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Abstract 

Space-time fluctuations of meteorological parameters exhibit selfsimilar fractal 

fluctuations. Fractal space-time fluctuations are generic to dynamical systems in nature 

such as fluid flows, spread of diseases, heart beat pattern, etc. A general systems theory 

developed by the author predicts universal inverse power law form incorporating the 

golden mean for the fractal fluctuations. The model predicted distribution is in close 

agreement with observed fractal fluctuations of all size scales in the monthly total 

Indian region rainfall for the 141 year period 1871 to 2011. 
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1. Introduction 

Dynamical systems such as fluid flows, heart beat patterns, spread of infectious 

diseases, etc., exhibit selfsimilar, i.e., a zig-zag pattern of successive increases followed 

by decreases of all scales identified as fractal fluctuations. Fractal fluctuations signify 

non-local connections, i.e., long-range correlations in space and time. Lovejoy and 

Schertzer (2012) have done pioneering work during the last 30 years to identify 

conclusively the selfsimilar fractal nature of fluctuations in meteorological parameters. 

The Gaussian probability distribution used widely for analysis and description of large 

data sets underestimates the probabilities of occurrence of extreme events such as stock 

market crashes, earthquakes, heavy rainfall, etc. The assumptions underlying the 
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normal distribution such as fixed mean and standard deviation, independence of data, 

are not valid for real world fractal data sets exhibiting a scale-free power law 

distribution with fat tails (Selvam, 2009). There is now urgent need to incorporate 

newly identified fractal concepts in standard meteorological theory for realistic 

simulation and prediction of atmospheric flows. The author has developed a general 

systems theory model (Selvam, 2012a, Selvam, 2012b, Selvam, 2013) for fractal 

fluctuations in dynamical systems. The model predicts universal inverse power law 

form incorporating the golden mean (τ ≈ 1.618)  for the probability distribution of 

amplitudes of fractal fluctuations. The model predictions are in agreement with 

monthly total rainfall over the Indian region for the 141-year period 1871-2011. The 

paper is arranged as follows. Section 2 gives a brief summary of the general systems 

theory model predictions for fractal fluctuations in dynamical systems. Section 3 gives 

details of data and analysis techniques. A brief discussion of results in Section 4 is 

followed by Conclusions in Section 5. 

2. General Systems Theory for Fractal Fluctuations 

Power (variance) spectra of fractal fluctuations exhibit inverse power law form f-α 

where f is the frequency (or wavelength of the eddies) and α the exponent indicating (i) 

selfsimilar fractal fluctuations result from the coexistence of a continuum of eddies 

(waves) (ii) fractal fluctuations exhibit long-range space-time correlations since the 

amplitudes of larger and smaller size eddies are related to each other by the scale factor 

α alone independent of other characteristics of the eddies. 

The general systems theory model (Selvam, 1990, 2007, 2012a, 2012b, 2013) is 

based on the above observational fact that fractal fluctuations signify an underlying 



eddy continuum. The model is based on the simple concept that large eddies result from 

successive space-time integration of enclosed small-scale fluctuations (eddies) 

analogous to Townsend’s (1956) concept that large eddies are envelopes enclosing 

smaller scale eddies. The model predictions are  

i. Starting from unit primary eddy (radius r), the successive stages of large 

eddy (radius R) growth is associated with scale (length) ratio z equal to 

R/r and forms an eddy continuum which can be resolved into an overall 

logarithmic spiral trajectory tracing the quasiperiodic Penrose tiling 

pattern identified as quasicrystalline structure in condensed matter 

physics. Starting with unit primary eddy, successive stages of large eddy 

growth is associated with scale ratio z = to 1, 2, 3, etc. The primary eddy 

growth region is z = 0 to 1. 

ii. The probability distribution of amplitude and variance (square of 

amplitude) of fractal fluctuations (space/time series) when plotted with 

respect to normalized standard deviation σ equal to mean/standard 

deviation follow the same inverse power law form P.  

iii. For the range of normalized deviation σ values σ ≥ 1 and σ ≤ -1, the 

probability distribution P = τ-4σ.  

iv. Normalised deviation σ ranging from -1 to +1 corresponds to the 

primary eddy growth region. In this region the probability P is shown to 

be equal to kP 4τ−= where 
z

k
2
π

=  is the steady state fractional volume 



dilution k of the growing primary eddy by internal smaller scale eddy 

mixing (Selvam, 2013).  

v. The model predicted universal inverse power law distribution is very 

close to the statistical normal distribution for normalized deviation σ 

values less than 2 and exhibits a long fat tail for σ values more than 2, 

i.e., extreme events have a higher probability of occurrence than that 

predicted by statistical normal distribution as found in practice. The 

statistical normal distribution and the model predicted universal inverse 

power law distribution are shown in Fig.1 (Selvam, 2013). 

vi. Fractal fluctuations signify quantumlike chaos since the property that the 

additive amplitudes of eddies when squared represent the probability 

densities is exhibited by the subatomic dynamics of quantum systems 

such as the electron or photon. 



 

Fig. 1: Model predicted probability distribution P along with the corresponding 

statistical normal distribution with probability values plotted on linear and logarithmic 

scales respectively on the left and right hand sides. 

 

3. Data 

Monthly (January to December) Data (upto 1 decimal in mm) for the 141 year period 

(1871-2011) for the eight meteorological subdivisions of India (i) All-India (ii) 

Homogeneous (iii) Core-Monsoon (iv) Northwest (v) West Central (vi) Central 

Northeast (vii) Northeast (viii) Peninsular were obtained from 

ftp://www.tropmet.res.in/pub/data/rain/iitm-regionrf.txt and used for the study. 

3.1 Analyses and results 
Each data set was represented as the frequency of occurrence f(i) in a suitable number n 

of class intervals x(i), i=1, n covering the range of values from minimum to the 



maximum in the data set. The class interval x(i) represents dataset values in the range 

x(i) ± ∆x, where ∆x is a constant. The average av and standard deviation sd for the data 

set is computed as 
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The monthwise average and standard deviation values of rainfall for the 141-

year period (1871-2011) for the eight meteorological subdivisions of India are given in 

Fig. 2.  

The normalized deviation σ values for class intervals t(i) were then computed as 
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The cumulative percentage probabilities of occurrence cmax(i) and cmin(i) were 

then computed starting respectively from the maximum (i=n) and minimum (i=1) class 

interval values as follows. 
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The 12-month average and standard deviation of cumulative percentage 

probability values cmax(i) and cmin(i) were computed for each meteorological 



subdivision and plotted with respect to corresponding normalized deviation t(i) values 

with logarithmic scale for the probability axis (Fig. 3) along with model predicted 

universal inverse power law distribution. There is a close correspondence between 

model predicted and observed probability distributions of amplitudes of fractal 

fluctuations of all size scales in Indian region rainfall. 

 

Fig. 2: The monthwise average and standard deviation values of rainfall 

for the 141-year period (1871-2011) for the eight meteorological 

subdivisions of India 

 



 

Fig. 3: The 12-month average and standard deviation of cumulative percentage 

probability values for each meteorological subdivision and plotted with respect to 

corresponding normalized deviation t(i) values with logarithmic scale for the 

probability axis along with model predicted universal inverse power law distribution. 

 

4. Discussion 

The probability distribution P of amplitudes of fractal fluctuations in Indian region 

rainfall for fluctuations of all size scales closely follows the general systems theory 

model predicted universal inverse power law distribution P = τ-4σ where τ is the golden 

mean ( ≈ 1.618) and σ the normalized deviation equal to mean/standard deviation. The 

model predicted distribution is close to the observed distribution particularly for the 

normalized deviation σ values greater than 2 which correspond to extreme events with 



higher probability of occurrence than that predicted by the statistical normal 

distribution.  

Inverse power law distribution for fractal fluctuations implies long-range space-

time correlations manifested as memory or persistence in the space-time variability of 

the meteorological parameter such as rainfall, temperature, etc. Kantelhardt et al. 

(2006) state that the persistence analysis of river flows and precipitation has been 

initiated, about half a century ago, by H. E. Hurst, who found that runoff records from 

various rivers exhibit ‘‘long-range statistical dependencies’’ (Hurst, 1951). Later, 

similar long-term correlated fluctuation behavior has also been reported for many other 

geophysical records including temperature and precipitation data (Kantelhardt et al., 

2006). Characterizing and understanding the persistence of wet and dry conditions in 

the distant past gives new perspectives on contemporary climate change and its causes 

(Bunde et al., 2013). 

5. Conclusion 

A general systems theory model developed by the author predicts universal inverse 

power law form incorporating the golden mean for the fractal fluctuations. The model 

predicted distribution is in close agreement with observed fractal fluctuations of all size 

scales in the monthly total Indian region rainfall for the 141 year period 1871 to 2011. 
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