definition:

power spectral density (PSD)

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

of a sampled signal with duration $T=N\Delta t$

definition:

power spectral density (PSD)

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

of a sampled signal with duration $T=N\Delta t$

For interpretation, the observed system should be stationary in time (in wider sense).

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: computed from full signal

SamplingError_5.py

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$
 DFT: computed from full signal

2. Bartlett method

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: average over segments

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: computed from full signal

2. Bartlett method

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: average over segments

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: computed from full signal

2. Bartlett method

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$

DFT: average over segments

3. Bartlett-Welch method

$$S(f_n) = \frac{\Delta t}{N} |\mathrm{DFT}(f_n)|^2$$
 DFT: average over **overlapping** segments

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

$$s(t) = \int_{-\infty}^{t} H(t-\tau)I(\tau)d\tau$$
 output impulse response function

discrete time

$$s(t_k) = \sum_{m=-\infty}^k H(t_{k-m})I(t_m)$$
 output
$$\max_{\text{impulse}}$$
 response function

$$s(t_k) = \sum_{m=-\infty}^k H(t_{k-m})I(t_m)$$
 output impulse response function

$$\tilde{s}(f) = \tilde{H}(f)\tilde{I}(f)$$

$$s(t_k) = \sum_{m=-\infty}^k H(t_{k-m})I(t_m)$$
 output
$$\max_{\text{impulse}}$$
 response function

$$\tilde{s}(f) = \tilde{H}(f)\tilde{I}(f)$$

$$PSD(f) = |\tilde{H}(f)|^2 |\tilde{I}(f)|^2$$

data sampling

Fourier analysis

errors in analysis

linear filters frequency pass filter

time-dependent filters

time-frequency analysis

$PSD(f) = |\tilde{H}(f)|^2 |\tilde{I}(f)|^2$

Lowpass filter

Highpass filter

$$PSD(f) = |\tilde{H}(f)|^2 |\tilde{I}(f)|^2$$

Bandpass filter

bandwidth B

$$\tilde{s}(w) = \frac{iB'w}{-w^2 + iB'w + w_0^2} \tilde{I}(w)$$
 $w = 2\pi f , B' = 2\pi B$

$$\tilde{s}(w) = \frac{iB'w}{-w^2 + iB'w + w_0^2} \tilde{I}(w)$$
 $w = 2\pi f , B' = 2\pi B$

$$(-w^2 + iB'w + w_0^2)\tilde{s}(w) = iB'w\tilde{I}(w)$$

$$\tilde{s}(w) = \frac{iB'w}{-w^2 + iB'w + w_0^2} \tilde{I}(w)$$
 $w = 2\pi f , B' = 2\pi B$

$$(-w^2 + iB'w + w_0^2)\tilde{s}(w) = iB'w\tilde{I}(w)$$

$$iw\tilde{s}(w)\leftrightarrow rac{d}{dt}s(t)$$

$$-w^2 \tilde{s}(w) \leftrightarrow \frac{d^2}{dt^2} s(t)$$

$$\tilde{s}(w) = \frac{iB'w}{-w^2 + iB'w + w_0^2} \tilde{I}(w)$$
 $w = 2\pi f, B' = 2\pi B$

$$(-w^{2} + iB'w + w_{0}^{2})\tilde{s}(w) = iB'w\tilde{I}(w)$$

$$iw\tilde{s}(w)\leftrightarrow rac{d}{dt}s(t)$$

$$-w^2 \tilde{s}(w) \leftrightarrow \frac{d^2}{dt^2} s(t)$$

$$\left(\frac{d^2}{dt^2} + B'\frac{d}{dt} + w_0^2\right)s(t) = B'\frac{d}{dt}I(t)$$

$$\dot{s} = u$$

$$\dot{u} = -B'u - w_0^2 s + B'\dot{I}$$

$$\dot{s} = u$$

$$\dot{u} = -B'u - w_0^2 s + B'\dot{I}$$

discrete time

$$s_{n+1} = s_n + \Delta t u_n$$

 $u_{n+1} = u_n + \Delta t (-B'u_n - w_0^2 s_n + B'\dot{I}_n)$

$$\dot{s} = u$$

$$\dot{u} = -B'u - w_0^2 s + B'\dot{I}$$

discrete time

$$s_{n+1} = s_n + \Delta t u_n$$

 $u_{n+1} = u_n + \Delta t (-B'u_n - w_0^2 s_n + B'\dot{I}_n)$

 $f_o=o.4Hz$, B=o.2Hz

 $f_0=0.4Hz$, B=0.2Hz

selection of 0.4Hz oscillation,

but contribution of neighbour o.6Hz-band visible

 $f_o=1.oHz$, B=0.5Hz

 $f_o=1.0Hz$, B=0.5Hz

selection of 1.0Hz oscillation,

but contribution of neighbour 0.4 and 0.6Hz-band visible

application to time series: filter divergence

 $f_0=1.0Hz$, B=0.25Hz

application to time series: filter divergence

 $f_o=1.0Hz$, B=0.25Hz

enhancement of 1.0Hz oscillation by filter divergence

due to too small bandwidth B

application to time series: filter divergence

 $f_o=1.0Hz$, B=0.25Hz

enhancement of 1.0Hz oscillation by filter divergence

due to too small bandwidth B

solution: larger bandwidth or filter of higher order

bandpass filter of higher order:

e.g. 4th order

$$\tilde{s}(w) = \frac{a_1 w^2}{b_0 + b_1 w + b_2 w^2 + b_3 w^3 + b_4 w^4} \tilde{I}(w)$$

with parameters a₁, b₁,...,b₄

bandpass filter of higher order:

e.g. 4th order

$$\tilde{s}(w) = \frac{a_1 w^2}{b_0 + b_1 w + b_2 w^2 + b_3 w^3 + b_4 w^4} \tilde{I}(w)$$

with parameters a₁, b₁,...,b₄

advantage:

faster decay at borders

bandpass filter of higher order: 4th order Butterworth filter

bandpass filter of higher order: 4th order Butterworth filter

bandpass filter of higher order: 4th order Butterworth filter

4th order Butterworth bandpass filter is more stable than previous 2nd order

bandpass filter of higher order: 4th order Butterworth filter

4th order Butterworth bandpass filter is more stable than previous 2nd order

Take home message: try different orders and check stability

data sampling

Fourier analysis

errors in analysis

linear filters frequency pass filter time-dependent filters

time-frequency analysis

Example:

$$\tilde{s}(w) = \frac{1}{iw + 1/\tau_0} \tilde{I}(w)$$

Example:

$$\tilde{s}(w) = \frac{1}{iw + 1/\tau_0} \tilde{I}(w)$$

Example:

$$\tilde{s}(w) = \frac{1}{iw + 1/\tau_0} \tilde{I}(w)$$

$$|\tilde{H}(w)|^2 = \frac{1}{\tau_0^2 w^2 + 1}$$

$$H(t) = e^{-t/\tau_0}$$

$$s(t) = \int_{-\infty}^{t} e^{-(t-t')/\tau_0} I(t') dt'$$

$$s(t) = \int_{-\infty}^{\infty} G(t - t')I(t')dt'$$

$$s(t) = \int_{-\infty}^{\infty} G(t - t')I(t')dt'$$

G(t): filter window = sliding window

s(t): correlation function of G and I

$$s(t) = \int_{-\infty}^{\infty} G(t - t')I(t')dt'$$

G(t): filter window = sliding window

s(t): correlation function of G and I

linear filters

can be seen as a time-dependent correlation function

of a signal with a sliding window

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

$$\Delta T = 50s$$

frequency resolution:

$$\Delta f = 0.02Hz$$

very good frequency resolution, very bad time resolution

$$\Delta T = 50s$$

frequency resolution:

$$\Delta f = 0.02Hz$$

time-independent frequency on large time scale

50

time [s]

55

0.5

good frequency resolution — bad time resolution

 $\Delta T=10S$

frequency resolution:

 $\Delta f = 0.1Hz$

time-dependent frequency on shorter time scale

 $\Delta T = 10s$

frequency resolution:

 $\Delta f = 0.1Hz$

$$\Delta T = 2s$$

frequency resolution:

$$\Delta f = \text{o.5Hz}$$

bad frequency resolution — good time resolution

it is necessary to balance time and frequency resolution since

$$\Delta T \sim \frac{1}{\Delta f}$$

it is necessary to balance time and frequency resolution since

$$\Delta T \sim \frac{1}{\Delta f}$$

$$\Delta T \Delta f = \text{const}$$

Heisenberg uncertainty relation

it is necessary to balance time and frequency resolution since

$$\Delta T \sim \frac{1}{\Delta f}$$

$$\Delta T \Delta f = \text{const}$$

Heisenberg uncertainty relation

Question: is there an instantaneous frequency?

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

uni-resolution analysis multi-resolution analysis non-Fourier analysis

Short-time Fourier Transform (STFT)

$$s(t,f) = \int_{-\infty}^{\infty} w(t-t')x(t')e^{-i2\pi ft'}dt'$$
 filter window input to filter

finite size!!

Short-time Fourier Transform (STFT)

typical finite size windows w(t)

time window: $\Delta T=20S$

frequency resolution: $\Delta f = 0.05 \text{Hz}$

overlap of 13.4s

overlap of 19.7s

 $\Delta T = 20s$

frequency resolution:

$$\Delta f = \text{o.o5Hz}$$

overlapping sliding windows

improve

time and frequency resolution

time [s]

Hanning and Gaussian results are similar

comment: if

$$(\mu_2)_{|f|^2} = \sigma_{|f|^2}^2 = \int_{\mathbb{R}} (x - x_m)^2 |f(x)|^2 dx$$

temporal variance

$$(\mu_2)_{|\hat{f}|^2} = \sigma_{|\hat{f}|^2}^2 = \int_{\mathbb{R}} (\xi - \xi_m)^2 |\hat{f}(\xi)|^2 d\xi$$

frequency variance

and

$$||f||_2^2 = \int_{\mathbb{R}} |f(x)|^2 dx$$

comment: if

$$(\mu_2)_{|f|^2} = \sigma_{|f|^2}^2 = \int_{\mathbb{R}} (x - x_m)^2 |f(x)|^2 dx$$

temporal variance

and

$$||f||_2^2 = \int_{\mathbb{R}} |f(x)|^2 dx$$

then

$$\sigma_{|f|^2}^2 \cdot \sigma_{|\hat{f}|^2}^2 \geq \frac{\|f\|_2^4}{16\pi^2} \quad \text{Heisenberg-Weyl inequality}$$

minimum uncertainty

$$\sigma_{|f|^2}^2 \sigma_{|\hat{f}|^2}^2 = \frac{||f||_2^4}{16\pi^2}$$

if

$$f(t) = c_0 e^{i2\pi ft} e^{-c_1(x - x_m)^2}$$

minimum uncertainty

$$\sigma_{|f|^2}^2 \sigma_{|\hat{f}|^2}^2 = \frac{||f||_2^4}{16\pi^2}$$

if

$$f(t) = c_0 e^{i2\pi f t} e^{-c_1 (x - x_m)^2}$$

best time-frequency resolution if window is of Gaussian shape

Gabor transformation

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

uni-resolution analysis multi-resolution analysis non-Fourier analysis

Short-time Fourier Tranform:

$$X(\tau,f) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-i2\pi ft}dt$$
 window function

Short-time Fourier Tranform:

$$X(\tau, f) = \int_{-\infty}^{\infty} x(t)w(t - \tau)e^{-i2\pi ft}dt$$
window function

Linear frequency filter:

$$X(\tau, f) = \int_{-\infty}^{\infty} x(t)w(t - \tau)e^{-i2\pi f(t - \tau)}dt$$
$$= \int_{-\infty}^{\infty} x(t)h(t - \tau)dt$$

impulse response function

Short-time Fourier Tranform:

$$X(\tau,f) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-i2\pi ft}dt$$
 window function

Linear frequency filter:

$$X(\tau, f) = \int_{-\infty}^{\infty} x(t)w(t - \tau)e^{-i2\pi f(t - \tau)}dt$$

$$= \int_{-\infty}^{\infty} x(t)h(t-\tau)dt$$

impulse response function

correlation between signal x and impulse response function h

STFT has constant time-frequency resolution,

but transient signals need different time resolutions

temporal scale factor a

impulse response function fits to signal at that time instance

—> strong correlation X

e.g.

$$\Psi_a(t) = k_1 e^{-t^2} (e^{-i\frac{t}{a}} - k_2)$$

$$\Psi_a(t) = k_1 e^{-t^2} \left(e^{-i\frac{t}{a}} - k_2 \right)$$

$$X(\tau, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \bar{\Psi} \left(\frac{t - \tau}{a} \right) dt$$

continuous wavelet transform

 $\Psi(t)$: mother wavelet

properties:

adminissibility
$$\int_{-\infty}^{\infty} \Psi\left(t\right) dt = 0 \qquad \text{mother wavelet has to be oscillatory}$$

properties:

adminissibility
$$\int_{-\infty}^{\infty} \Psi\left(t\right) dt = 0 \qquad \text{mother wavelet has to be oscillatory}$$

example: complex Morlet wavelet

$$\Psi(t) = k_1 e^{-t^2} (e^{-i\sigma t} - k_2)$$

in neuroscience: $5 \le \sigma \le 8$ recommended

$$X(\tau, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \bar{\Psi}\left(\frac{t - \tau}{a}\right) dt \qquad X(\tau, a) = \text{IFT} \left[\tilde{x}(f) \cdot \bar{\Psi}(af) \sqrt{a} \right] (\tau)$$

$$X(\tau, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \bar{\Psi}\left(\frac{t - \tau}{a}\right) dt \qquad X(\tau, a) = \text{IFT} \left[\tilde{x}(f) \cdot \bar{\Psi}(af) \sqrt{a} \right] (\tau)$$

$$X(\tau, a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t) \bar{\Psi}\left(\frac{t - \tau}{a}\right) dt \qquad X(\tau, a) = \text{IFT}\left[\tilde{x}(f) \cdot \tilde{\bar{\Psi}}(af)\sqrt{a}\right](\tau)$$

scalogram with Morlet wavelet

pseudo frequency
$$f_p = \frac{f_c}{a}$$

pseudo frequency is the frequency of maximum mother wavelet power

pseudo frequency
$$f_p = \frac{f_c}{a}$$

pseudo frequency is the frequency of maximum mother wavelet power

"pseudo": not a unique frequency, but represents a distribution

from: A. Hutt and J. Lefebvre,

Arousal fluctuations govern oscillatory transitions between dominant gamma- and alpha occipital activity during eyes open/closed conditions,

Brain Top. (2021)

data taken from: A. Hutt and J. Lefebvre, Brain Top. (2021); doi:10.1007/s10548-021-00855-z

related Python libraries

PyWavelets

https://github.com/PyWavelets/pywt

overlapping frequency bands for different a!!

filter bank with non-overlapping bands

optimal decomposition of signal !!!!!!!!!!

optimal decomposition of signal !!!!!!!!!!

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

uni-resolution analysis multi-resolution analysis non-Fourier analysis

Hilbert Transform

an oscillation with a single frequency has a power spectrum with negative frequency

Hilbert Transform

$$s_a(t) = \cos(2\pi ft) + i\sin(2\pi ft) = e^{i2\pi ft}$$

analytical signal s_a(t) contains a single positive frequency