1(m2 − n2)

)2

=
(
(m1 + n1)m2 + (m1 − n1)n2

)2
.

Similarly it can be shown that the sums (−a1a2+b1b2+c1c2), (a1a2−b1b2+c1c2),
and (−a1a2 − b1b2 + c1c2) are also perfect squares. ¤

Example: Let (a, b, c) be a PPT where a is even, then each of the sums (3a +
4b + 5c), (−3a + 4b + 5c), (3a− 4b + 5c), and (−3a− 4b + 5c) is a perfect square.

Theorem 1. Let (a, b, c) = (b, a, c) be greater than (3, 4, 5). Then (a, b, c) is a prim-
itive Pythagorean triple (PPT) if and only if there exists another PPT, (u, v, w),
such that (a, b, c) equals either (3̄, 4, 5)⊗ (ū, v, w) or (3̄, 4, 5)¯ (ū, v, w) .

Proof. We know that since (a, b, c) is a PPT then a and b have opposite parity.
That is, one of a and b is odd and the other is even. We also know that 3 divides
exactly one of a and b. Label (a, b, c) such that 3 divides a. Then there are two
cases: a is even, or a is odd.

Case 1, a is even: So, there exists relatively prime positive integers of opposite
parity, m and n, m > n, such that

a = 2mn, b = m2 − n2, and c = m2 + n2

where 3 divides exactly one of m and n.
If 3 | m, set s equal to the greater of m/3 and n and t equal to the lesser. Then

choose u, v, and w such that

u = 2st, v = s2 − t2, and w = s2 + t2.
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Then we have

Case 1a, s = m/3 > n = t:

a =2mn = 2 · 3(m/3)n = 3 · 2st = 3u,

b =m2 − n2 = 9(m/3)2 − n2 = 5
(
(m/3)2 − n2

)
+ 4

(
(m/3)2 + n2

)

=4
(
s2 + t2

)
+ 5

(
s2 − t2

)
= 4w + 5v,

c =m2 + n2 = 9(m/3)2 + n2 = 5
(
(m/3)2 + n2

)
+ 4

(
(m/3)2 − n2

)

=5
(
s2 + t2

)
+ 4

(
s2 − t2

)
= 5w + 4v.

Therefore

(a, b, c) = (3u, 5v + 4w, 5w + 4v) = (3̄, 4, 5)⊗ (ū, v, w) .

And since m and n are relatively prime positive integers of opposite parity so are
s and t. Hence (u, v, w) is a PPT.

Case 1b, s = n > m/3 = t:

a =2mn = 2 · 3n(m/3) = 3 · 2st = 3u,

b =m2 − n2 = 9(m/3)2 − n2 = 4
(
n2 + (m/3)2

)
+ 5

(
(m/3)2 − n2

)

=4
(
s2 + t2

)− 5
(
s2 − t2

)
= 4w − 5v,

c =m2 + n2 = n2 + 9(m/3)2 = 5
(
n2 + (m/3)2

)− 4
(
n2 − (m/3)2

)

=5
(
s2 + t2

)− 4
(
s2 − t2

)
= 5w − 4v.

Therefore

(a, b, c) = (3u, 5v + 4w, 5w + 4v) = (3̄, 4, 5)⊗ (ū, v, w) .

Where (u, v, w) is a PPT.

Case 2, a is odd: So, there exists relatively prime positive integers of opposite
parity, m and n, m > n, such that

a = m2 − n2 = (m + n)(m− n), b = 2mn, and c = m2 + n2.

Note that since m and n are relatively prime then so are m + n and m− n.

Case 2a, 3 divides m + n
set s = 2m−n

3 and t = 2n−m
3 . Then choose u, v, and w such that

u = s2 − t2, v = 2st, and w = s2 + t2.
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We have,

a =m2 − n2 = 3

((
2m− n

3

)2

−
(

2n−m

3

)2
)

= 3
(
s2 − t2

)
= 3u.

b =2mn = 4

((
2m− n

3

)2

+
(

2n−m

3

)2
)

+ 5 · 2
(

2m− n

3

)(
2n−m

3

)

=4
(
s2 + t2

)
+ 5(2st) = 4w + 5v.

c =m2 + n2 = 5

((
2m− n

3

)2

+
(

2n−m

3

)2
)

+ 4 · 2
(

2m− n

3

)(
2n−m

3

)

=5
(
s2 + t2

)
+ 4(2st) = 5w + 4v.

Therefore, if 2n −m > 0, (a, b, c) = (3u, 4w + 5v, 5w + 4v) = (3̄, 4, 5) ⊗ (ū, v, w).
And (u, v, w) is a PPT. And if 2n−m < 0 then v = −2st and (a, b, c) = (3u, 4w −
5v, 5w − 4v) = (3̄, 4, 5)¯ (ū, v, w).

Case 2b, 3 divides m−n set s = 2m+n
3 and t = 2n+m

3 . Then choose u, v, and
w such that

u = s2 − t2, v = 2st, and w = s2 + t2.

We have,

a =m2 − n2 = 3

((
2m + n

3

)2

−
(

2n + m

3

)2
)

= 3
(
s2 − t2

)
= 3u.

b =2mn = 4

((
2m + n

3

)2

+
(

2n + m

3

)2
)
− 5 · 2

(
2m + n

3

)(
2n + m

3

)

=4
(
s2 + t2

)− 5(2st) = 4w − 5v.

c =m2 + n2 = 5

((
2m + n

3

)2

+
(

2n + m

3

)2
)
− 4 · 2

(
2m + n

3

)(
2n + m

3

)

=5
(
s2 + t2

)− 4(2st) = 5w − 4v.

Therefore (a, b, c) = (3u, 4w − 5v, 5w − 4v) = (3̄, 4, 5)¯ (ū, v, w). And (u, v, w) is a
PPT.

And going in the other direction, if (u, v, w) is a PPT then either (3̄, 4, 5) ⊗
(ū, v, w) or (3̄, 4, 5)¯ (ū, v, w) is a PPT.

Proof. If (3u, 4w +5v, 5w +4v) and (3u, 4w− 5v, 5w− 4v) or both not primitive
then (4w + 5v, 5w + 4v) = d1 > 1 implies d1 | 4w + 5v + 5w + 4v = 32(w + v). And
d1 | −4w− 5v +5w +4v = w− v. Since 1 < d1 | w− v, d1 > 1 can not divide w + v
since (w, v) = 1. Hence d1 = 3 or 32.

Similarly, if (4w − 5v, 5w − 4v) = d2 > 1 then d2 = 3 or 32. That is, 3 |
4w +5v +4w− 5v = 4w and 3 | 4w +5v− (4w− 5v) = 10v. This implies that 3 | w
and 3 | v, a contradiction. Hence either (3̄, 4, 5)⊗ (ū, v, w) or (3̄, 4, 5)¯ (ū, v, w) is
primitive. ¤

¤
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That is, if 3 divides a > 3 then (a,b, c) is a primitive Pythagorean
triple if and only if there exists a primitive Pythagorean triple (u,v,w)
such that

(a,b, c) = (3u, 4w + 5v, 5w + 4v) or (3u, 4w − 5v, 5w − 4v).

Examples

(780, 1421, 1621) and (780, 731, 1069) are primitive Pythagorean triples where 3
divides the even side.
Problem 1: Find a PPT (u, v, w) such that

(3̄, 4, 5)⊗ (ū, v, w) = (780, 1421, 1621) and (3̄, 4, 5)¯ (ū, v, w) = (780, 731, 1069).

Solution: Since (780, 1421, 1621) is primitive, m/n = 780/(1621 − 1421) (re-
duced to lowest terms) equals 39/10. So s = m/3 = 39/3 = 13 and t = n = 10.
Then

(u, v, w) =
(
2st, s2 − t2, s2 + t2

)
= (260, 69, 269).

And

(3̄, 4, 5)⊗(ū, v, w) = (3̄, 4, 5)⊗( ¯260, 69, 269) = (3·260, 4·269+56̇9, 5·269+4·69) = (780, 1421, 1621).

Similarly, since (780, 731, 1069) is primitive, m/n = 780/(1069 − 731) = 30/13.
So s = 30/3 = 10 and t = n = 13. Since s < t, we have

(3̄, 4, 5)¯(ū, v, w) = (3̄, 4, 5)¯( ¯260, 69, 269) = (3·260, 4·269−5·69, 5·269−4·69) = (780, 731, 1069).

(1365, 18988, 19037) is a PPT where 3 divides the odd side.

Problem 2: Find a PPT (u, v, w) such that (3̄, 4, 5)⊗(ū, v, w) = (1365, 18988, 19037).

Solution: Since (1365, 18988, 19037) is a PPT, m/n = 18988/(19037− 1365) =
101/94. And 3 divides m + n = 101 + 94 = 195, therefore s = (2 · 101− 94)/3 = 36,
and t = 2 · 94− 101) = 29. So,

(3̄, 4, 5)⊗ (ū, v, w) = (3̄, 4, 5)⊗ ( ¯362 − 292, 2 · 29 · 36, 362 + 292
)

=(3̄, 4, 5)⊗ ( ¯455, 2088, 2137)

=(3 · 455, 5 · 2088 + 4 · 2137, 5 · 2137 + 4 · 2088)

=(1365, 18988, 19037).
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