next up previous contents
Next: A 120 degree triangle Up: Pythagorean Triples, etc. Previous: 120 degree and 60   Contents

120 degree primitive triples,(a,b,c), where a - b=1.


$ (a,b,c)$ is a primitive solution in positive integers to the 120 degree equation $ a^2+b^2+ab=c^2$ if and only if there exists relatively prime, positive integers $ m$ and $ n$ , $ m > n$ , $ m\not\equiv n \pmod{3}$ such that

$\displaystyle a=m^2-n^2,\quad b=2mn+n^2,$   and$\displaystyle \quad
c=m^2+n^2+mn.
$ (38)

Finding solutions where a-b=1
(We'll need these first four recursive solutions to find the first matrix.)

Let $ a-b=\left(m^2-n^2\right)-\left(2mn+n^2\right)=(m-n)^2-3n^2=1$ , a Pell equation. Hence, solutions are

$\displaystyle m-n=\frac{(2+\sqrt{3})^s+(2-\sqrt{3})^s}{2}=f(s)$   and$\displaystyle \quad
n=\frac{(2+\sqrt{3})^s-(2-\sqrt{3})^s}{2\sqrt{3}}=g(s).
$

Then $ m=f(s)+g(s)$ and $ n=g(s)$ . Thus

$\displaystyle a=$ $\displaystyle \bigl(f(s)+g(s)\bigr)^2-g(s)^2 ,$    
$\displaystyle b=$ $\displaystyle 2\bigl(f(s)+g(s)\bigr)g(s)+g(s)^2 ,$    
and$\displaystyle \quad c=$ $\displaystyle \bigl(f(s)+g(s)\bigr)^2+g(s)^2+\bigl(f(s)+g(s)\bigr) g(s) .$    


Examples



Table 7: $ a-b=1$ .
s f(s) g(s) m n a b c
1 2 1 3 1 8 7 13
2 7 4 11 4 105 104 181
3 26 15 41 15 1456 1455 2521
4 97 56 153 56 20273 20272 35113




Subsections
next up previous contents
Next: A 120 degree triangle Up: Pythagorean Triples, etc. Previous: 120 degree and 60   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1