next up previous contents
Next: 60 degree triangle preserving Up: 120 degree primitive triples,(a,b,c), Previous: 120 degree primitive triples,(a,b,c),   Contents

A 120 degree triangle preserving matrix


Let

$\displaystyle \mathbf{M}=\begin{pmatrix}
m_{1,1}&m_{1,2}&m_{1,3}\\
m_{2,1}&m_{2,2}&m_{2,3}\\
m_{3,1}&m_{3,2}&m_{3,3}
\end{pmatrix}.
$

From table (7), set

$\displaystyle \mathbf{A}=\begin{pmatrix}
8&7&13\\
105&104&181\\
1456&1455&2521
\end{pmatrix}$   and$\displaystyle \quad
\mathbf{B}=\begin{pmatrix}
105&104&181\\
1456&1455&2521\\
20273&20272&35113
\end{pmatrix}.
$

So solving for $ \mathbf{M}$ in the matrix equation

$\displaystyle \mathbf{A} \mathbf{M}=\mathbf{B}
$

we find that

$\displaystyle \boxed{\mathbf{M}=\begin{pmatrix}4 & 3 & 6\ 3 & 4 & 6\ 4 & 4 & 7 \end{pmatrix}.}$ (39)

If $ a^2+b^2+ab=c^2$ then

$\displaystyle \begin{pmatrix}
a & b & c
\end{pmatrix}\begin{pmatrix}
4 & 3 & 6\\
3 & 4 & 6\\
4 & 4 & 7
\end{pmatrix} =
\begin{pmatrix}
u &v & w
\end{pmatrix}$

where $ u^2+v^2+uv=w^2.$ And

$\displaystyle \begin{pmatrix}m^2-n^2&2mn+n^2&m^2+n^2+mn\end{pmatrix}\mathbf{M}=
\begin{pmatrix}s^2-t^2&2st+t^2&s^2+t^2+st\end{pmatrix}$

where $ s=3m+2n$ and $ t=m+n.$ So, if $ \left(m^2-n^2,2mn+n^2,m^2+n^2+mn\right)$ is a primitive triple, $ s$ and $ t$ are, relatively prime, positive integers, $ s>t,$ where, $ 3\nmid s-t=2m+n.$ That is, $ \mathbf{M}$ takes a primitive triple and outputs a primitive triple.


Note that $ u-v=a-b.$ For example.

$\displaystyle \begin{pmatrix}
3& 5& 7
\end{pmatrix}\mathbf{M}
=
\begin{pmatrix}
55& 57& 97
\end{pmatrix}.
$

If $ n$ is a positive integer then

$\displaystyle \begin{pmatrix}
1 & 0 & 1
\end{pmatrix} \mathbf{M}^n =
\begin{pmatrix}
a_n & b_n & c_n
\end{pmatrix},
$

where $ (a_n,b_n,c_n)$ is the $ n^{th}$ solution to the primitive 120 degree triangle $ a^2+b^2+ab=c^2$ such that $ a_n-b_n=1.$



next up previous contents
Next: 60 degree triangle preserving Up: 120 degree primitive triples,(a,b,c), Previous: 120 degree primitive triples,(a,b,c),   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1