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Time-Frequency Representations as Phase
Space Reconstruction in Symbolic
Recurrence Structure Analysis

Mariia Fedotenkova, Peter beim Graben, Jamie W. Sleigh and Axel Hutt

Abstract Recurrence structures in univariate time series are challenging to detect.1

We propose a combination of symbolic and recurrence analysis in order to identify2

recurrence domains in the signal. This method allows to obtain a symbolic repre-3

sentation of the data. Recurrence analysis produces valid results for multidimen-4

sional data, however, in the case of univariate time series one should perform phase5

space reconstruction first. In this chapter, we propose a new method of phase space6

reconstruction based on signal’s time-frequency representation and compare it to the7

delay embedding method. We argue that the proposed method outperforms the delay8

embedding reconstruction in the case of oscillatory signals. We also propose to use9

recurrence complexity as a quantitative feature of a signal. We evaluate our method10

on synthetic data and show its application to experimental EEG signals.11
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2 M. Fedotenkova et al.

1 Introduction14

Recurrent temporal dynamics is a phenomenon frequently observed in time series15

measured in biological systems. For instance, bird songs exhibit certain temporal16

structures, that recur in time [28]. Other examples are returning epileptic seizures [2],17

recurrent brain microstates in language processing [4] and in early auditory neural18

processing [13]. All these latter phenomena are observed in electroencephalographic19

data (EEG). To detect such temporal recurrent structures, typically one applies recur-20

rence analysis [7, 21] based on Poincaré’s theorem [24]. This approach allows the21

detection of recurrence structures in multivariate time series. To retrieve recurrence22

structures from univariate time, several methods have been suggested, such as delay23

embedding techniques.24

However, most existing methods do not take into account specifically the oscilla-25

tory nature of the signals as observed in biological systems. To this end, we propose26

a technique to embed the univariate time series in a multidimensional space to better27

consider oscillatory activity. The approach is based on the signals time-frequency28

representation. In a previous work we have sketched this approach [27] already but29

without discussing its performance subject to different time-frequency representa-30

tions. The present work shows this detailed discussion and suggests a new method to31

classify signals according to their recurrence complexity. Applications to artificial32

data permits to evaluate the method and compare it to results gained from the con-33

ventional delay embedding technique. Final applications to experimental EEG data34

indicates the method’s future application.35

2 Analysis Methods and Data36

2.1 Symbolic Recurrence Structure Analysis37

Recurrence is a fundamental property of nonlinear dynamical systems, which was38

first formulated by Poincaré in [24]. It was further illustrated in recurrence plot (RP)39

technique proposed by Eckmann et al. [7]. This relatively simple method allows to40

visualize multidimensional trajectories on a two-dimensional graphical representa-41

tion. The RP can be obtained by plotting the recurrence matrix:42

Rij = !
(
" − ||xi − xj||

)
, i, j = 1, 2,… ,N, (1)43

where xi ∈ IRd is the state of the complex system in the phase space of dimension d44

at a time instance i; || ⋅ || denotes a metric, ! is the Heaviside step function, and "45

is a threshold distance.46

It can be seen from (1), that if two points in the phase space are relatively close, the47

corresponding element of the recurrence matrix Rij = 1, which would be represented48

by a black dot on the RP.49
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Time-Frequency Representations as Phase Space Reconstruction . . . 3

Instead of analyzing RPs point-wise we concentrate our attention on recurrence50

domains, labeling each domain with a symbol, thus obtaining recurrence plots of51

symbolic dynamics. The RP from symbols were successfully used in several studies52

(see, for instance, [6, 8, 17]). Here, we use symbolic recurrence structure analysis53

(SRSA) proposed in [3], this technique allows to obtain symbolic representations54

of the signal from the RP, the latter being interpreted as a set of rewriting rules.55

According to these rules, large time indices are substituted with smaller ones when56

two states, occurring at these times, are recurrent. The process starts by initializing57

a symbolic sequence with discrete time at which the signal is computed, i.e., si = i.58

Next, this sequence is recursively rewritten based on the elements in the RP, namely,59

si → sj if i > j and Rij = 1. Afterwards, the sequences is scanned for monotonically60

increasing indices and each of them is mapped to one symbol si = 0, which labels61

transient states. This is done to differentiate between metastable states from transi-62

tions between them. More detailed description of the method and examples can be63

found in [3, 5].64

By examining (1) one can see that the resulting recurrence matrix and, thus,65

symbolic sequence strongly depend on distance threshold parameter !. Several tech-66

niques for optimal ! estimation exist [22], most of which are heuristic. SRSA aims67

to obtain an optimal value of ! from the data.68

Here, we propose two approaches to estimate ! optimally, based on (i) the prin-69

ciple of maximal entropy and (ii) Markov chain model of the system. The for-70

mer implies that the system spends an equal amount of time in each recurrence71

domain [3], while the latter takes into account the probabilities of the system’s tran-72

sition from one recurrence state to another [5]. Each of these approaches assumes a73

certain model for the system’s dynamics, hence for each ! value we can calculate a74

value of a utility function, which describes how well an obtained symbolic sequence75

fits to the proposed model. The optimal value of the threshold distance !∗ will then76

be the one to maximize the value of the utility u(!) function:77

!∗ = arg max
!

u(!) . (2)78

The utility function is different for both models. In the first case, the utility func-79

tion is presented with the normalized symbolic entropy:80

u(!) = −
∑n−1

k=0 pk(!) log pk(!)
n(!) , (3)81

where pk(!) is the relative frequency of the symbol k, n(!) is the cardinality of the82

alphabet (number of states). Here, we divide the entropy by the cardinality of the83

alphabet in order to compensate for the influence of the alphabet size.84

The second model rests upon the following assumptions about the ideal system’s85

dynamics. (i) The system’s states exhibit mainly self-transitions, i.e., transition prob-86

abilities pii are larger than the probabilities of other transitions. (ii) There are no87

direct transitions from one metastable state to another without passing through tran-88
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4 M. Fedotenkova et al.

sient state, i.e., pij = 0 when i ≠ j for i, j > 0. (iii) Probabilities of transitions from89

and to transient states, p0i and pi0, respectively, are distributed according to the prin-90

ciple of maximum entropy. We can now construct a transition matrix corresponding91

to the desired dynamics:92

P =

⎡
⎢
⎢
⎢
⎢⎣

1 − (n − 1)q r r ⋯ r
q 1 − r 0 ⋯ 0
q 0 1 − r ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
q 0 0 ⋯ 1 − r

⎤
⎥
⎥
⎥
⎥⎦

, (4)93

here, the total number of states is n and the number of recurrence states is n − 1,94

diagonal elements correspond to the probabilities of self transitions, q = pi0 and r =95

p0i for i, j > 0 are transition probabilities to and from transient state s0 = 0.96

Keeping in mind the three criteria of the optimal dynamics, we can achieve97

the desired utility function by: (i) maximizing the trace of the transition matrix98

tr P = 1 + (n − 1)(1 − q − r); (ii) maximizing the normalized entropy of transition99

probabilities of the first row and the first column of P after neglecting p00, i.e.,100

p′
0i = p0i∕

∑n−1
i=1 p0i for the first row and p′

i0 = pi0∕
∑n−1

i=1 pi0 for the first column.101

(iii) suppressing transitions between recurrence states by simultaneously maximiz-102

ing the trace and the entropies of the first row and column of P, due to normalization103

condition ∑n−1
i=0 pij = 1. Then the utility function is given by:104

u(!) = 1
n − 2

(
tr P(!) + hr(!) + hc(!)

)
, (5)105

where hr and hc are the entropies of the first row and column of P (see [5] for more106

details).107

2.2 Phase Space Reconstruction108

A dynamical system is defined by an evolution law in a phase space. This space is d-109

dimensional, where each dimension correspond to a certain property of a system (for110

instance, position, and velocity). Each point of the phase space refers to a possible111

state of the system. An evolution law, which is normally given by a set of differential112

equations, defines system’s dynamics, shown as a trajectory in a phase space.113

In certain cases only discrete measurements of a single observable are available,114

in this situation a phase space should be reconstructed according to Takens’s the-115

orem [26], which states that phase space presented with a d-dimensional manifold116

can be mapped into 2d + 1-dimensional Euclidean space preserving dynamics of the117

system. Several method of phase space reconstruction exist: delay embedding [26],118

numerical derivatives [23] and others (see for instance [16]).119
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Time-Frequency Representations as Phase Space Reconstruction . . . 5

In this work we propose a new method of phase space reconstruction based on the120

time-frequency representation of a signal. A time-frequency representation (TFR) is121

a distribution of the power of the signal over time and frequency. Here, the power122

in each frequency band contributes to a dimension of the reconstructed phase space.123

This approach is well-adapted for non-stationary and, especially, for oscillatory data,124

allowing better detection of oscillatory components rather than creating RPs point-125

wise from the signal. In this article we compare performance of the SRSA with differ-126

ent reconstruction methods, delay embedding and two different TFRs: spectrogram127

and scalogram.128

2.2.1 Delay Embedding129

Assume, we have a time series which represents scalar measurements of a system’s130

observable in discrete time:131

xn = x(n!t), n = 1, … , N , (6)132

where !t is measurement sampling time. Then reconstructed phase space is given133

by:134

sn =
[
xn, xn+" , xn+2" , … , xn+(m−1)"

]
, n = 1, … , N − (m − 1)" , (7)135

where m is the embedding dimension and " is the time delay.136

These parameters play an important role in correct reconstruction and should be137

estimated appropriately. Optimal time delay " should be chosen such that delay vec-138

tors from (7) are sufficiently independent. The most common technique to correctly139

estimate the " parameter is based on average mutual information [9, 19]. More-140

over, the main attribute of appropriately chosen dimension m is that the original141

d-dimensional manifold will be embedded into an m-dimensional space without142

ambiguity, i.e., self-crossing and intersections. We apply the method of false nearest143

neighbors [14, 15], which permits the estimation of the minimal embedding dimen-144

sion.145

2.2.2 Time-Frequency Representation146

Time-frequency representation of a signal shows the signal’s energy distribution in147

time and frequency. In this work we analyze two different types of TFR: the spectro-148

gram and the scalogram (based on continuous wavelet transform).149

The spectrogram Sh(t,#) of a signal x(t) is the square magnitude of its short-time150

Fourier transform (STFT):151

439384_1_En_7_Chapter ✓ TYPESET DISK LE ✓ CP Disp.:30/6/2017 Pages: 15 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

6 M. Fedotenkova et al.

Xh(t,!) =
+∞

∫
−∞

x(")h∗(t − ")e−i!" d" , (8)152

where h(t) is a smoothing window and ∗ denotes the complex conjugate, i.e., Sh(t,!)153

= ||Xh(t,!)||2.154

The continuous wavelet transform (CWT) [1] is obtained by convolving the signal155

with a set of functions #ab(t) obtained by translation and dilation of a mother wavelet156

function #0(t):157

T# (b, a) =
1√
a

+∞

∫
−∞

x(t)#∗
0

( t − b
a

)
dt , (9)158

then, by analogy with the spectrogram, the squared magnitude of the CWT is called159

scalogram: W# (b, a) =
|||T# (b, a)

|||
2. In practice, the scale a can be mapped to a160

pseudo-frequency f and the dilation b represents a time instance and hence the time-161

frequency distribution is given by W# (t, f ).162

The scalogram was computed using analytical Morlet wavelet, and a Hamming163

window with 80% overlap was chosen for the spectrogram. In all the methods the164

window length and scale locations were chosen such as to achieve a frequency res-165

olution of 0.2Hz for synthetic data and 1Hz for experimental data.166

2.3 Complexity Measure167

To quantitatively assess the obtained symbolic sequences we propose to measure168

its complexity. We present here three different complexity measures. These are the169

cardinality of the sequence’s alphabet and the number of distinct words obtained170

from the sequence [12], where a word is a unique group of the same symbols. In171

addition, we compute the well-known Lempel-Ziv (LZ) complexity [18], which is172

related to the number of distinct substrings and the rate of their occurrence along the173

symbolic sequence. All of the complexity measures have in common the notion of174

complexity, that is the number of distinct elements required to encode the symbolic175

string. The more complex the sequence is, the more of such elements are needed to176

present it without redundancy.177

To demonstrate these measures we generated 100 artificial signals of two kinds178

(see below) with random initial conditions and random noise.179
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Time-Frequency Representations as Phase Space Reconstruction . . . 7

2.4 Synthetic Data180

2.4.1 Transient Oscillations181

The signal is a linear superposition of three signals, which exhibit sequences of noisy182

transient oscillations at a specific frequency [27]. These frequencies are 1.0, 2.25 and183

6.3Hz, cf. Fig. 1a. The sampling frequency is 50 Hz and the signal has a duration of184

70 s. Figure 1 shows the three different transient oscillations whose sum represents185

the signal under study.186

2.4.2 Lorenz System187

The solution of the chaotic Lorenz system [3, 20] exhibits two wings which are188

approached in a unpredictable sequence. These wings represent metastable signal189

states. Figure 1b shows the time series of the z-component of the model.190

2.5 Experimental Data191

We examine electroencephalographic data (EEG) obtained during surgery under192

general anesthesia [25]. The EEG data under investigation has been captured at193

frontal electrodes 2 min before (pre-incision phase) and 2 min after (post-incision194

phase) skin incision and last 30 s. The raw signal was digitized at a rate of 128 Hz195

and digitally band-pass filtered between 1 and 41 Hz using a 9th order Butterworth196

filter. The question in the corresponding previous study [25] was whether it is pos-197

sible to distinguish the pre-incision from post-incision phase just on the basis of the198

captured EEG time series.199
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Fig. 1 Example signals of the synthetic data. a Three signals, whose sum represents the transient
oscillation signal under study. b Solution of the Lorenz system along a single dimension
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8 M. Fedotenkova et al.

3 Results200

3.1 Synthetic Data201

3.1.1 Time-Frequency Embedding202

To illustrate the method, Fig. 2 shows two different time-frequency representations203

of the transient oscillations signal. Spectrogram yields time-frequency intervals of204

high power at very good accordance with the underlying dynamics, cf. Sect. 2.4. In205

contrast, wavelet analysis smears out upper frequencies as a consequence of their206

intrinsic normalization of power. The symbolic sequences and the corresponding207

recurrence plots (middle and right-hand side of the panel) derived from the spectro-208

gram fits perfectly to the underlying dynamics and are the same for both utility func-209

tions. They exhibit three different symbols in the symbolic sequence color-coded in210

blue, red and orange separated be transient states (color-coded in beige) in Fig. 2a and211

alternate in very good accordance to the three different transient oscillations. They212

are also visible as three rectangles of different size in the symbolic recurrence plot.213

Conversely, the scalogram yield only two recurrent signal features (entropy) and few214

recurrent states of brief duration (Markov), which do not reflecting the underlying215

dynamics.216

Typically experimental neurophysiological signals exhibit a less regular tempo-217

ral structure than given in the transient oscillations example. Solutions of the Lorenz218

system exhibit chaotic behavior, that is rather irregular and exhibits metastable oscil-219

latory states. Since experimental EEG may exhibit chaotic behavior [10, 11], the220
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Fig. 2 Results for the transient oscillation signal. a Spectrogram; b scalogram. On each subfig-
ure, left time-frequency representation, middle RPs with corresponding symbolic sequences above
them (entropy utility function), right the same but with Markov utility function. In each symbolic
sequence colors denote metastable states and transient states show in beige
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Fig. 3 Results for the Lorenz system. a Spectrogram; b scalogram. On each subfigure, left time-
frequency representation, middle RPs with corresponding symbolic sequences above them (entropy
utility function), right the same but with Markov utility function. In each symbolic sequence colors
denote metastable states and transient states show in beige

Lorenz signal is tentatively closer to neurophysiological data. Figure 3 shows the221

TFR of the Lorenz signal. For both TFRs, one can well identify visually the four222

signal states I–IV marked in Fig. 1b. The color-coded symbolic sequences extracted223

from the spectrogram (seen in Fig. 3a) identify correctly the time windows of the224

signal states I–IV and are identical for both utility functions. The states I, II and IV225

are well captured, whereas the short state III is not well identified. The scalogram226

results are much worse in case of entropy utility function only states I and IV are227

identified, while Markov utility function captures all four states but no recurrence is228

present.229

3.1.2 Delay Embedding230

To illustrate the power of the method proposed, we compare our results to recurrence231

analysis results utilizing delay embedding, cf. Sect. 2.2. We consider the transient232

oscillations and the Lorenz signal, compute the optimal delay embedding parame-233

ters and apply the recurrence analysis technique to gain the symbolic sequences and234

the recurrence plots. Figure 4 reveals that the delay embedding essentially fails in235

detecting the recurrence domains in the transient oscillations compared to the time-236

frequency embedding (in case of both utility functions). In the Lorenz signal all states237

I-IV are captured in the symbolic sequence and visible in the recurrence plot, how-238

ever the detection is much worse than with time-frequency embedding, cf. Fig. 3.239

Also entropy utility function tends to produce few recurrent states with no transient240

states, whilst the usage of the Markov utility entails larger numbers of metastable241

and transient states.242
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Fig. 4 Results obtained with delay embedding. a The transient oscillations, reconstruction para-
meters: m = 5, ! = 0.1 s; b the Lorenz system, reconstruction parameters: m = 3 and ! = 0.16 s

3.1.3 Complexity Measures243

To quantify the intrinsic temporal structure, in addition we compute three complex-244

ity measures for each of the signals. To demonstrate the ability of complexity mea-245

sures to distinguish temporal structures, Fig. 5 gives the distribution of complexity246

measures for both artificial datasets. We show results obtained with spectrogram,247

however the results for other embeddings are similar (not shown here for the sake of248

brevity). We observe that all complexity measures show significantly different dis-249

tributions. Qualitatively, the largest difference between both signals is reflected in250

the LZ complexity measure. We also observe that in general complexities of Lorenz251

B&
W
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T

(a) (b)

Fig. 5 Boxplots of three complexity measures for transient oscillations (blue) and Lorenz system
(red) obtained with the spectrogram. a Entropy utility function; b Markov utility function. For each
complexity measure, both distributions are significantly different (Kolmogorov-Smirnov test with
p < 0.001)
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Time-Frequency Representations as Phase Space Reconstruction . . . 11

system are larger than the ones of transient oscillations when obtained with Markov252

utility, it is the opposite for entropy utility function.253

3.2 EEG Data254

Finally, we study experimental EEG data. Figure 6 shows time-frequency plots (spec-255

trogram) with corresponding symbolic sequences for two patients before and after256

incision during surgery. We observe activity in two frequency bands, namely strong257

power in the !-band (1–5 Hz) and lower power in the "-range (8–12 Hz). This find-258

ing is in good accordance to previous findings in this EEG dataset [25]. The corre-259

sponding spectral power is transient in time in both frequency bands, whose temporal260

structure is well captured by the recurrence analysis with entropy utility function as261

seen in the symbolic sequences. The symbolic analysis with Markov utility func-262

tion captures underlying dynamics well in case of patient #1099 (post-incision). In263

general Markov-based recurrence analysis tends to extract less recurrence domains264

separated by long transitions.265

In order to characterize the temporal structure, we compute the symbolic266

sequences’ recurrence complexity, which are shown in Table 1. We observe that the267

values of the various complexity measures are very similar in pre- and post-incision268

data and close between patients. However complexities obtained with entropy util-269

ity function reveal larger differences between experimental conditions than between270
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Fig. 6 Results for EEG signals obtained with spectrogram. Two colorbars below represent sym-
bolic sequences obtained with entropy utility function (top) and Markov utility function (bottom).
In each symbolic sequence colors denote metastable states and transient states show in beige.
a Patient #1065 (pre-incision); b Patient #1065 (post-incision); c Patient #1099 (pre-incision); d
Patient #1099 (post-incision)
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Table 1 Complexity measures of EEG signals (spectrogram)
Complexity
measure

Entropy Markov

Pre-incision Post-incision Pre-incision Post-incision
Patient #1065

Alphabet size 7 12 8 9
Nr. of words 19 25 15 12
Lempel-Ziv 22 27 13 13

Patient #1099
Alphabet size 5 13 3 8
Nr. of words 15 28 5 20
Lempel-Ziv 16 40 6 20

patients, whilst Markov utility function demonstrates larger variation between271

patients than between the conditions. Since the time periods of pre- and post-incision272

data are captured several minutes apart and hence the corresponding data are uncor-273

related, their similarity of complexity measures is remarkable pointing out to a con-274

stant degree of complexity in each patient. This is in line with the different complex-275

ity measures in both patients indicating different complexity measures.276

4 Discussion277

The present work shows that recurrence analysis can be employed on univariate278

time series if, at first, the data is transformed into its time-frequency representa-279

tion. This transform provides a multivariate time series whose number of dimen-280

sions is equal to the number of frequency bins considered. We show that the best281

time-frequency representation for the synthetic time series is the spectrogram. We282

compare two approaches for estimation of optimal threshold distance required in283

SRSA. We demonstrate that a model of system’s dynamics can be easily incorpo-284

rated in the method through a utility function. However, if the model is not accurate285

the performance is worse. The recurrence structures extracted can be represented by286

a symbolic sequence whose symbolic complexity may serve as an indicator of the287

time series complexity. The EEG data analysis performed in this study indicates that288

the symbolic complexity may serve as a classifier to distinguish temporal structures289

in univariate time series.290
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