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Brad’s Tiny Voice—
based on an ’HC705
and powered off a
9-V battery—can be
trained to recognize
up to 16 command
templates and costs
less than $5. Toys,
voice-activated
padlocks, and
remote controls had
better listen up.

oice recognition
has come a long

way in the past five
years, due mainly to the

advent of cheap and powerful PCs
equipped with Pentiums and MMX
technology. Performance continues to
improve to the point where parts of
this article were comfortably voice-
dictated via Kurzweil VoicePlus.

But, this performance comes at a
cost. You need fast Pentiums with
MMX, at least 16 MB of DRAM, and
even more disk stroage.

What if your application has a
budget of a couple dollars? Can you
still embed some form of voice recog-
nition or voice command and control
into your product?

In this article, I’ll show you how to
implement a voice-command system for
under $5. I conclude with some appli-
cation examples and recommendations
to improve the system even further.

TINY VOICE

My system—Tiny Voice—is based on
a low-cost, 20-pin single-chip controller.
It’s a speaker-dependent, template-
based, isolated-word recognizer. You
train it to recognize your voice.

Up to 16 voice patterns are stored in
a nonvolatile 512-byte serial EEPROM.
Five push buttons enable programming
and operation, and seven LEDs give
status.

For embedded systems, Tiny Voice
can be controlled over a parallel or serial
protocol from a host microcontroller
or it can run stand-alone. The source
code may be modified to fit your re-
quirements.

At under $5, Tiny Voice won’t do
dictation. But, it’s good for applica-
tions like toys, repertory phone dial-
ers, voice-activated padlocks, security
systems, remote controls, and other
low-cost consumer products.

A voice command can be one or
several words, with a total maximum
length of 1.6 s and a minimum of 0.2 s.
Response time is typically <100 ms. By
carefully selecting the vocabulary and
context, over 95% recognition accuracy
is possible.

The heart of the system is the 68HC-
705J1A Motorola 8-bit processor. There
were a number of reasons why I chose
this part over a comparable one from
Zilog or Microchip.

There’s sufficient RAM (64 bytes) to
buffer the input waveforms and hold
template structures, and its 1240 bytes
of ROM provide enough program stor-
age. Also, interrupts are supported,
including changes on the I/O lines.

This system is inexpensive (<$2) in
high volume. The development kit is
cheap, too, at $99.

Shown in Photo 1, the Tiny Voice
system was built on a 3″ × 3″ bread-
board and is powered off a 9-V battery.
Standby current consumption is ~2 mA,
which is primarily due to the op-amp
and electret microphone bias.



Circuit Cellar INK®       Issue 91 February 1998       13www.circuitcellar.com

With some added power
management, standby
current could be reduced to
a few microamps. Operat-
ing power while sampling
and analyzing speech is
~10 mA.

THEORY OF OPERA-
TION

The 68HC05 processor
is very simple. There are
no ADCs, so you need a
way to convert the time
domain signal to a format
the microcontroller can
recognize.

The small amount of
memory requires a lot of
approximations and sim-
plifications to convert the
speech into a small set of
features.

To meet these limitations, I use a
simplified formant tracker. The micro-
phone input is high-pass filtered and
then infinitely clipped using two op-
erational amplifiers. The resulting
square wave is connected to an MCU
input.

By sorting and tallying long and
short pulse widths of the square wave,
you get a crude but effective two-
channel frequency analyzer. One chan-
nel gives frequencies below 1500 Hz,
and the other ranges from 1500 Hz to 5
kHz.

These two frequency areas roughly
define F1 and F2, the two formant
regions of speech. It’s a well-known

principle that F1 and F2 for a given
speaker and a given set of vowels
remain the same.

Using F1 and F2 was first tried in
1952 by Bell Labs employing vacuum
tubes and capacitors for memory. Crude
as it sounds, that system achieved 97%
recognition accuracy!

The input signal is high-pass filtered
(i.e., pre-emphasized) to accentuate the
F2 frequencies. Figure 1 illustrates
why this is necessary.

Figure 1a is a sample of the voiced
vowel sound “ee” as in “speech.” Note
the F2 component shown by the arrow.
Also note that these high-frequency
wiggles do not cross the zero axis.
Thus, if the waveform is infinitely

amplified and clipped, the
square wave would not re-
veal the F2 component.

However, Figure 1b
shows what happens after
pre-emphasis. The F2
wiggles cross the zero axis,
and the resultant infinitely
clipped square wave now
contains both F1 and F2 (see
Figure 1c).

TINY HARDWARE
Figure 2 shows a sche-

matic of the system. An
electret condenser micro-
phone is biased to 5 V via
R4. The signal is then ampli-
fied by U2a.

C2 and R6 (along with C3
and R10) form a high-pass
filter, with a cut-off fre-

quency of 1600 Hz with an added zero
at 800 Hz. This setup provides a pre-
emphasis function.

C1 serves as a mild antialiasing
low-pass filter. The output is fed to
the second op-amp, which is config-
ured as a comparator with some hys-
teresis. R8 sets the threshold of the
comparator.

The comparator’s output is a square
wave that’s applied to an input pin of
the processor. The threshold defines
the beginning and end of a speech
utterance. With no signal present, the
second op-amp’s output is at a DC level.

Voice pattern data is stored in a non-
volatile EEPROM. For this project, I
selected Ramtron’s FM24C04, which

a)

b)

c)

Figure 1a—This is a waveform of the voiced sound “ee” as in “speech.” The arrow
points to high-frequency wiggles corresponding to the second formant (F2). Note that
these wiggles do not cross the zero axis. b—After preemphasis or high-pass filtering,
the F2 components now cross the zero axis with the same waveform. c—After being
infinitely clipped, the waveform of Figure 1b is a square wave showing both F1 and F2
components. This signal is applied to the microprocessor via a digital input pin.

Figure 2—An electret
condenser microphone (not
shown) is biased to 5 V via
R4. The signal is then
amplified by U2a. C2 and
R6 (along with C3 and
R10) form a high-pass
filter. The output is fed to
the second op-amp, which
is configured as a com-
parator whose output is
connected to PB4 of the
68HC705J1. The EEPROM
has a two-wire I2C inter-
face, which is connected to
PB1 and PB0. The remain-
ing pins of the processor
are connected to LEDs and
push buttons.
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enters the Stop mode.
Untrain modifies the

data in the stored tem-
plate so the pattern-
matching algorithm skips
over this template and
does not consider it as a
possible candidate.

This is useful for con-
text switching of vocabu-
laries. For example, out of
the 16 templates, you
may only need to scan for
two words (e.g., “yes” or
“no”), while ignoring the
remaining 14.

To enable a template
that was previously un-
trained, press the Train
button and then press
another button (e.g., Se-
lect) before speaking.

In Recognition mode,
the speech is sampled and
analyzed. The On LED is
activated, and the user is
prompted to say a previ-
ously trained command.
As before, the Sampling
LED is lit during speech
and off during periods of
silence.

The input is compared
to the templates in
memory and a decision
made. If recognition is

successful, the result is displayed on
the four LEDs in binary.

When Reset is pressed, Stop mode
is entered and the system is ready to
accept a push-button command. Previ-
ously trained commands are not erased.

When an error occurs, the Error LED
(D1) is lit and the error code is displayed
in binary using the same four LEDs
that display the template index number.
After ~2 s, the LEDs go off and the
system enters Stop mode.

The error codes—Time Out, Buffer
Full, and Not Recognized—are defined
in the header file.

After Train or Recognize is pressed,
the system waits for valid speech input.
If no input occurs after ~6.5 s, the
system enters the Stop condition and
the Time Out error code is displayed.

On the other hand, if the length of
the utterance is longer than 1.6 s, the

uses ferroelectric cells.
It has several advan-

tages over a more generic
part. For one thing, the
FRAM part can be writ-
ten to over 10 billion
times, compared to about
10k cycles with a generic
EEPROM. This feature is
important here because
the first 128 bytes are
used for scratch-pad
memory and are con-
stantly written to.

Also, it has a deep
write buffer. So, once the
starting address is speci-
fied, memory address is
autoincremented and
additional writes can be
performed with no more
intervention. As a result,
writing to the device is
very fast.

Generic parts, however,
require you to set up the
address every other byte
before you write data. This
task creates additional
time overhead that may
cause a bottleneck in the
software flow—a major
concern in a real-time
system.

The FM24C04 has a
low standby current of
25 µA as well as a low operation cur-
rent of 100 µA. So, it’s well suited for
battery operation.

The EEPROM’s first 128 bytes hold
the transformed input utterance to be
recognized or trained. Locations 128–512
store the feature vectors of a previously
trained utterance. Each vector occupies
24 bytes, so the maximum number of
templates that can be stored is 16.

The rest of the circuit comprises a
5-V regulator, switches, and LEDs.
TINY USER INTERFACE

Before discussing the voice-recogni-
tion software, I want to describe the
interface and how the system works
from the user’s point of view.

Seven LEDs and four switches com-
pose the Tiny Voice user interface. LEDs
D2, D3, D4, and D5 make up a four-bit
binary number that gives Tiny Voice’s
status. It can either be the index of a

voice command or an error message.
When power is connected or when

the Reset switch is pressed, the Stop
mode is entered. Pressing a push but-
ton activates the system and performs
a certain function.

Pressing Select displays a binary
number from 0 to 15 on four LEDs
which selects the template number to
be trained or untrained. Each time
Select is pressed, the number incre-
ments to 15 and back to 0.

Pressing Train starts the Training
mode. The On LED is activated, and
the user is prompted to say the com-
mand to be trained.

While the user is speaking, the Sam-
pling LED is lit during periods of speech
and off during periods of silence. If the
training is successful, the template is
stored in EEPROM at the selected
template location and the system

STOP
Wait for
Interrupt

Call Input

Initiate I/O ports
Turn off LEDs

Call Input

Select
 Button?

Untrain
button?

Recognize
button?

STOP

Kick the Watchdog

Call Normalize

Train
button?

Store results in
template memory

Call Normalize

Return from IRQ
Handler

Input
Error?

Select the 
template with the lowest
error score and display

results on LEDs

Set Watchdog
RTI

Display error
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Input
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RESET

Display error
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No

No

Yes
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Increment count and
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Figure 3—The main routine performs the event handler. Events are generated by an interrupt
caused by pressing a push button or by system reset. The events dispatched are Select,
Train, Untrain, and Recognize.
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and spends most of its time in the Stop
mode. Events are caused by the inter-
rupt of pressing push buttons. The
event handler is shown in Figure 3.

INPUT ROUTINE
When a Recognize or Train event

occurs, the input routine is invoked
(see Figure 4). A timer is set up and
polled until 110 µs has elapsed.

An interrupt routine could have been
used to time the samples every 110 µs,
but I was concerned that the overhead
to service the interrupt might make it
difficult to complete all the paths in
the input routine within 110 µs.

Once the time elapses, the input
square wave is sampled. If the sign
changes from the previous measure-
ment, one of the two frequency bytes
is updated.

The threshold limit is set to six. In
other words, if the pulse (positive or
negative) is greater than six samples
(roughly corresponding to 1.5 kHz), the
“high” frequency byte is incremented
by one. If it’s less than six, the “low”
frequency byte is incremented.

The rest of the routine is basically
a state machine that uses speech activ-
ity as an input to determine a utterance
bounded by silence. At each rising or
falling edge, another byte counts the
zero crossings.

After 256 samples, a frame counter
advances and several tests are made. If
the frame counter is greater than 64, the
input buffer is filled (i.e., you spoke too
long) or there is too much background
noise, and an error is generated.

Otherwise, a timeout value is decre-
mented and tested. This setup enables

the routine to exit if too much time
elapses before any sound is input.

If the buffer isn’t full or a timeout
has not occurred, then it tests the zero-
crossing counter. Too low a value
signifies silence, and a silence counter
is incremented.

Otherwise, a sound-activity counter
is incremented. If the sound-activity
value is above a certain threshold and
the silence value is high enough, the
routine exits with a valid data sample.

TIME NORMALIZATION
Words vary in length. But for this

algorithm to work, the lengths must
be normalized to a fixed value.

Each sample consists of two bytes
sampled over one frame of 256 samples.
The unnormalized data in the first
128 bytes of the EEPROM is normal-
ized to a set of 12 vectors in main RAM.

The vector in RAM is built up,
element by element, by down- or up-
sampling the raw data in EEPROM.
Since there are two elements per fea-
ture, a template has a fixed memory
length of 24 bytes.
THE MAIN ROUTINE

If the event is for training, the nor-
malized vector in RAM is stored in
memory according to the template num-
ber selected. Templates are stored in
memory locations 128–512, which
allows for sixteen 24-byte templates.
No comparisons are performed.

If the system is recognizing, the
normalized input utterance, which is
stored in RAM, is compared element
by element to each previously trained
template stored in EEPROM.

The comparison is a simple Euclid-
ean distance measure, and an error value
accumulates. The minimum error value
is selected and compared to a threshold.

If the result is above the threshold,
the system rejects the recognition. If
the value is low enough, the word is
recognized.

Well, almost. Two more criteria
must also be met: the score must be low
enough, and the two smallest scores
must differ by a large enough value.

TINY APPLICATIONS
For testing purposes, the system

was trained with eight words: “VCR”,
“television”, “telephone”, “stereo”,

system enters the Stop mode and the
Buffer Full error is displayed.

The Not Recognized error code is
displayed if the input utterance doesn’t
match a stored template. The system
then enters Stop mode and waits for
new input.

TINY ALGORITHMS
The software for Tiny Voice was

written entirely in assembly. There is
a total of eight routines.

The main program, MAIN.ASM,
responds to events and schedules the
remaining subroutines.

COMPARE.SUB handles the pattern
matching. It compares the input tem-
plate to each active template in memory
and calculates the best match.

EEPROM.SUB handles the reading
and writing of data to the EEPROM. It
bit-bangs two I/O pins to simulate an
I2C protocol used by the EEPROM.

IRQ.SUB is the interrupt handler.
Interrupts are caused by a button press.

The most complicated routine is
INPUT.SUB. It samples the input, deter-
mines where the word starts and ends,
and builds up the voice template.

TIME_NOR.SUB normalizes the
length of the speech input to a fixed
length of twelve two-element data
values.

DIV16_8.SUB is an integer divide
routine that divides a 16-bit number
by an 8-bit number. This routine is
called repeatedly by the time-normal-
ization routine.

And finally, DELAYMS.SUB is a
simple program where a delay is set by
the value passed in the accumulator.

Tiny Voice is entirely event-driven

Photo 1—My prototype was
built on a 3″× 3″ breadboard
and is powered off a 9-V
battery. The only ICs are the
68HC705J1 processor, LM358
dual-operational amplifier, the
4096-bit FM24C04 FRAM serial
memory, and a 78L05 5-V
regulator.



16       Issue 91 February 1998       Circuit Cellar INK®                           www.circuitcellar.com

“CD”, “PC”, “yes”, and “no”. Each
word was trained twice, thereby occu-
pying 16 templates.

Recognition accuracy approaches
100% when background noise isn’t too
severe. It also works with ~90% accu-
racy using speakers who didn’t train
the system.

A speaker-independent vocabulary
can be constructed by having multiple
trainings of a few words. For example,
training “yes” and “no” eight times
over a set of different speakers yields
excellent results.

A note of caution: when using Tiny
Voice, don’t use a lot of short words
(e.g., the numbers “one”, “two”, etc.).
They’re a bit beyond its capabilities.

And watch for commands that sound

alike. For example, “on” and “off” will
get you in trouble. Instead, try “turn
on” and “off please”.

A fun application might be a voice-
activated padlock. Change the code so
you have to enter one, two, or three
voice commands in sequence. Then,
multiply the scores. If the result is
small enough, then “open sez me.”

FUTURE TINY ENHANCEMENTS
Naturally, there are ways to improve

the system. I was surprised by the
HC05’s speed. I also wound up with at
least 200 bytes of leftover ROM for
more code. Tiny Voice’s code is modu-
lar, and updates can be easily added.

I can increase the EEPROM capacity
to 1 or even 2 KB. This size would pro-

vide more template storage or allow
for more frame features to better re-
solve differences in speech patterns.

I’d also like to add some fuzzy logic
to the pattern-matching algorithm to
improve recognition accuracy and the
rejection criteria.

Adding a serial port instead of push
buttons and LEDs could reduce cost
and add more functionality. Threshold
values could be changed, templates
uploaded and downloaded, and so on.

I want an MCU-controlled gain ad-
justment on the input for different mi-
crophone levels and background noise.

Another improvement would be to
add a dynamic time warp (DTW) algo-
rithm to the pattern-matching routine.
The DTW takes into account slight
variations on how each word is pro-
nounced—in particular, variations in
lengths of phonemes.

But with only 200 bytes of code
space left over, adding a DTW would
be challenging. A first-order approxi-
mation may be achievable, however.

I’d rather use C than assembly lan-
guage. When I started this project, I
knew squeezing this functionality into
1200 bytes would be tough. So, a high-
level language was out of the question.

Since then, I’ve had the opportunity
to try out a C compiler from Byte
Craft. The good news is, it generates
small enough code. The bad news: I
wish I’d used it earlier.

And as a final wish, I would like to
use a different processor. Of all these
improvements, this one is probably
the best. You can now get equivalent
MCUs with built-in ADCs, which
would provide more elaborate signal
processing and better noise rejection.

One of the best candidates for a
low-cost system is the Sharp SM8500
8-bit MCU. It has almost everything you
need for an embedded voice-command
system, including a 10-bit ADC (8 chan-
nels) and an 8-bit DAC, which is useful
for voice feedback and verification.

The SM8500 features SIO and UART
ports to communicate with other
system devices, 2 KB of internal RAM,
as well as internal ROM and the ability
to access external ROM or RAM. It
also offers 80+ I/O pins for keypad and
display interfacing, hardware multiply
and divide, and a 250-ns instruction

Figure 4—Every 110 µs, the square-wave input is sampled and several options are considered, depending on the
state of the frame, zero-crossing, silence, and sound counts. The state machine effectively captures the input
utterance, while rejecting short bursts and input errors due to excessive background noise.
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MCU Information Line
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C Compiler
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Sharp Electronics Corp.
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cycle time. And, it costs under $3.
If you’re willing to spend a bit

more, then a new level of performance
may be realized. New 32-bit RISC
MCUs are becoming available in the
sub $15 or even sub $10 range.

For example, the Sharp ARM710M
RISC processor, running at a conser-
vative 16 MHz, performs a complete
FFT-Mel-Cepstrum analysis using
only 50% of the processor’s resources.

With the ability of RISC processors
to address large amounts of memory,
you have the ingredients to put to-
gether a dictation system like the one
I’m using now. And, it can run off a
couple pen-light batteries! I

SOFTWARE

Source code (tinyvoice.zip) for this
article may be downloaded from
the Circuit Cellar Web site.
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