Tipos de Transmisión de Calor

El calor puede transmitirse de tres maneras. Puesto que el calor es la energía de la actividad molecular, una forma simple de transferencia del mismo, denominada conducción, será la comunicación directa de la energía molecular a través de una sustancia por medio de colisiones entre sus moléculas. Los metales contienen electrones "libres", que hacen de ellos buenos conductores de la electricidad ; estos electrones contribuyen también poderosamente a la conducción del calor, por esto, los metales son magníficos conductores térmicos (tabla 1).

Convección es una forma de transmisión del calor de un lugar a otro por movimiento de la materia caliente. Otro tipo de transferencia de calor puede ser por combinación de radiación y absorción. En la radiación, la energía térmica se transforma en energía radiante, similar en su naturaleza a la luz. En realidad, una parte de esta radiación es luminosa. En esta forma, la energía radiante puede atravesar distancias enormes antes de ser absorbida por un cuerpo y transformada de nuevo en calor. Por ejemplo, la energía radiante procedente del sol se convierte en calor en la superficie de la Tierra ocho minutos después de su salida.

Conducción

La cantidad de calor que fluye a través de un cuerpo por conducción depende del tiempo, del área a través de la cual fluye, del gradiente de temperatura y de la clase de material.

donde k es la conductividad térmica del material, A el área normal a la dirección del flujo de calor, t el tiempo y D T/D L es el gradiente de temperatura. El símbolo D T representa la diferencia de temperatura entre dos superficies paralelas distantes entre sí D L .

 

Existen grandes diferencias de conductividad térmica para distintos materiales.

Los gases tienen una conductividad muy pequeña. Igualmente, los líquidos son en general malos conductores. En el caso de los sólidos, la conductividad térmica varía de una forma extraordinaria, desde valores bajísimos, como en el caso de las fibras de amianto, hasta valores muy altos para l caso de los metales. Los materiales fibrosos, como el fieltro o el amianto, son muy malos conductores (buenos aislantes) cuando están secos ; si se humedecen, conducen el calor bastante bien. Una de las dificultades para el uso de estos materiales como aisladores es el mantenerlos secos.

 

Convección

La transferencia de calor por corrientes de convección en un líquido o en un gas, está asociada con cambios de presión, debidos comúnmente a cambios locales de densidad. Un aumento de temperatura en un fluido va acompañado por un descenso de su densidad. Si aplicamos calor en la base de un recipiente, el fluido, menos denso en esta parte debido al calentamiento, será continuamente desplazado por el fluido más denso de la parte superior. Este movimiento que acompaña a la transmisión del calor se denomina convección libre. Ejemplos clásicos de convección son : el movimiento del viento sobre la tierra, la circulación del aguan en un sistema de calefacción doméstico. Algunas veces las diferencias de presión se producen mecánicamente mediante una bomba o un ventilador ; en tal caso, se dice que la conducción del calor ocurre por convección forzada. En ambos casos, el calor pasa hacia dentro o fuera de la corriente a lo largo del recorrido.

El método de las corrientes de convección es uno de los más eficaces de transferencia de calor y debe tenerse en cuenta cuando se diseñe o construya un sistema de aislamiento. Si se dejan en una casa grandes espacios sin paredes, se forman muy fácilmente corrientes de convección, produciéndose pérdidas de calor. Sin embargo, silos espacios se rompen en pequeños recintos, no son posibles las corrientes de convección y las pérdidas de calor por este método son muy pequeñas. Por esta razón, los materiales aislantes usados en las paredes de refrigeradores o en las de las casas son poroso : viruta de corcho, corcho prensado, lana de vidrio u otros materiales similares. Estos, no solamente son malos conductores por sí mismos, sino que dejan además pequeños espacios de aire, que son muy malos conductores y, al mismo tiempo, lo suficientemente pequeños para que no se produzcan corrientes de convección.

 

Radiación

La transferencia de calor por radiación no requiere ningún medio material intermedio en el proceso. La energía se traslada desde la superficie del sol hasta la tierra, donde es absorbida y convertida en energía calorífica. La energía emitida por un filamento de lámpara eléctrica atraviesa el espacio entre filamento y bulbo aunque no tenga ningún gas en su interior. Energía de esta naturaleza la emiten todos los cuerpos. Un cuerpo que absorbe esta energía radiante la convierte en calor, como resultado de un aumento de su velocidad molecular.

Todos los cuerpos calientes emiten energía radiante. Una estufa, por ejemplo, emite energía radiante hasta que encuentra cualquier objeto donde, en general, es parcialmente reflejada, parcialmente absorbida y parcialmente transmitida. Sucede lo mismo que con la luz, excepto que no produce sensación en la vista. La energía radiante calorífica difiere de la luz únicamente en la longitud de onda.

Hay grandes diferencias en la transparencia de las diversas sustancias a la radiación calorífica. Algunos materiales tales como el caucho duro, óxido de níquel, vidrios especiales o una disolución de sulfuro de carbono y yodo, opaca a la luz, son casi transparentes a las radiaciones caloríficas. Los vidrios de ventana ordinarios, casi completamente transparentes a la luz, absorben radiaciones caloríficas.

El tejado de vidrio de un invernadero es transparente a las radiaciones visibles y al infrarrojo próximo procedentes del sol. Esta energía se convierte en calor cuando es absorbida por los objetos que están dentro del invernadero. Estos objetos se calientan y radian energía, pero, dado que su temperatura no es alta, la radiación calorífica que emiten no es idéntica a la que recibieron. El vidrio no transmite esta energía calorífica y, por tanto, la energía radiada por los cuerpos que están dentro del invernadero no puede salir. Un invernadero actúa, por tanto, como una trampa para energía, y dado que las pérdidas por radiación y convección se previenen en alto grado, la temperatura interior puede ser muy superior a la del exterior, siempre que reciba energía solar directa.

 

 

 

Bibliografía :

Libro : Física para Ciencia e Ingeniería

Autor : Robert L. Weber

Editorial : Mc Graw-Hill

Págs. : 226-230



Hosted by www.Geocities.ws

1