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Series Preface

Mathematics is playing an ever more important role in the physical and biolog-
ical sciences, provoking a blurring of boundaries between scientific disciplines
and a resurgence of interest in the modern as well as the classical techniques
of applied mathematics. This renewal of interest, both in research and teach-
ing, has led to the establishment of the series Texts in Applied Mathematics
(TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these advances
and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
Houston, Texas M. Golubitsky

College Park, Maryland S.S. Antman



Preface

Mathematics is more an activity than a theory
(Mathematik is mehr ein Tun als eine Lehre)
Hermann Weyl, after L.E.J. Brouwer

Perturbation theory is a fundamental topic in mathematics and its appli-
cations to the natural and engineering sciences. The obvious reason is that
hardly any problem can be solved exactly and that the best we can hope for
is the solution of a “neighbouring” problem. The original problem is then a
perturbation of the solvable problem, and what we would like is to establish
the relation between the solvable and the perturbation problems.

What is a singular perturbation? The traditional idea is a differential equa-
tion (plus other conditions) having a small parameter that is multiplying the
highest derivatives. This covers a lot of cases but certainly not everything. It
refers to boundary layer problems only.

The modern view is to consider a problem with a small parameter € and so-
lution x(t,¢). Also defined is an “unperturbed” (neighbouring) problem with
solution z(t,0). If, in an appropriate norm, the difference ||x(¢,e) — 2(¢,0)]|
does not tend to zero when e tends to zero, this is called a singular per-
turbation problem. The problems in Chapters 1-9 are covered by both the
old(fashioned) definition and the new one. Slow-time problems (multiple time
dynamics), as will be discussed in later chapters, fall under the new definition.
Actually, most perturbation problems in this book are singular by this defi-
nition; only in Chapter 10 shall we consider problems where “simple” contin-
uation makes sense.

This book starts each chapter with studying explicit examples and intro-
ducing methods without proof. After many years of teaching the subject of
singular perturbations, I have found that this is the best way to introduce
this particular subject. It tends to be so technical, both in calculations and in
theory, that knowledge of basic examples is a must for the student. This view
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is not only confirmed by my lectures in Utrecht and elsewhere but also by lec-
turers who used parts of my text in various places. In this respect, Hermann
Weyl’s quotation which is concerned with the fundamentals of mathematics,
gives us the right perspective.

I have stressed that the proposed workbook format is very suitable for
singular perturbation problems, but I hope that the added flavour of precise
estimates and excursions into the theoretical background makes the book of
interest both for people working in the applied sciences and for more theoret-
ically oriented mathematicians.

Let me mention one more important subject of the forthcoming chapters.
There will be an extensive discussion of timescales and a priori knowledge of
the presence of certain timescales. This is one of the most widely used concepts
in slow-time dynamics, and there is a lot of confusion in the literature. I hope
to have settled some of the questions arising in choosing timescales.

What about theory and proofs one may ask. To limit the size of the book,
those mathematical proofs that are easy to obtain from the literature are listed
at the end of each chapter in a section “Guide to the Literature”. If they are
readily accessible, it usually makes no sense to reproduce them. Exceptions
are sometimes cases where the proof contains actual constructions or where
a line of reasoning is so prominent that it has to be included. In all cases
discussed in this book - except in Chapter 14 - proofs of asymptotic validity
are available. Under “Guide to the Literature” one also finds other relevant
and recent references.

In a final chapter I collected pieces of theory that are difficult to find in
the literature or a summary such as the one on perturbations of matrices or
a typical and important type of proof such as the application of maximum
principles for elliptic equations. Also, in the epilogue I return to the discussion
about “proving and doing”.

To give a general introduction to singular perturbations, I have tried to
cover as many topics as possible, but of course there are subjects omitted.
The first seven chapters contain standard topics from ordinary differential
equations and partial differential equations, boundary value problems and
problems with initial values within a mathematical framework that is more
rigorous in formulation than is usual in perturbation theory. This improves
the connection with theory-proof approaches. Also, we use important, but
nearly forgotten theorems such as the du Bois-Reymond theorem.

Some topics are missing (such as the homogenisation method) or get a
sketchy treatment (such as the WKBJ method). I did not include relaxation
oscillations, as an elementary treatment can be found in my book Nonlinear
Differential Equations and Dynamical Systems. Also there are books available
on this topic, such as Asymptotic Methods for Relaxation Oscillations and
Applications by Johan Grasman.

Perturbation theory is a fascinating topic, not only because of its appli-
cations but also because of its many unexpected results. A long time ago,
Wiktor Eckhaus taught me the basics of singular perturbation theory, and at
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about the same time Bob O’Malley introduced me to Tikhonov’s theorem and
multiple scales.

Many colleagues and students made remarks and gave suggestions. I
mention Abadi, Taoufik Bakri, Arjen Doelman, Hans Duistermaat, Wiktor
FEckhaus, Johan Grasman, Richard Haberman, Michiel Hochstenbach, James
Murdock, Bob O’Malley, Richard Rand, Bob Rink, Thijs Ruijgrok, Theo
Tuwankotta, Adriaan van der Burgh. I got most of section 15.5 from Van
Harten’s (1975) thesis, section 15.9 is based on Buitelaar’s (1993) thesis.

The figures in the first nine chapters were produced by Theo Tuwankotta;
other figures were obtained from Abadi, Taoufik Bakri and Hartono. Copyed-
itor Hal Henglein of Springer proposed the addition of thousands of comma’s
and many layout improvements.

I am grateful to all of them.

Corrections and additions will be posted on
http://www.math.uu.nl/people/verhulst

Ferdinand Verhulst, University of Utrecht
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