next up previous contents
Next: 120 degree and 60 Up: Pythagorean Triples, etc. Previous: Finding parametric equations for   Contents

Finding m and n if given a 120 degree primitive triple


If given a primitive triangle $ a^2+b^2+ab=c^2$ , we know that one of $ a$ and $ b$ is equal to $ m^2-n^2$ and the other equals $ 2mn+n^2$ where $ m$ and $ n$ are relatively prime, positive integers, $ m > n$ , and $ 3\nmid m-n$ . But, how do we determine which of $ a$ and $ b$ equals $ m^2-n^2$ ?

Lemma 2   If $ a^2+b^2+ab=c^2$ is a primitive integer-sided 120 degree triangle, generated by the parameters $ m$ and $ n$ , then $ a=m^2-n^2$ if and only if $  3\nmid c+a-b$ .

Proof. $ (\Rightarrow)\quad a=m^2-n^2$ . Then $ c+a-b=\left(m^2+n^2+mn\right)+\left(m^2-n^2\right)-\left(2mn+n^2\right)=(2m+n)(m-n)$ . Since $ 3\nmid m-n$ then $ m=3k+n+1$ or $ 3k+n+2$ for some integer $ k$ . So, $ 2m+n=3(k+n)+2$ or $ 3(k+n+1)+1$ . Therefore $ 3\nmid c+a-b$


$ (\Leftarrow)\quad 3\nmid c+a-b$ . Either $ a=2mn+n^2$ or $ a=m^2-n^2$ . If $ a=2mn+n^2$ then $ c+a-b=\left(m^2+n^2+mn\right)+\left(2mn+n^2\right)-\left(m^2-n^2\right)=3\left(n^2+mn\right)$ . Therefore $ a=m^2-n^2$ . $ \qedsymbol$

Theorem 6   Let $ a^2+b^2+ab=c^2$ be a given primitive, positive integer-sided triangle. Assign labels $ a$ and $ b$ such that $ 3\nmid c+a-b$ ; from Lemma (2), this can be done in exactly one way. Then the fractions

$\displaystyle \frac{c+a}{b},\quad \frac{c+b+2a}{c+b-a},\quad
\frac{a+b}{c-a},$ and $\displaystyle   \frac{2c+a-b}{2b+a-c}$

(each fraction reduced to lowest terms) is equal to $ \frac{m}{n}$ where

$\displaystyle a=m^2-n^2 ,\quad b= 2mn+n^2,$   and$\displaystyle \quad
c=m^2+n^2+mn.
$

Proof. Since $ 3\nmid c+a-b$ then $ a=m^2-n^2$ . So,

$\displaystyle \frac{c+a}{b}$ $\displaystyle =\frac{\left(m^2+n^2+mn\right)+\left(m^2-n^2\right)}{2mn+n^2}= \frac{m(2m+n)}{n(2m+n)}=\frac{m}{n} ,$    
     
$\displaystyle \frac{c+b+2a}{c+b-a}$ $\displaystyle =\frac{\left(m^2+n^2+mn\right)+\left(2mn+n^2\right)+2\left(m^2-n^...
...ft(2mn+n^2\right)-\left(m^2-n^2\right)}=\frac{3m(m+n)}{3n(m+n)} =\frac{m}{n} ,$    
     
$\displaystyle \frac{a+b}{c-a}$ $\displaystyle =\frac{\left(m^2-n^2\right)+\left(2mn+n^2\right)} {\left(m^2+n^2+mn\right)-\left(m^2-n^2\right)}=\frac{m(m+2n)}{n(2n+m)}=\frac{m}{n} ,$    
     
and $\displaystyle \quad \frac{2c+a-b}{2b+a-c}$ $\displaystyle =\frac{2\left(m^2+n^2+mn\right)+\left(m^2-n^2\right) -\left(2mn+n...
...+\left(m^2-n^2\right)-\left(m^2+n^2+mn\right)} =\frac{3m^2}{3mn}=\frac{m}{n} .$    

$ \qedsymbol$

Theorem 7   Let $ a^2+b^2+ab=c^2$ be a given primitive, positive integer-sided triangle. Assign labels $ a$ and $ b$ such that $ 3\mid c+a-b$ ; from Lemma (2), this can be done in exactly one way. Then the fractions

$\displaystyle \frac{c+a}{b},\quad \frac{c+b+2a}{c+b-a},\quad
\frac{a+b}{c-a},$ and $\displaystyle   \frac{2c+a-b}{2b+a-c}$

(each fraction reduced to lowest terms) is equal to $ \frac{m}{n}$ where

$\displaystyle a=\frac{m^2-n^2}{3} ,\quad b= \frac{2mn+n^2}{3},$   and$\displaystyle \quad c=\frac{m^2+n^2+mn}{3} .$

Proof. Since $ 3\mid c+a-b$ there exists relatively prime, positive integers $ u$ and $ v$ , $ u > v$ , $ u \equiv v \pmod{3}$ such that

$\displaystyle a=2uv+v^2,\quad b=u^2-v^2,$   and$\displaystyle \quad c=u^2+v^2+uv.
$

Then

$\displaystyle \frac{c+a}{b}=$ $\displaystyle \frac{u^2+v^2+uv+2uv+v^2}{u^2-v^2}=\frac{(u+v)(u+2v)}{(u+v)(u-v)}=\frac{u+2v}{u-v} .$    
     
$\displaystyle \frac{c+b+2a}{c+b-a}=$ $\displaystyle \frac{u^2+v^2+uv+u^2-v^2+2\left(2uv+v^2\right)}{u^2+v^2+uv+u^2-v^...
...u^2+5uv+2v^2}{2u^2-uv-v^2}=\frac{(2u+v)(u+2v)}{(2u+v)(u-v)}=\frac{u+2v}{u-v} .$    
     
$\displaystyle \frac{a+b}{c-a}=$ $\displaystyle \frac{2uv+v^2+u^2-v^2}{u^2+v^2+uv-2uv-v^2}=\frac{u(u+2v)}{u(u-v)}=\frac{u+2v}{u-v} .$    
     
$\displaystyle \frac{2c+a-b}{2b+a-c}=$ $\displaystyle \frac{2\left(u^2+v^2+uv\right)+2uv+v^2-u^2+v^2} {2\left(u^2-v^2\right)+2uv+v^2-u^2-v^2-uv}=\frac{(u+2v)^2}{(u+2v)(u-v)}=\frac{u+2v}{u-v} .$    

Let $ m=u+2v$ and $ n=u-v$ . Then

$\displaystyle u=\frac{m+2n}{3}$   and$\displaystyle \quad v=\frac{m-n}{3} .
$

Hence, we have,

$\displaystyle a$ $\displaystyle = 2uv+v^2=\frac{m^2-n^2}{3} ,$    
$\displaystyle b$ $\displaystyle = u^2-v^2=\frac{2mn+n^2}{3} ,$    
and$\displaystyle \quad c$ $\displaystyle =u^2+v^2+uv=\frac{m^2+n^2+mn}{3} .$    

$ \qedsymbol$


Examples


$ 3^2+5^2+(3)(5)=7^2$ is a primitive 120 degree triangle. $ 3\nmid
7+3-5=5$ . Therefore $ a=3$ . So,

$\displaystyle \frac{7+3}{5}=\frac{7+5+6}{7+5-3}=\frac{3+5}{7-3}=\frac{14+3-5}{10+3-7}=\frac{2}{1} .
$


Hence $ 3=2^2-1^2$ , $ 5=2(2)(1)+1^2$ , and $ 7=2^2+1^2+(2)(1)$ .


$ 32^2+45^2+(32)(45)=67^2$ is primitive. $ 3\nmid 67+45-32=70$ . Therefore $ a=45$ . Thus

$\displaystyle \frac{67+45}{32}=\frac{67+32+90}{67+32-45}=\frac{45+32}{67-45}=\frac{134+45-32}{64+45-67}
=\frac{7}{2} .
$


Hence $ 45=7^2-2^2$ , $ 32=2(7)(2)+2^2$ , and $ 67=7^2+2^2+(7)(2)$ .


$ 3^2+5^2+(3)(5)=7^2$ is a primitive 120 degree triangle. $ 3\mid
7+5-3=9$ . Therefore $ a=5$ . So,

$\displaystyle \frac{7+5}{3}=\frac{7+3+10}{7+3-5}=\frac{5+3}{7-5}=\frac{14+5-3}{6+5-7}=\frac{4}{1} .
$

Hence

$\displaystyle 5=\frac{4^2-1^2}{3},\quad 3=\frac{2(4)(1)+1^2}{3},$   and$\displaystyle \quad 7=\frac{4^2+1^2+(4)(1)}{3} .
$


$ 32^2+45^2+(32)(45)=67^2$ is primitive. $ 3\mid 67+32-45=54$ . Therefore $ a=32$ . Thus

$\displaystyle \frac{67+32}{45}=\frac{67+45+64}{67+45-32}=\frac{32+45}{67-32}=\frac{134+32-45}{90+32-67}=\frac{11}{5} .
$

Hence

$\displaystyle 32=\frac{11^2-5^2}{3},\quad 45=\frac{2(11)(5)+5^2}{3},$   and$\displaystyle \quad 67=\frac{11^2+5^2+(11)(5)}{3} .
$


next up previous contents
Next: 120 degree and 60 Up: Pythagorean Triples, etc. Previous: Finding parametric equations for   Contents
f. barnes 2008-04-29
Hosted by www.Geocities.ws

1