definition:
power spectral density (PSD)

At

S(fn) = =7 IDFT(fu)I"

of a sampled signal with duration ' = N At



definition:
power spectral density (PSD)

At
of a sampled signal with duration ' = N At

For interpretation, the observed system should be stationary in time (in wider sense).

Els(t)];? = E[s(t)];* = const Var(s(t)]2, Var[s(t)];: < oo
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1. Periodogram

At
S(fn) = ~ DFT(f,)|" DFT: computed from full signal

2. Bartlett method

At

S(fn) — W ‘DFT(fn) |2
DET: average over segments



1. Periodogram

2. Bartlett method
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1. Periodogram

2. Bartlett method
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3. Bartlett-Welch method
S(fn)

At

N

DET(f,)["

0.003

0.002

overlapping segments

Bartlett PSD Bartlett-Welch PSD

smoothens more PSD

6 | |
u‘“ A
O s W ad s A Y WA D\t A

40 60 80
frequency [Hz]



linear filters






continuous time



discrete time









linear filters frequency pass filter
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Example: 2nd order bandpass filter

1 — N BQfZ
H(f)P H(f)]? =
(f5 = 12)* + B2
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Example: 2nd order bandpass filter

i B'w -
Q p— ] :2 B/:2 B
S(w) “w? tiBw (w) w=2rf, T




Example: 2nd order bandpass filter

i B'w -
Q p— ] :2 B/:2 B
S(w) “w? tiBw (w) w=2rf, T

(—w? +iB'w + w?)3(w) = iB'wl(w)



Example: 2nd order bandpass filter

1 B w -

S(w) = I(w)

—w? +1B'w + wg

(—w? +iB'w + w?)3(w) = iB'wl(w)

w=2rf, B =2nB



Example: 2nd order bandpass filter

1 B w -

S(w) = I(w)

—w? +1B'w + wg

(—w? +iB'w + w?)3(w) = iB'wl(w)

w=2rf, B =2nB



Va
|
=~

continuous time

= —B'u—wis+ B'I



S =u
= —B'u—wis+ B'I

continuous time

-
|

Spi1 = Sp, + Atuy,

discrete time

U1 = Unp + At(—B'u,, — wgsn + B’fn)



S = U
continuous time

= —B'u—wis+ B'I

Spi1 = Sp, + Atuy,

discrete time

U1 = Unp + At(—B'u,, — wgsn + B’fn)



application to time series
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|IDFT]

application to time series

fo—0.4Hz , B=0.2Hz

selection of 0.4Hz oscillation,
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application to time series
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application to time series: filter divergence
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application to time series: filter divergence
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application to time series: filter divergence

fo=1.0Hz , B=0.2§Hz
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o 1z 14 enhancement of 1.0Hz oscillation by filter divergence

due to too small bandwidth B

solution: larger bandwidth or filter of higher order



bandpass filter of higher order:

&121]2

_ I
bo + b1 + bow? + bawd + baw? (w)

e.g. 4th order S(w)

with parameters a,, b,,..,b,



bandpass filter of higher order:

a1 w2 ~
e.g. 4th order s(w) = I (w
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bandpass filter of higher order: 4th order Butterworth filter
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bandpass filter of higher order: 4th order Butterworth filter
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bandpass filter of higher order: 4th order Butterworth filter

4th order Butterworth bandpass filter is more stable than previous 2nd order



bandpass filter of higher order: 4th order Butterworth filter

4th order Butterworth bandpass filter is more stable than previous 2nd order

Take home message: try different orders and check stability



linear filters
time-dependent filters



Example:




Example:

I(t’)
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Example:
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G(t): filter window = sliding window

s(t): correlation function of G and |
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linear filters
can be seen as a time-dependent correlation function

of a signal with a sliding window
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time-frequency analysis
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average time window average time window
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time-independent frequency on large time scale
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Af = 0.02Hz
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average time windows
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it is necessary to balance time and frequency resolution since

1
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it is necessary to balance time and frequency resolution since

1
AT ~ —

Af

# A TAf = const Heisenberg uncertainty relation



it is necessary to balance time and frequency resolution since

1
AT ~ —

Af

# A TAf = const Heisenberg uncertainty relation

Question: is there an instantaneous frequency ?



time-frequency analysis

uni-resolution analysis



Short-time Fourier Transform (STFT)

(t.0) = [ wlt=)a(t)e I ar
—“filter window  input to filter

finite size !



Short-time Fourier Transform (STFT)
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typical finite size windows w(t)

Gaussian window (0 - 0.4)
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Hann window
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Fourier transform
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choose Hanning window in STFT
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comment: if
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comment: if

~ 2

(UQ)‘JS‘? — 0-2A 2 — /R(S o gm)Q f (f) df frequency variance

then

Heisenberg-Weyl inequality




minimum uncertainty

if

f(i) __ COGiQWfte—cl (T—T)”



minimum uncertainty

if

f(i) __ COGiQWfte—cl(az—a:m)Q

# best time-frequency resolution if window is of Gaussian shape

Gabor transformation



time-frequency analysis

multi-resolution analysis



Short-time Fourier Tranform:

X(7, f) = /OO r(w(t —7)e "It qt

— OO




Short-time Fourier Tranform:

X(7, f) = /OO r(w(t —7)e "t

— OO

Linear frequency filter:

X(1, f) = /OO r(Hw(t — 7)e =) qy

— OO0



Short-time Fourier Tranform:

X(7,f) = /00 r(w(t — 7)e ™t

— OO

Linear frequency filter:

X(7, f) = /—00 r(Hw(t — 7)e =) qy
= /oo z(t)h(t — 7)dt

correlation between signal x and impulse response function h
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STFT has constant time-frequency resolution,

but transient signals need different time resolutions
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impulse response function does not fit to signal at that time instance

tN h N ‘ﬂ 2 A ,Uh “}" u‘ —> weak correlation X
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impulse response function doesn’t fit to signal at that time instance

—> weak correlation X
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continuous wavelet transform

W(¢) : mother wavelet



properties:

o0
adminissibility / \lj (t) dt =0 mother wavelet has to be oscillatory

— OO



properties:

adminissibility / \/ (t) dt = ()
— 00

example: complex Morlet wavelet

!

in neuroscience: 5 < ¢ < 8 recommended

/

mother wavelet has to be oscillatory










(0 f/

()

Morlet wavelet

e —...

X (T,

wavelet 2

P AY)

2 \ ‘V'

d=_C

a) =IFT |

10 15
frequency



0.0015

0.001

0.0005

a=3.5

A

frequency f [Hz]



0 20 40 60 80 100
time [s]

scalogram with Morlet wavelet

time [s]



power

a=4

relation between scales and frequency

a=3

0

1
center frequency f¢

frequency

15



relation between scales and frequency
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pseudo frequency is the frequency of maximum mother wavelet power



relation between scales and frequency
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pseudo frequency is the frequency of maximum mother wavelet power

“pseudo” : not a unique frequency, but represents a distribution
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Example:
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from: A. Hutt and J. Lefebvre,

Arousal fluctuations govern oscillatory transitions between dominant gamma- and alpha occipital activity during eyes open,/closed conditions,
Brain Top. (2021)
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data taken from: A. Hutt and J. Lefebvre, Brain Top. (2021); doi:10.1007/510548-021-00855-Z



related Python libraries

PyWavelets

https:/github.com/PyWavelets/pywt



comment: what is the Discrete Wavelet Transtorm ?
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power
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comment: what is the Discrete Wavelet Transtorm ?
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comment: what is the Discrete Wavelet Transtorm ?

filter bank with non-overlapping bands
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comment: what is the Discrete Wavelet Transtorm ?

filter bank with non-overlapping bands
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time-frequency analysis

non-Fourier analysis



Hilbert Transform

s(f) = cos(2xfyt)

real part of Fourier transform

T T T T T |

-1 1 2
frequency

an oscillation with a single frequency has a power spectrum with negative frequency



Hilbert Transform

e Sq(t) = cos(27 ft) + isin(2n ft) = 2™

real part of Fourier transform

| ! l ! T ! T |
-2 -1 1 2
frequency

analytical signal s,(t) contains a single positive frequency



