
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308 (DOI: 10.1002/smr.234)

Research

Ageing of a data-intensive legacy
system: symptoms and remedies

Giuseppe Visaggio∗,†

Department of Informatics, University of Bari, Italy

SUMMARY

This study generalizes some of the symptoms of ageing of a legacy system. Each symptom is specified by
metrics and the results of the measurements made suggest what operations should be undertaken to renew
the software. The study is based on retrospective analysis of data collected during the execution of a large
renewal process of a very old legacy system. It therefore provides evidence of the expected efficacy of such
renewal processes and can be used to decide how best to plan them and manage them in order to increase
their efficacy. It can also be used to define the reengineering requirements to ensure long life to the system
despite successive evolutions of the application and the operation domain. The metrics can provide a basis
for monitoring a software system to ensure that its quality does not degrade to such an extent that the most
costly and risky renewal processes then have to be performed to improve it. Finally, the paper points out
the problems with renewal processes that still remain open. Copyright  2001 John Wiley & Sons, Ltd.

KEY WORDS: renewal process; legacy system; comprehension; maintenance; reverse engineering

1. INTRODUCTION

A legacy system is generally one of an organization’s assets with a high economic value. Even when
it ages, it is both difficult and risky to replace it. Difficult, because the system is used by many people
within the organization and its replacement would involve retraining all the users to understand the new
system. Risky, because the construction or purchase of a new system may go over budget and disrupt
planned schedules; moreover, the new system may lack some functions the users of the previous system
were used to having.

Even when the legacy system is new and well-engineered, software maintenance tends to cause its
quality to degrade; hence system ageing [1,2]. As the software system ages, maintenance becomes
more costly and less accurate. In short, the system becomes progressively less maintainable and

∗Correspondence to: Professor Giuseppe Visaggio, Department of Informatics, University of Bari, Via E. Orabona, 4-70126-
Bari, Italy.
†E-mail: visaggio@di.uniba.it

Received 13 September 2000
Copyright  2001 John Wiley & Sons, Ltd. Revised 1 June 2001

282 G. VISAGGIO

this reduces its economic value [3]. If its maintainability diminishes below acceptable limits for the
owner organization, the legacy system will have to be replaced by a new one. To avoid this need for
replacement, which would be costly and risky, it is necessary to monitor ageing symptoms and treat
them while such an operation is still possible with only a relatively small effort.

For this reason, the main aims of the present work are: to define a list of ageing symptoms,
individuate the respective observation metrics and indicate the relative improvement operations to be
undertaken to treat the symptoms. The experimental evidence is derived from a retrospective analysis
of data collected during a renewal process of a very aged legacy system whose execution required great
effort.

The experimental evidence also shows the efficacy of the improvement operations that can be
executed and therefore indicates which types of operation do not improve the value of the legacy system
compatibly with the effort required to carry them out. Symptoms requiring this type of operation must
be prevented to avoid irreparable ageing of the software system.

The symptoms indicate the conceptual aspects of the ageing of the software, at a high level of
abstraction and do not, therefore, directly indicate the operative aspects, i.e. the antidotes to software
ageing. For this reason, each symptom is then operatively specified by product quality metrics. The
values of these metrics express the degree of ageing of the system and their interpretation suggests
what activities should be included in the renewal process to improve its quality and remedy the ageing
symptoms.

This generalization in terms of symptoms and remedies serves to make the experience gained with
the case study analysed in this work transferable and reusable. Clearly, when reusing this experience,
it must be tailored to the characteristics of the user organization.

The study is addressed to practitioners because it advises them what to measure to monitor ageing
symptoms, what operations are necessary to treat the symptoms and what the expected efficacy of the
operations is. It is also addressed to researchers because it stimulates further experimentation of the
renewal process, to add to the list of symptoms and metrics, and also indicates the weak points of
present renewal process models and technologies and thus suggests possible research areas.

In the case study, the findings resulting from the post mortem of the renewal process carried out
were generalized to derive the symptoms and relative metrics. Instead, this paper first presents the
symptoms and metrics and then describes the measurements, to provide the experimental evidence the
generalization is based on. This is because the symptoms, metrics and relative improvement operations
are more interesting for the reader, as they are reusable.

To ensure a clear understanding of the paper, the meaning ascribed to some key words in this work
needs to be defined: the term legacy system is synonymous with working software system, i.e. the
code together with the documentation which describes its behaviour and structure. When a legacy
system has poor quality it is said to be old or aged. The renewal process involves the examination and
alteration of an old legacy system to improve its quality. This process encompasses a combination of
subprocesses such as reverse engineering, restructuring, restoring, reengineering, retargeting, migrating
and so on. In the present work, the renewal process taken into account comprises reverse engineering
and restoring.

Reverse engineering is the process of analysing a subject system to identify its components and
their interrelations and to create a representation of the system in another form or at a higher level of
abstraction.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 283

In the restoration process, an abstraction model is restructured to make it easier to read and
understand. This restructuring takes account of the semantics of the components of the restored model
and is therefore different from that in [4], where it is stated as regards the restructuring process that
‘many types of restructuring can be performed with a knowledge of structural form, but without an
understanding of meaning’. Instead, restoration in this work means restructuring with an understanding
of meaning and knowledge of the structural form. Some aims of this restoration process are: to identify
the data which describe the application domain; to extract and eliminate useless instructions; to extract
those modules with greater internal cohesion.

The reengineering process is also mentioned in this work, to be distinguished from that of restoration.
Reengineering involves redesigning the application and modifying, where necessary, the design choices
and thus the relationships between components. Although the need for this process is indicated for the
relative symptoms, the process is not described in detail as it was not carried out in the case study.

From now on, the term renewal process will be taken to mean the combination of reverse engineering
and restoration. Details and their respective histories of improvement can be found in [5], although
these are not necessary to understand the present work. The definitions of the renewal phases are based
on [4] but some changes aiming to increase effectiveness have been made.

This paper includes: related work (Section 2) that also details the reasoning underlying the present
work; the description of ageing symptoms derived from generalization of the data collected in the
case study (Section 3); the metrics serving to identify the ageing symptoms, whose measurements
provide the basis for the decisions as to which quality improvements should be made to the legacy
system (Section 4); the case study demonstrating the significance of the metrics defined and showing
those symptoms that are little affected by the operations that can be carried out in a renewal
process (Section 5). Some discussion of renewal processes is included to provide an overview of the
characteristics of the process from the points of view of productivity and cost (Section 6). The work
concludes with some suggestions for those that manage legacy systems, already aged or still young,
and points out some of the problems left open, addressed to researchers (Section 7).

2. RELATED WORK

The scientific and industrial communities have devoted considerable attention to maintenance
processes. Apart from the many studies presented in the journals and conferences on software
engineering and at international software congresses, there is a specialist journal, and conferences
and workshops are held on the subject.

In view of this vast scientific production, the following quotations should be taken as only a few
examples. Some studies have gone into the theoretical aspects of comprehension e.g. [6], others have
studied the various aspects of the renewal process to improve software maintenance e.g. [4,7–12] and
the technologies supporting this process e.g. [13–19].

Instead, to the author’s knowledge, only a few studies have studied the symptoms, causes and
antidotes to software degradation. Some works have experimented with metrics for classifying the
components of a legacy system and individuating the most risky from the point of view of quality
degradation e.g. [20]. In these works, the main aim was to identify the most significant metrics from
empirical evidence.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

284 G. VISAGGIO

The works most similar to this one are [21–23], in which the authors list various symptoms. However,
the symptoms listed are often different, and some are called by different names despite having the same
meaning. The reason why some symptoms are different is because the experimental evidence they are
based on is different, while the synonyms are due to the fact that the approach is not consolidated and
so the symptom names are not universally recognized. Unlike in the present work, in these previous
works the symptoms have not been detailed by metrics; moreover, they do not include the experimental
evidence from which the symptoms were derived, even if these were based on a real case study.

The symptom-based approach is spreading; in [24], metrics are used to specify symptoms in a
different application domain from the present one. In fact, from the [24] experience, the authors aim to
extract useful suggestions for new software development processes.

Another new aspect of the present work is the investigation of the causes that generate the symptoms,
from which the most efficacious remedies are then derived.

3. AGEING SYMPTOMS

A legacy system ages when its maintainers have difficulty in evolving it, or are quite unable to introduce
the evolutions required to satisfy changes in the application domain or to perfect the system.

This section presents a list of symptoms derived from retrospective analysis of a large renewal project
carried out on a legacy system that had been running for many years. Each symptom is detailed by

• its conceptual description,
• the causes generating it and
• its effects on the maintenance process.

3.1. Pollution

Many components of the software system (programs, reports, files or data) present in the legacy system
do not serve to carry out the application functions exploited by the users.

This symptom is caused by poor quality of the software configuration process. During the system’s
life span, some functions were created that remained valid for a limited period of time, after which the
components that carried out these functions failed to be eliminated. Moreover, during maintenance of
the system, solutions eliminating the logical parts of the data and code were adopted but these were not
physically cancelled.

Pollution complicates analysis of the impact of a change because it extends the potential impact
by including useless software parts. The most important side-effect is the increased complexity of the
specifications for the change and hence the greater risk of inaccuracy when detailing these. Moreover,
in those particular cases where the software components do not correspond with the business functions
requiring them, it is impossible to carry out changes or evolutions of these functions.

3.2. Embedded knowledge

The knowledge of the application domain and its evolution is spread over the programs and can no
longer be derived from the documentation. This knowledge can be partly reconstructed by reading the
programs with the aid of the maintainers and program users.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 285

Very often, after changing the programs, maintainers do not update the documentation adequately.
The software system then becomes inconsistent because the documentation does not record the real
structure of the code, nor the decisions the maintainer made when carrying out the changes.

The lack of traceability of the software system makes maintenance more troublesome owing to
the difficulty of defining the impact of each change, and hence increases the risk of making inaccurate
changes. Often, since the maintainer is unaware of the existence of one of the legacy system’s functions,
instead of modifying this one he/she creates a new one to conform it to the evolution of the application
domain. This increases the redundant code and causes a new disease: system ageing due to pollution.

3.3. Poor lexicon

This is present when the names of variables and components have little lexical meaning or are in any
case inconsistent with the meaning of the components they identify.

This symptom is caused by the use of idiomatic practices of doubtful utility. For example: the name
must not be longer than n characters; the name of a variable must be preceded by a mnemonic identifier
of the structure it belongs to and so on. These practices limit the name of a variable in such a way
that it cannot explain the meaning of the component. Moreover, over the years this practice tends
not to be homogeneous owing to the different interpretations and applications made by the various
different maintainers dealing with the same software system. This heterogeneity increases the lexical
inconsistencies of the software.

Software maintenance is more difficult as a result of the reading and comprehension difficulties
generated by this symptom.

3.4. Coupling

The programs and their components are linked by an extensive network of data or control flows. This
symptom is generated when insufficient effort is spent on controlling the entropy of the software that
inevitably results from the maintenance process.

High coupling makes any change very costly. Often, despite great effort, the maintainer is unable
to make a precise analysis of its impact, even when using automatic tools. In addition, the complexity
of the code makes it difficult to carry out the regression test after each change because it is hard to
individuate which paths should be tested and to define the most adequate state of the database for the
execution of the tests. Thus, the modified software will be unreliable.

3.5. Layered architectures

The system’s architecture consists of several different solutions that can no longer be distinguished.
Even when the software started out with a high quality basic architecture, the superimposition of these
other hacked solutions during maintenance damages the quality.

The symptom is due to the software engineer’s need to deal with variations in the application domain
that were not envisaged in the software planning stage. When this occurs, the maintainer takes planning
decisions that are then superimposed on the original ones, to satisfy the evolution of the requisites.
The result is a software system that becomes ever more difficult to understand during maintenance,
especially as regards the reasons for the solutions adopted and where these are localized. This symptom

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

286 G. VISAGGIO

also increases the risk of reinserting solutions that already exist in the software. For example: one or
more redundant data are updated by different functions at different times and so homologous data will
contain different values in the same database.

4. METRICS

The symptoms described above help to understand the problems of ageing of a system but not the
operative solutions. In other words, their description does not indicate how they can be observed
and treated. It is therefore necessary to detail them by means of metrics that can be measured on
the products to be maintained. The value for each metric suggests what operations should be carried
out to treat the ageing symptom.

Like the symptoms described above, the list of metrics is also based on retrospective analysis of the
data collected during the renewal process that was the object of the case study described in this work.

Each metric features the following.

• Its description.
• Its measurement methods.
• The possible remedies. The data analysed were collected during the processes of reverse

engineering and restoration; the remedies requiring reengineering are declared, but were not
included in the experiment.

• The perfective changes that may be advisable, and which should be carried out during the
reengineering process.

The rest of this chapter deals with the metrics featured in this work; no further description of
those used that are well known and have a universally-accepted definition in the software-engineers
community, such as the cyclomatic number, has been made, to save space.

4.1. Pollution

Duplicate programs. Two programs are considered to be duplicated if they have sources that use the
same copies, call the same subroutines, handle the same files in the same way but only one of them has
the corresponding executable. The number of duplicate programs can be measured thanks to the use of
utilities that compare the content of members of a library. Only the maintainer concerned can identify
the most updated version. All duplicate programs must be eliminated.

Obsolete programs. These are programs which have a source but no corresponding executable. These
can also be discovered by means of utilities that compare the source libraries with the executable
libraries. To link the source to its executable, the procedures used to compile it are analysed, together
with the source links. Obsolete sources must also be cancelled.

Sourceless programs. These are executable programs that have no corresponding sources. These
programs can be individuated by means of the execution of procedures that generate the executables.
In fact, some procedures will require source programs that do not exist in the corresponding libraries.
It would be impossible to modify one of these programs owing to their lack of sources. For this reason,
in the reengineering process, these programs require rewriting of the source code. The functions each

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 287

must carry out can be ascertained both from their users and from the behaviour of the executable
function when it is subjected to test cases to check its acceptability.

Useless components. Many reports that are not used can be produced by the legacy system; these
are indicated as useless reports. A component is useless if it generates useless reports or creates and
modifies files which are used to generate useless reports.

Searching for these components requires a list of paper reports and screen reports; this list is shown
to the users, who will indicate the reports they really use. All those that are not identified by any user
are useless reports. The components that generate useless reports can be identified by cross-reference.

Useless components sometimes coincide with entire programs that are indicated as useless programs,
whereas other useless reports are produced by programs which also have other purposes. Thus, for
some programs, only the program components dealing with these useless reports must be cancelled;
these can be extracted using the direct slicing proposed by the author [25]. The components extracted
may be modules or sets of instructions scattered among many modules. In either case, cancellation
of these components is deferred until the restoration phase, because the code must be restructured
accordingly.

To avoid the construction of new components destined to become rapidly useless, it is best to insert
a set of functions for flexible reporting in the application. These functions must manage the metadata
which serve to specify the reports required by the user. When one of the reports defined by the metadata
is required, the flexible reports functions adapt their behaviour to the parameters defining the report
to be produced. If the user wants a new report, he/she must specify this by recording the relative
parameters in the metadata. Instead, when the report becomes obsolete, the corresponding parameters
must be cancelled from the metadata. So the flexible reporting functions enable evolutions in the reports
produced to be made without changing the programs. The flexible reporting functions may have some
performance problems but these can be solved; no description of this operation is provided as it is
outside the scope of this paper.

Useless reports constitute an inventory of information which, historically, was required by users
and then became obsolete. This phenomenon is due to the variability of the application domain. The
information is useful as a basis for analysis, which can also help to forecast future evolutions and to
define perfective maintenance to the legacy system to make the software more adaptable to evolutions
in the application domain. For this reason, perfective changes that this metric may suggest include
the flexible reports functions and structural changes to the programs to improve the software system’s
adaptability.

Dead data. These are variables created by at least one component of the legacy system but not used by
any of its components. They can be individuated automatically using the static analysers that extract
the life of each datum in a program. To eliminate them, all the components that create them must be
cancelled. These are generally sets of instructions. Cancelling these components is one of the tasks
carried out during the restoration process, to identify all the relationships between the instructions to
be cancelled and those that remain in the existing programs.

Dead code. These are all those instructions that cannot be reached by the program control flow. They
can be individuated automatically, using static code analysers. They must be eliminated, which is easy
to do without risking any side-effects because the fact that they are unreachable means they are never
executed during the running of the programs that contain them.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

288 G. VISAGGIO

4.2. Embedded knowledge

Incomprehensible data and modules. Variables or modules whose meaning cannot be evinced from the
available documentation. The measurement of this metric is made by identifying the data and modules
whose meaning is not detailed in the existing documentation or is not consistent with the content of the
relative data or modules. This measurement therefore requires reading activities.

The meaning of the data and modules can be extracted from the program documentation, from the
users’ knowledge of the data and, lastly, from reading the programs to understand how they have
been created and used by the applications. Extraction of this knowledge from the human resources
and the software documentation transforms the unstable knowledge possessed by the users into stable
knowledge that everyone can use. This activity can be carried out during reverse engineering, since no
structural change in the programs is required.

Missing capacities. These are application functions that the legacy system contains, but that cannot
be precisely localized in the software components. The capacities in the software system are derivable
from user knowledge of the programs, from analysis of the reports and files, from the computational
data and from reading the documentation the organization employs to regulate correct usage of the
applications. For these reasons, this metric also requires reading techniques.

Two slicing techniques can be used to extract the components that create these capacities. If they
are functions that serve to collect and control external data, or to extract data from the database
and return it in output to the user, then it is best to use direct slicing [25,26]. If, on the other hand,
the function is for data transformation, normally a business function, then it is best to use transform
slicing [12]. This extraction must be done during restoration because it will be necessary to manage the
relationships these instructions have with the others in the same program. Once extracted, these slices
can be transformed into components that can be automatically recalled and can be included in the new
documentation.

4.3. Poor lexicon

Inconsistent data and module names. These are data and modules whose names do not express
their meaning. The number of data and modules with inconsistent names can be obtained from the
documentation after elimination of the incomprehensible data and modules. This measurement is
carried out with reading techniques.

It is necessary to give each datum and module with an inconsistent name a new, more meaningful
name and to change the names in the code to the new ones, with the relative utilities. The names for
data and modules can be made more meaningful during reverse engineering, since no structural change
in the programs is required.

4.4. Coupling

Pathological files. Files created or modified by different programs are called pathological. These files
can be identified by means of the programs-files cross reference utility. Unfortunately, to eliminate
pathological files, both the procedures and the data in the legacy system need to be restructured, an
activity which must be carried out during the reengineering process.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 289

Control data. These are data that create communications among components to control the behaviour
of the components the communication is addressed to. For example, if during running of a program an
event occurs that affects the behaviour of another program, then the former warns the latter of the event
by recording a control datum in a file they have in common.

These data control the behaviour of the procedures and are therefore used at the decision points about
procedures. They can be searched for by identifying all the variables used to express the conditions at
each decision point, by means of a static analyser. Each variable in the list that has no connection
with the application domain is a control variable. This search can be carried out using the data
documentation, and naturally requires reading techniques.

Improvement of this metric can be achieved during the restoration process. The latter, however, can
act only on the control variables within the same program. Instead, variables communicated among
different programs require reengineering of the database and programs. Moreover, if a program has
high complexity, even reducing the control variables within the program will require great effort and
the results may not be accurate. In this case it is necessary to reengineer the program. Hence, complete
elimination of the control variables can only be achieved with the reengineering process.

Module complexity. In this paper, the complexity of the module is defined according to its number of
IF (explicit or implicit in the cycles).

Analysis of the code with a static analyser yields the number and position of the IF statements. Once
this list of IF has been extracted, two types should be distinguished.

• Algorithmic IF required by the function implemented by the program; the two slices dominated
by IF are not single application functions, but both together with IF make up an application
function, e.g. 7330 in Figure 1 dominates two slices, neither of which can be given a meaning,
whereas the two slices together with IF are the business procedure for dealing with homonyms.

• Procedural IF which serve to control the behaviour of the program that includes part of the
different functions. If two slices dominated by the same IF are extracted, each will have a
complete application function, e.g. the IF of 5760 in Figure 1 dominates two slices, each of which
is a validation procedure of the customer’s personal data according to type. It is supported by the
one in 5850 that individuates two further slices in one of those dominated by the preceding IF.
The 5850 also serves to distinguish two procedures for two types of customer that have one part
in common, program paragraph labeled ‘BB’.

This analysis can be carried out by extracting the slices individuated by each IF with a static analyser
and checking that they are complete with reading techniques.

Reduction of the procedural IF is performed in the restoration process, which must manage all the
side-effects that their cancellation will generate in the program.

4.5. Layered architectures

Useless Files. A file is useless if no program, or else a useless program, uses it. Useless files can
be individuated using the programs files cross reference, ascertaining how the files are used by each
program and relating them to the useless programs.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

290 G. VISAGGIO

..............

..............
005740 AA.
005750 MOVE SPACE TO NAME-SEC.
005760 IF TT19 NOT = ’JR0000’
005770 GO BB.
005780
005790 MOVE ZERO TO REL-CODE.
005800 PERFORM READ-ARKAG-SB.
005810 IF NOT KI-0
005820 MOVE ’8104’ TO FIGS-MESS
005830 PERFORM P-E-M GO EX.
005840 MOVE BUF-NAG TO TT281.
005850 IF TT19 = ’JR0000’
005860 MOVE ’AR0000’ TO TT19 GO BB.
.............
.............
007250 **
007260 ************* ASSIGNMENT - HOMONYMS *******
007270 **
007280 ASSIGNMENT HOMONYMS SECTION
007290 R-O.
007300 MOVE WS-EL-NAG-HOMONYMS (N) TO NAG.
007310 MOVE ZERO TO COD-REPORT
007320 PERFORM READ-ARKAG-SB.
007330 IF NOT KI-0
007340 MOVE ’ASSIGNMENT HOMONYMS’ TO

NOME-SEC GO EP.
007350 MOVE NAG TO AA0090-NAG (N).
007360 MOVE LEG-NAME TO AA0090 - INT (N).
007370 R-O-EX. EXIT.
..............
..............
055690 MOVE HONOR-TITLE TO OUT-AG0071-7
055700 MOVE SURNAME TO OUT-AG0071-5
055710 MOVE NAME TO OUT-AG0071-6
055720 MOVE ’AA6700’ TO TT19
055730 PERFORM GET-DATE-HOUR-ETC.
............
............

Figure 1. Program with partially changed names for variables.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 291

In the same way as with useless reports, the programs that serve only to create useless files must be
cancelled; for programs that have other functions it is necessary to extract the parts which serve to build
useless files, and cancel them. As above, the first requirement may be satisfied by reverse engineering,
because even cancellation of entire programs has no effect on the structure of the legacy system. The
second requires restoration because it is necessary to identify all the relationships among the parts of
the program that have been cancelled and the rest of the program.

Such files may have been used for memorizing temporary data required to build information used
over a brief time span. At the end of this time, the programs built to read these data and construct the
information the user needs were cancelled from the libraries, whereas the files they used remained in
the database, while the functions that generated and modified them sometimes also remained active.
Analysis of the useless files can help to understand which evolutions of the application domain could
not easily be assimilated by the database structure, and so to forecast the perfective changes best suited
to the database structure.

Obsolete files. A file is obsolete if the software uses it but has no programs for creating new records in it,
except in the possible situation where the file contains information that is exogenous to the system and
is therefore imported by means of utilities that are not included among the software system’s functions.

These files can be individuated using the program-files cross reference utility, ascertaining how the
files are used by each program and relating them to the context of the legacy software, in order to be
able to inventory those files that are exogenous to it.

It is necessary to cancel the programs which serve only to read, modify or cancel records in obsolete
files and to extract and cancel modules or sets of instructions with these purposes from programs having
others. Again, program cancellation can be performed during the reverse engineering process while the
other activities belong to the restoration process.

The existence of these files may be due to cancellation of the programs which created them because
they implemented functions no longer required by the application. In this case, too, analysis of the
files can point out some functions that have become obsolete as a result of evolution of the application
domain and so help to forecast the most variable areas in the application domain. Perfective changes
in the architecture of the legacy system may be required to make the most volatile functions easily
modifiable.

Temporary files. A temporary file is created, read but not updated, and deleted by the system. These
files can be individuated using the program-files cross reference and ascertaining how the files are used
by each program.

In the reverse engineering and restoration processes, this metric cannot be improved. However,
the analysis serves to identify requirements for perfective maintenance. These files normally serve to
establish communication between two subsystems, when this could not be achieved with the original
database. The data in a temporary file are often extracted or calculated from existing data in other files
in the same system. In this case study, two situations were observed.

(a) A program Pri generates a datum dij which is live in the legacy system for a period of time
decided by its designer. After this decision has been taken, the application evolves, so that the
life of the datum needs to be longer than that originally decided by the designer. To solve the
problem, a File Fi is created by the maintainer and dij from Prj is stored in this file before dij

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

292 G. VISAGGIO

is destroyed by the program that manages its life span. Fi is often updated to cover new values
for the fields it contains; thus for temporary files, the legacy system does not have all the usual
file management functions.

(b) A program Pri creates data in Fk which will serve for the other programs Pr1, . . . , Prk that have
no access to Fk . Owing to the complexity of Fk , rather than modifying all these other programs
to give them access to the latter, the maintainer decides to create a temporary file Fi , in which
Prj memorizes the data extracted from Fk and to modify programs Pr1, . . . , Prk to give them
access to Fi . In this case, too, the file is updated to cover the values of the new fields and so is
not fully managed by the legacy system.

Analysis of type (a) files shows that some data in the database must have a nondeterministic
life decided by their users, compatibly with the resources available for running the application.
Cancellation of a datum could also be decided, following the occurrence of some event. In this case,
it is best that the event also be recorded and when it occurred, while the previous value should not be
forgotten. It is therefore necessary for such a datum to have a temporal coordinate, and to construct
functions which will handle the data with temporal coordinates and identify the events requiring their
destruction.

To solve case (b), it is necessary to hide information about the structure of the files in few modules,
so that access to new components in the database can easily be inserted as the application domain
evolves.

Permanent files. Permanent files are created, used, modified but never cancelled. They can be
individuated using the programs files cross reference and ascertaining how the files are used by each
program.

This metric cannot be improved with the reverse engineering and restoration processes. However,
analysis of the causes for creating these types of files can suggest some perfective changes.

The existence of such files in an old system may mean that the program or programs which dealt with
their cancellation have been erroneously modified, eliminating the cancellation instructions; sometimes
the content of the file is entirely recreated at each update. To solve these problems, functions for
cancelling the records contained in permanent files can be set up. Moreover, as regards files that are
entirely recreated at each update, it is necessary to establish whether this is required by the application
domain. If, instead, the need is due to a poor design decision, then updating functions must be inserted
and those for complete recreation eliminated. Some of these data may have a nondeterministic life and
should be treated as described above.

Anomalous files. The records of anomalous files are not created by the application but are read, modified
and cancelled. These files, too, must be individuated through the files–programs cross reference utility
and the usage method of the files by each program must be ascertained.

The existence of such files shows that all the parts of the application that had the function of creating
new records were erased, whereas the other parts of the system that used, cancelled or updated the
records in the files were left in existence. The nonexistence of the application parts serving to add new
records to these files shows that their content is obsolete, although the applications are able to satisfy
the users, so these files have become useless. After having confirmed that they are useless, they are
treated in the same way as useless files.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 293

On the other hand, for files found to be useful, it is necessary to analyse why the application handles
them badly, and to redefine the correct requisites for their handling. This problem must be solved in
the reengineering process.

Semantic redundant data. Two data are described as redundant as regards the semantic domain if the
definition domain of one is contained in, or equal to, that of the other, and if each equal value in the
two definition domains can be interpreted in the same way for both data. They can be identified from
the updated documentation of the data and from maintainers’ and users’ knowledge of them.

Elimination of the synonyms involves their substitution with a single datum. This can be done in the
reverse engineering phase because it does not require program restructuring. Often, however, synonyms
have different attributes (representation, size, type, etc.). In this case elimination of synonyms for
different attributes requires a new database design to give the data adequate attributes for all their
uses in the application, and to the reconciliation of these with the programs that access them. These
are, of course, perfective changes and require reengineering.

Computational redundant data. A datum is described as computationally redundant if a set of data
exists (d1

i , d2
i , . . . , dk

i) in the database where the value of di = f (d1
i , d2

i , . . . , dk
i), f being a

calculation function. These data can be found by reading the updated documentation of the data and
programs that generate them.

This metric cannot be improved with the reverse engineering and restoration processes. However,
analysis of its causes can suggest some perfective changes.

This redundancy clearly reveals a design decision aiming to achieve better performance of the
application, that of recording the value of di in a file in such a way that it is calculated only when one
of the values of the independent data changes, rather than each time the value for di is required. Hence,
to eliminate this redundancy it is necessary to redesign the database and cancel the data calculated.
It is also necessary to insert the functions for calculating them in all the components that use these
data. Specification of these last functions can be extracted from the working programs that create the
redundant data. In some cases, the instructions that implement them can also be extracted, using slicing
techniques.

Structure data. These are data that have no connection with the application domain but support the
database structure. They can be recognized by reading the updated documentation of the database.

This metric cannot be improved with the reverse engineering and restoration processes because it
is necessary to change the structure of the database: it reveals the need for a perfective change. The
database should be reengineered so that its tables conform to the normal form (normalization) so that
the structure data remaining in it include only those necessary to unequivocally identify the records in
the tables.

The database can become denormalized because it was not designed according to the principles
for normal forms. Successive maintenance of the software system, in this case, tends to worsen the
structure of the database. Sometimes, instead, the database starts out normalized but the continual
changes made introduce normalization defects. On occasion, the denormalization is even voluntarily
introduced by the developer on the assumption that this may improve some critical behaviour of
the system. This hypothesis may be arbitrary and unproved and could unjustifiably damage the data

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

294 G. VISAGGIO

RATE1 RATE3 RATE11 RATE12

DATE1 DATE5CLIENT-

CODE
RECORD-

NUMBER

RATE2

 | |

 | |

RATE4

 | |

 | |

END-CONT

Figure 2. Representation of the two redefinitions of the record for the state of a current account.

base. In any case, when the denormalization is not documented, maintenance will introduce further
denormalization defects and the structure data may increase for no valid reason.

The normalization should only take into account data that are meaningful in the application domain
(conceptual data). The control and structural data of the old database must not be taken into account
because they are architectural supports and may be harmful.

Superimposed data structure. These are different data structures that share the same address spaces.
This metric is measured by analysing the inventory of fields that occupy the same addresses in the
programs. It cannot be improved with either the reverse engineering or the restoration process but it
can suggest perfective changes to the legacy system.

If the superimposed structures are still used by the legacy system then it is necessary to identify the
address spaces for each structure and make the consequent changes to the components that manage
the database. If some superimposed structures are no longer used, then they must be cancelled and all
the necessary changes made to the database and programs that managed them. In addition, analysis
of the historical causes that made new structures necessary points out the variable aspects of the
application domain that were not adequately assimilated by the architecture of the legacy system. A
knowledge of these aspects suggests perfective changes to be made during reengineering of the legacy
system architecture.

As this metric is significant in data-oriented systems, an example is provided below. Figure 2 shows
the layout of a record whose structure was modified over time, and where some of the structures
used had remained superimposed. The first structure included: the CLIENT-CODE and 12 repetitive
fields, each of which could contain a rate value; the primary key was the CLIENT-CODE. The second
description included: the CLIENT-CODE, the RECORD-NUMBER and five structures with two fields
each and a flag; each structure contained a date value and a rate value; the flag value indicated whether
it was the last record for this account (END-CONT = 0) or not (END-CONT = 1). The primary
key of the new structure was the CLIENT-CODE with the RECORD-NUMBER. All {RATEn} with
n = 〈1, 3, 5, 7, 9, 11, 12〉 were used by the new structure to record two data structures (RECORD-
NUMBER and END-CODE) and new data (DATEi) to record the period of validity of RATEi .

Analysis of this situation showed that, initially, in this domain the variations in rate in one year
did not exceed 12. They could be handled by the bank managers, so that each variation in rate would
be valid from the beginning of the ith month when this changed. Thus, if the ith field had a value
of RATEi and the j th field of RATEj , this meant that the account would be calculated as from the
beginning of the ith month until the end of the (j − 1)th month at RATEi , whereas from the first day
of the j th month it would be calculated at RATEj . Later, rates changed more often and the variation
dates were no longer so free, so the record was redefined, associating the starting validity date with

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 295

each new rate value. Since it was no longer possible to forecast the number of rate variations in a year,
a list was drawn up with a pointer for the given account. Therefore, the RECORD-NUMBER had to
be inserted to complete the primary key and a flag for the last record to indicate the end of the list for
this CLIENT-CODE.

The database design needs to be revised to allow this variability of the application domain to be
assimilated by the software.

5. A CASE STUDY

The considerations made in this work are of a general nature and are therefore valid in the context
of any renewal process. However, the case study carried out is briefly described below, to show the
evidence that gave rise to the generalizations that are made in this work. The experimental field needed
to be a legacy system of a certain age; such systems are often written in COBOL and are procedural.
In any case, it should be borne in mind that despite the specific characteristics of the case, the findings
of this study can be generalized to data-intensive legacy systems.

The system under study is a banking application written in COBOL. It is composed of a set of
programs, that have a monolithic structure with many internal modules implemented as SECTIONS
or PARAGRAPHS and called using PERFORM phrases. Rarely, external modules are accessed with
CALL; these external modules are themselves programs in the system. All the data files managed by
the system have an index-type organization.

Initially, the system was composed of 16 subsystems, each for a different application domain,
making up a library of 6508 programs. The application managed 70 files, all of which were treated,
making a total of 9000 fields. There were 1 502 734 procedure division instructions and 12 774 219
data division instructions.

The procedure and data division instructions were counted without taking account of the comments
and counting as a single instruction all the clauses of COBOL phrases (e.g. IF . . . THEN . . . ELSE;
GO TO . . . DEPENDING ON . . .). One instruction may take up several lines. COPY instructions
are considered as a single instruction. The mean age of the programs is 12 years but some are now
23 years old.

The system was so aged that its producer (and distributor) had decided to destroy the existing system
and rebuild [27,28]. After one year of rewriting, the risks identified in the process made it apparent that
it would be more advisable to try the renewal process.

The measurements corresponding to the metrics described earlier are analysed below, and an
interpretation of their values is given, with the aim of transferring the lessons learnt to other contexts
with the same problems. All the measurement values are expressed as real numbers and for each, the
values obtained after the renewal process are shown.

5.1. Pollution

Analysis of the libraries yielded the results presented in Table I. They show how bad management of
the configuration can create pollution and thus make it difficult to recognize the real application in the
libraries. Indeed, in this case, the system library was reduced to 639 programs, but of these 14 programs
were found to have no existing sources.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

296 G. VISAGGIO

Table I. Measurements of pollution.

Cardinality Cardinality
Type of program before renewal after renewal

Programs in libraries 6508 639
Duplicate 4323 0
Obsolete 1252 0

Unique sources 933 639
Useless programs 294 0
Sourceless programs 14 14

Table II. Dead and live data in the legacy system.

Cardinality Cardinality
Type of data before renewal after renewal

Dead data 3597 0
Live data 5403 5403

Total 9000 5403

In addition to these data, 863 useless reports were found. Only 378 of these were eliminated, of
which 325 were cancelled together with 294 useless programs. The other 53 reports were produced by
programs that had other purposes as well, so their elimination required restoration of the old programs.
The remaining 485 useless reports were left because restoration to eliminate them would have been
very costly as the programs that produced them were very complex. They needed to be eliminated
during the reengineering phase.

The results of the processes carried out on the data are shown in Table II. In addition, 270 507 lines
of code (LOC) of dead code were cancelled, on a total of 1 502 734 LOC.

Tables I and II show that the operations to treat the symptom of pollution were efficacious. Two
further lessons were learnt as side-effects, which may be useful for those who intend to carry out a
renewal process:

Lesson 1. Before renewing an old software system, it is wise to clean it thoroughly of the pollution that
has accumulated over the years. The cost of this cleaning will be compensated by the reduction in size
of the legacy system, so that the real effort for renewal will be much smaller than the one estimated on
the basis of the system before the clean-up.

Lesson 2. The effort spent on restoration may result in a trade-off between the quality targets desired for
the renewed programs and the resources available for the restoration process. This trade-off is possible
because the renewal process can be carried out gradually.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 297

The latter lesson was confirmed by all the metrics requiring the renewal process described in this
paper. Although this concept will not be repeated again, the reader is asked to recall that each time the
restoration process is applied, its depth will depend on the quality targets attained and the expenditure
of effort agreed on.

5.2. Embedded knowledge

Before renewal, there were 37 047 modules. In all of them, the existing documentation was insufficient
to derive their meaning. Thanks to the organization’s documentation and the interviews with users and
maintainers, it was possible to assign the relative meaning to most of them; only for 141 was this
impossible. The number of business functions listed on the basis of the old documentation and the
users’ and maintainers’ knowledge amounted to 975, for nearly all of which (935), it was not clear
which modules implemented them. After restoration, only 25 business functions still could not be
traced back to their code.

Improvement operations are not efficacious for this symptom, so it is wise to introduce preventive
measures. This is another lesson learnt that may be useful for those planning to execute a renewal
process.

Lesson 3. Extracting the knowledge incorporated in the programs is a long and costly activity. It is
best to ensure that it is distributed throughout the renewal process and not just concentrated in a single
phase. Moreover, it should be extracted before proceeding to carry out those restoration activities which
require the knowledge as a preliminary to their execution. For this reason, a continuous documentation
updating process should be set up parallel to the renewal process. Despite this, not all the knowledge
embedded in the software can always be extracted, as part of it is lost over time as different users and
maintainers get to work with the same system.

5.3. Poor lexicon

In the case study it was necessary to change the names of all 9000 data and all the preexisting modules
during the renewal process. Of course, names were also given to all the new modules created during the
process. Including old and new modules, 36 976 names were given. Just to give one example, Table III
shows the data dictionary that traces the new name back to the old one for each datum.

To show the consequences of poor lexicon on the readability of the programs, Table II reports the
listing of a program where the old names of the variables have been partly replaced by new names. It is
evident that the new names improve the readability.

Lesson 4. It is best to check the lexical quality of the programs quite frequently during the life of
the software and, in cases of deterioration, deal with this straight away to avoid side-effects on the
maintenance process.

5.4. Coupling

There were 57 pathological files in the legacy system that coupled a high number of programs, as shown
in Figure 3. As many as six files were created and modified simultaneously by 40 programs, while these
40 programs were not the same 40 for all six files. Files were most often shared by three programs.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

298 G. VISAGGIO

Ta
bl

e
II

I.
E

xc
er

pt
fr

om
da

ta
di

ct
io

na
ry

.

N
ew

na
m

e
M

ea
ni

ng
C

la
ss

ifi
ca

ti
on

D
im

en
si

on
D

om
ai

n
O

ld
na

m
e

C
O

D
E

–A
B

I
It

al
ia

n
B

an
ki

ng
A

ss
oc

ia
ti

on
co

de
C

on
ce

pt
ua

le
nt

it
y

C
od

e
N

um
er

ic
-C

od
e5

A
G

N
-L

1
in

to
us

ed
w

he
n

cl
ie

nt
is

a
cr

ed
it

co
m

pa
ny

C
O

R
P

O
R

A
T

E
B

O
D

Y
A

R
K

A
G

R
ec

or
d

ty
pe

1

C
O

D
E

–R
IS

K
C

od
e

as
si

gn
ed

by
ri

sk
s

ce
nt

re
to

cl
ie

nt
C

on
ce

pt
ua

le
nt

it
y

C
od

e
C

od
e1

1
A

G
22

E
in

to
ha

vi
ng

on
e

or
m

or
e

cr
ed

it
li

m
it

s
fr

om
C

L
IE

N
T

A
R

K
A

G
an

y
ba

nk
on

na
ti

on
al

te
rr

it
or

y
R

ec
or

d
ty

pe
1

D
A

T
E

–U
P

D
–A

D
D

-
D

at
e

fo
r

co
m

pa
ri

so
n

w
it

h
in

st
al

m
en

t-
du

e
C

on
tr

ol
M

T
00

-2
in

to
IN

S
TA

L
M

E
N

T
da

te
fo

r
de

bi
ti

ng
re

la
tiv

e
su

m
to

cu
rr

en
t

A
R

K
M

T
ac

co
un

t.
D

at
e

is
in

tr
od

uc
ed

by
op

er
at

or
on

R
ec

or
d

ty
pe

00
0

ac
tiv

at
io

n
of

a
ba

tc
h.

P
ro

ce
du

re
op

er
at

es
on

lo
an

s
w

it
h

au
to

m
at

ic
de

bi
ti

ng
or

de
r

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 299

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 10 11 19 21 22 31 40

Number of Proprietary Programs

N
u

m
b

e
r

o
f

P
a
th

o
lo

g
ic

a
l
F

il
e
s

Figure 3. Distribution of the properties in the pathological files.

Table IV. Live data analysis.

Cardinality Cardinality
Type of data before renewal after renewal

Live data 5403 4693
Nonredundant data 3825 4061
Redundant data 1578 632

Semantic data 946 0
Computational data 632 632

Unfortunately, the reverse engineering and restoration processes could not modify this situation, as this
would have required redesigning the structure of the files and the programs that manage them.

One of the metrics confirming this high coupling among programs is the number of control data,
which came to 558 on a total of 4693 (see Table IV). As has already been pointed out, these serve
to create communication between programs through the files. Only reengineering could reduce their
number.

There was also high coupling within the programs among components, which made the modules
difficult to understand, as well as the relationships among them and therefore among the programs.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

300 G. VISAGGIO

Figure 4. Call graph of program A0000 before restoration.

Figure 5. Call graph of program A0000 after restoration.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 301

0

50

100

150

200

250

LEGACY

#CYCLOMATIC (SIX OUTLIERS: 2 at 3342, 1 at 890, 1 at 598, 1 at 596, 1 at 495)

Figure 6. Cyclomatic numbers of the programs in the legacy system.

Figure 4 shows the call graph derived from a program named A000 that serves to collect, analyse and
transmit to the relative programs all the transactions requested by the user. Figure 5 shows the same
call graph after the renewal process; it should be noted that the result was generated entirely by the
restoration process.

To quantify this coupling, Figure 6 shows the scatter plot of the cyclomatic numbers of the modules
present in A0000. Approximately 75% of the total number of programs have cyclomatic numbers
ranging from 70 to 170. The median value in all the programs in the system is 90.

Figure 7 shows the scatter plot of the cyclomatic numbers for the modules in the same program
after restoration. Now, 25% of the modules have cyclomatic numbers below 3 and the other 75% do
not exceed 12. The median value is around 7. Thus, the complexity of the modules can be seen to
have greatly reduced, although some modules still have high complexity. The head of the renewal

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

302 G. VISAGGIO

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

#CYCLOMATIC (TWO OUTLIERS: 1 at 166, 1 at 176)

RESTORED

Figure 7. Cyclomatic numbers of the modules in the restored system.

project decided that renewing these modules would require too great an effort and so to have them
rewritten, adapting their structure to the new architecture of the application which would result from
the reengineering process.

Overall, there were 544 861 IF in the system, of which about 20% were algorithmic and the
remaining 80% were procedural. Only about 50% (217 457) of these were eliminated, as the cost of
the restoration activities for elimination of the others would have been too high.

The operations to treat this symptom are very costly and have a very critical trade-off.

Lesson 5. Coupling is one of the most harmful symptoms of ageing of a legacy system. Improvement
is very costly and so it is one of the symptoms for which the renewal process should most definitely

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 303

Table V. Analysis of the files.

Cardinality Cardinality
Type of file before renewal after renewal

Useless 7 2
Obsolete 2 1
Temporary 2 2
Permanent 3 3
Anomalous 1 1
Pathological 57 57

Total 70 65

be anchored to the quality targets to be attained and to the resources available. Owing to its cost, it is
better still to avoid the need for this process by preventive continuous monitoring of the corresponding
metrics. In fact, if action is taken at the onset of the symptom, the trade-off will be more advantageous
as the operations will have a more acceptable cost and be easier to carry out.

5.5. Layered architectures

Table V reports the measurements made on the files. The total number is not equal to the sum of
the files in each class because some pathological files belong to different classes. The table shows
that the renewal process produces a slight improvement in the metrics. It should be noted that among
the 294 programs cancelled as useless, four managed one useless file each, that were also cancelled.
Another useless file was eliminated during restoration. The remaining two were left in the legacy
system because it would have cost too much to eliminate them as the programs that manage them are
very complex.

Only one obsolete file was eliminated during restoration as for the others, again the effort required
for their elimination would have been too high. The temporary, permanent and pathological files were
unchanged after the renewal process. The full classification of the data collected in the files in this case
study is shown in Table IV.

Thanks to the renewal process, the semantic redundancies were eliminated and the initial 946 data
dropped to 236 unique items. This therefore increased the number of nonredundant data present after
the renewal process. Instead, the computational redundancy could be measured but not improved except
by reengineering.

The structural data were not altered by the renewal process because their reduction also requires
reengineering. Their high number was due to the poor initial normalization of the database structure
and the successive modifications, which made this metric progressively worse. There were 182
superimposed data structures, on a total of 65 files described. Those concerning the working data
structures defined in each program were not measured.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

304 G. VISAGGIO

Table VI. Distribution of effort per process.

Process Effort (%)

Measurement 10.41
Reverse engineering 24.20
Restoration 50.22
Equivalence test 15.17

The operations necessary to treat this symptom are not very efficacious and so it is better to monitor
the legacy system carefully to observe and repair these before the efficacy of this treatment declines.

Lesson 6. Analysis of the metrics indicating the symptom of layered architecture is useful as a means
of understanding why the initial design of the legacy system was not adequate to deal with evolutions
in the application domain. This information can serve as a basis for improving the system architecture
and the system design procedure during reengineering.

6. DISCUSSION

The previous sections show that in the renewal process, three types of activity may be carried out in
both reverse engineering and restoration:

• automatic, performed by the software engineer using only the automatic tools he has available;
• reading, involving analyses of the software system and available documentation to extract

information which cannot be explicitly read off, as well as the semantics of any concept which
may aid comprehension;

• interviewing the users, maintainers or managers of the system to acquire the unstable information
they possess.

In fact, the renewal process deals with two types of information:

• stable, i.e. described on a support which renders it unchangeable over time unless intentionally
modified;

• unstable, i.e. the information possessed by human subjects, which, like human knowledge itself,
is volatile and changes over time even if the reality it describes has not done so.

The process transforms all unstable information acquired in the interviews into stable information and
thus makes the legacy system easier to read and understand, thereby also aiding knowledge transfer.

Table VI shows the distribution of the effort required for the activities selected for the software
system under study.

The equivalence test served to verify that the system worked in exactly the same way after
restoration. It was performed only after restoration because the structure of the programs was modified

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 305

Table VII. Percentage of effort spent on the different methods.

Type of activity Measurement (%) Reverse engineering (%) Restoration (%)

Automatic 65.45 48.32 23.57
Reading 23.37 14.08 67.21
Interviews 11.18 37.6 9.22

Table VIII. Productivity in reverse engineering and restoration.

Process Program (LOC/h) Data (data/h)

Reverse engineering 495.5 5.48
Restoration 201 2.17

during this subprocess, so that in fact, the effort spent should be summed with that spent on restoration.
It has been counted separately because its cost does not depend on the age of the system like the
restoration process itself, but on the quality of the test cases comprising the acceptance tests that the
user expects to have carried out each time he receives a new version. Indeed, most of the effort required
for this activity was due to collection of the case tests. The introduction of adequate technology for
carrying out the collection of case tests from the exercise field, together with regression tests, could
make the process more economical.

Table VII shows the relative distribution of the effort for the measurement activities and the renewal
process. About half of the effort was supported by automatic tools in reverse engineering, so this was
very productive in terms of work volume (see Table VIII). The automatic support in this phase was
provided by static analysers which can reconstruct the documentation of the code and produce the
information to be analysed. There is less reading in this phase than in restoration, because in the latter
phase, a small part of the semantics has to be extracted, while most of the semantics is obtained through
interviews. These are much more commonly held with users, maintainers and operators.

Restoration has far fewer automatic activities because the tools available are not yet mature enough
to be able to realize the necessary slicing algorithms. There is a great deal of reading involved in
this phase to extract the semantics necessary for restoring the application, whereas little time is spent
on interviews because it uses stable information produced by reverse engineering. This table shows
that restoration was the process that required the most effort, although it did not completely solve the
problems requiring it. It shows the productivity achieved, analysed to give the reader an indication
of the work volumes developed during the two phases of the analysis. The reference LOC and data
are those of the legacy system before the renewal process; this shows that restoration reduces the
productivity of the renewal process by about 50%.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

306 G. VISAGGIO

7. CONCLUSIONS

This study goes into some of the ageing symptoms of a legacy system. Each symptom has been
specified by metrics, whose measurements suggest what operations should be carried out to renew
the software. The expected efficacy of each operation is also described. The findings of this study
can be used to help decide how to plan a renewal process and how best to manage it to increase its
efficacy. For example, if the legacy system has programs or modules with large cyclomatic numbers,
slicing tools and activities will be required during the restoration phase. This activity is very costly and
the results are not likely to solve the problem entirely. It will therefore be necessary to decide on the
depth of the restoration process to be carried out, making a trade-off between the quality improvement
desired and the resources available.

Various lessons were learnt from the study; some suggested measures to be taken during the renewal
process (Lessons 1 and 3), others indicated how to optimize the efficacy of the operations in the
renewal process (Lessons 2 and 5). Some of the lessons demonstrated that prevention is better than
cure (Lessons 4 and 5), while another suggested measurements that could be a basis for extracting
perfective changes to be made to the system architecture (Lesson 6) if reengineering can be done.

In conclusion, the causes of ageing of a legacy system are as follows:

• poor quality of the configuration process;
• insufficient updating of the documentation after making changes to the code;
• inefficacious idiomatic practices;
• insufficient control of the software entropy;
• poor system design, that does not allow adaptation to variations in the application domain.

An additional finding besides those central to the research was that even when a legacy system shows
no signs of ageing, it must be continually monitored to observe quality degradation at its onset and thus
avoid the need for restoration procedures. The latter require more resources and do not entirely solve
the problem if the symptom is disseminated in the legacy system . Unless these symptoms are subjected
to timely treatment, terminal ageing of the software system will start to develop.

Some problems still left open by the present research, that should be addressed by the scientific
community, are included in the following points:

• drawing up a more exhaustive list of symptoms and metrics, that should be completed by
replicating this experiment in analogous conditions;

• reading techniques are very much used in renewal processes; as these must be continually carried
out even on young systems to prevent premature ageing, such techniques should be refined to
increase their accuracy and efficacy;

• the tools required to carry out renewal processes should achieve greater maturity to be able to
improve both the efficacy and the efficiency of renewal processes, bearing in mind the permanent
need for renewal processes together with ordinary maintenance;

• the reengineering process can solve the most critical problems of an aged system but it is difficult
to apply this process because it cannot be carried out gradually like the restoration process.
Reengineering processes that can be introduced gradually should studied in greater depth [29];

• the symptoms presented in this work are probably also applicable to systems with object-oriented
(OO) architecture; as these, too, tend to age, it would be useful to verify whether such a transfer
is possible and, if so, to adapt the concepts to OO systems.

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

AGEING OF A DATA-INTENSIVE LEGACY SYSTEM 307

ACKNOWLEDGEMENTS

I am very much obliged to the company that gave me the opportunity to collect the experimental findings this work
is based on. Thanks go to Ms M. V. C. Pragnell, for her aid as technical writer. Finally, I am very grateful to the
anonymous referees for their helpful comments that have contributed to improve this work.

REFERENCES

1. Lehman MM. Laws of program evolution—rules and tools for programming management. Proceedings of the Infotech
State of the Art Conference, April 1978. Pergamon Press, 1978; 11/1–11/25.

2. Visaggio G. Assessing the maintenance process through replicated, controlled experiments. The Journal of System and
Software 1999; 44:187–197.

3. Visaggio G. Value-based decision model for renewal process in software maintenance. Annals of Software Engineering
2000; 9.

4. Chifosky EJ, Cross II JH. Reverse engineering and design recovery: A taxonomy. IEEE Software 1990.
5. Abbattista F, Fatone GMG, Lanubile F, Visaggio G. Analyzing the application of a reverse engineering process to a real

situation. Proceedings Workshop on Program Comprehension. IEEE Computer Society, 1994; 62–71.
6. Corbi TA. Program understanding: Challenge for the 1990s. The Journal of Systems and Software 1989; 28(7).
7. Biggerstaff TJ. Design recovery for maintenance and reuse. IEEE Computer 1989.
8. Brown AJ. Specifications and reverse—engineering. Software Maintenance: Research and Practice 1993; 5.
9. Cimitile A, Fasolino AR, Maresca P. Reuse reengineering and validation via concept assignment. Proceedings Conference

on Software Maintenance, Montreal, Canada. IEEE Computer Society, 1993.
10. DeBaud JM, Rugaber S. A software re-engineering method using domain models. IEEE Software 1994.
11. Fanta R, Rajlich V. Removing clones from the code. Journal of Software Maintenance: Research and Practice 1999; 11(4).
12. Lanubile F, Visaggio G. Extracting reusable functions by program slicing. IEEE Transactions on Software Engineering

1997; 23(4).
13. Lehman MM, Perry DE, Ramil J. Implications of evolution metrics on software maintenance. Proceedings Conference on

Software Maintenance 1998. IEEE Computer Society Press: Los Alamitos CA, 1998; 208–217.
14. Lehman MM, Perry DE, Ramil J, Turski WM, Wernick PD. Metrics and laws of software evolution—the nineties view.

Proceedings Symposium on Software Metrics 1997. IEEE Computer Society Press: Los Alamitos CA, 1997; 20–32.
15. Ning JQ, Engberts A, Kozaczynski W. Automated support for legacy code understanding. Communications of the ACM

1994; 37(5).
16. Oman PW, Cook CR. The book paradigm for improved maintenance. IEEE Software 1990; 39–45.
17. Ramil J, Lehman MM. Metrics of software evolution as effort predictors—a case study. Proceedings Conference on

Software Maintenance 2000. IEEE Computer Society Press: Los Alamitos CA, 2000.
18. Solinger M, Engberts A, Ning JQ. Transferring re-engineering technology to a software development and maintenance

organization: An experience report. IEEE Software 1994.
19. Welker KD, Oman PW, Atkinson GG. Development and application of an automated source code maintainability index.

Journal of Software Maintenance: Research and Practice 1997; 9:127–159.
20. Ohlsson MO, Wohlin C. Identification of green, yellow and red legacy components. Proceedings Conference on Software

Maintenance. IEEE Computer Society, 1998.
21. Clarke F et al. Subject-oriented design: Towards improved alignment of requirements, design and code. Proceedings of

OOPSLA ’99, 1999.
22. Kigzales G et al. Aspect-oriented programming. Proceedings of ECOOP97. Springer, 1997.
23. Lopes C et al. Aspect-oriented programming. Proceedings of the Workshop ECOOP ’99. Springer, 1999.
24. Inhwan L, Ravishankar KI. Diagnosing rediscovered software problems using symptoms. IEEE Transaction on Software

Engineering 2000; 26(2).
25. Lanubile F, Visaggio G. Function recovery based on program slicing. Proceedings Conference on Software Maintenance,

Montreal, Canada. IEEE Computer Society, 1993.
26. Cutillo F, Fiore P, Visaggio G. Identification and extraction of domain independent components in large programs.

Proceedings Conference on Reverse Engineering, Montreal, Canada. IEEE Computer Society Press: Los Alamitos CA,
1993.

27. Visaggio G. Process improvement through data reuse. IEEE Software 1994; 11(4).
28. Visaggio G. Assessment of a renewal process experimented on the field. The Journal of Systems and Software 1999; 45(1).
29. Bisbal J, Lawless D, Wu B, Grimson J. Legacy information systems: Issues and directions. IEEE Software 1999; 16(5).

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

308 G. VISAGGIO

AUTHOR’S BIOGRAPHY

Giuseppe Visaggio graduated in Electronic Physics at the Universuty of Bari in 1972. After graduating, he
continued to work in the same university in Computer Science and became Professor at its Informatics Department.
His research interests are in maintenance, focusing particularly on processes, quality improvements and legacy
systems. Currently he is Full Professor of Software Engineering at University of Bari. He is Chief of Research
at the Software Engineering Research Laboratory (SER Lab), in the Informatics Department at the University of
Bari. SER Lab hosts several basic research projects and carries out controlled and on the field experimentation. For
many years he has worked as a member of the Program Committee for IEEE International Conference on Software
Maintenance (ICSM), Workshop on Program Comprehension (WPC) and Workshop on Empirical Studies of
Software Maintenance (WESS). Over the next three years he will serve the ICSM in the Steering Comittee. He is
a member of the IEEE Computer Society, ACM and AICA (the Italian Computer Society).

Copyright  2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2001; 13:281–308

	1 INTRODUCTION
	2 RELATED WORK
	3 AGEING SYMPTOMS
	3.1 Pollution
	3.2 Embedded knowledge
	3.3 Poor lexicon
	3.4 Coupling
	3.5 Layered architectures

	4 METRICS
	4.1 Pollution
	4.2 Embedded knowledge
	4.3 Poor lexicon
	4.4 Coupling
	4.5 Layered architectures

	5 A CASE STUDY
	5.1 Pollution
	5.2 Embedded knowledge
	5.3 Poor lexicon
	5.4 Coupling
	5.5 Layered architectures

	6 DISCUSSION
	7 CONCLUSIONS

