Study of Tangent Handrail Geometry

40° Slope, 50° Slope and 120° Corner Angle between Tangents in Plan View (Handrail negotiates a 60° Turn)

Developments of Tetrahedra

Development and Relationship of the Tetrahedra to the Corner Angle in Plan View and the Tangent Planes		Page 3	
Construction of the Dihedral Angles measured between the Oblique Plane and Tangent Planes		Page 4	
Developments of Posterboard Polyhedra			
Developed Tetrahedron (Lower Tangent Plane)		Page 5	
Developed Tetrahedron (Upper Tangent Plane)		Page 6	
Developed Juxtaposed Tetrahedra (Tangent Planes)	•••	Page 7	
Developed Pentahedron	•••	Page 8	
Developed Prismatic Solid	•••	Page 9	

Drawings of Face Mould

Ellipses and Quadrilateral (Oblique Plane) superimposed on Circles and Kite (Plan View)	l 	Page 10
Face Mould: Ellipses superimposed on Quadrilateral	•••	Page 11
Face Mould: Analytic Data	•••	Page 12
Navigating the Dimensions and Angles between the Face Mould and Plan View		Page 13

Supplementary Data

Table of Angles

... Page 14

Construction of Twist Angles (Dihedral Angles measured between Tangent Planes and Obligue Plane)

> * Dihedral Angle measured between Lower Tangent Plane and Oblique Plane * Dihedral Angle measured between Upper Tangent Plane and Oblique Plane

Lower Tangent Plane Angle = 50° Upper Tangent Plane Angle = 40°

*

500

T1

*

40°

Tangent Lme

(Ordinate)

Point V is the center of all radii ZVTIC = Plan Angle associated with Lower Tangent Plane ZVCTI = Plan Angle associated with Upper Tangent Plane

Ellipses and Quadrilateral (Oblique Plane) superimposed on Circles and Kite (Plan View)

> Semi-Minor Axis = Radius = 5 Semi-Major Axis = 7.90435 Semi-Minor Axis = Radius = 4 Semi-Major Axis = 6.32348 Semi-Minor Axis = Radius = 3 Semi-Major Axis = 4.74261

Ellipses superimposed on Quadrilateral ∠ T2 P T1 = 180° – (R4P + r4P) Angle between Tangents on the Obligue Plane

= Angle between Tangents on the Oblique Plane

Oblique Plane ... Data for Analytic Solution

T1 = (4.866688, -1.813080)t1 = (2.920013, -1.087848)

Distance between Ellipses from t1 to T1 = 2.077379

T2 = (3.426577, 5.756318)t2 = (2.055946, 3.453791)

Distance between Ellipses from t2 to T2 = 2.679601

Equation of Line through EC T1 = $-\tan 20.43282 x$

Equation of Line through EC T2 = $\tan 59.23583 x$

Equations of Ellipses and Lines as entered in WZ Grapher

7.90435(25-x^2)^.5/5; -7.90435(25-x^2)^.5/5; 6.32348(16-x^2)^.5/4; -6.32348(16-x^2)^.5/4; 4.74261(9-x^2)^.5/3; -4.74261(9-x^2)^.5/3; -.372549*x; 1.679903*x

... points validated using the grapher's "Trace" function

 $T1(x) = 5 \sin 76.739582^\circ = 4.866688$

 $T1(y) = -5 \cos 76.739582^{\circ} / \cos 50.760553^{\circ} = -1.813080$

 $T2(x) = 5 \sin 43.260418^\circ = 3.426577$

T2 (y) = 5 tan 30° (tan 40° + tan 50°) / sin 50.760553° - 1.813080 = 5.756318

t1 (x) = 3 sin 76.739582° = 2.920013 t1 (y) = $-3 \cos 76.739582° / \cos 50.760553° = -1.087848$ t2 (x) = 3 sin 43.260418° = 3.426577 t2 (y) = 3 tan 30° (tan 40° + tan 50°) / sin 50.760553° - 1.0878748 = 3.453791

Trigonometric Solution of Dimensions ... relationships between lengths on the Level Plane and the Oblique Plane

Distance between Radii in Plan View = 2

★ ... agrees with analytic solution

Table of Angles

50° Slope, 40° Slope and 120° Corner Angle between Tangents in Plan View (Handrail negotiates a 60° Turn)

Angles associated with the 40° (Upper) Tangent Plane

 $SS = 60.76357^{\circ}$... arctan (tan $R5P \div (\sin DD)^2$) ... angle entered calculator * $DD = 43.26042^{\circ}$... Upper Tangent Plane Plan Angle $R5P = 40.00000^{\circ}$... Upper Tangent Plane Slope Angle $R4P = 33.90856^{\circ}$... produced on Oblique Plane by trace of Upper Tangent Plane $A5P = 34.33520^{\circ}$ $90^{\circ} - A5P$... Dihedral Angle between Oblique Plane and Upper Tangent Plane

Angles associated with the 50° (Lower) Tangent Plane

 $ss = 51.51701^{\circ}$... arctan (tan $r5P \div (sin dd)^2$) ... angle entered calculator * $dd = 76.73958^{\circ}$... Lower Tangent Plane Plan Angle $r5P = 50.00000^{\circ}$... Lower Tangent Plane Slope Angle $r4P = 8.47866^{\circ}$... produced on Oblique Plane by trace of Lower Tangent Plane $a5P = 10.23320^{\circ}$ $90^{\circ} + a5P$... Dihedral Angle between Oblique Plane and Lower Tangent Plane

 $\mathbf{R1} = 50.76055^{\circ}$... Slope of Plank: Dihedral Angle measured between the Level Plane and the Oblique Plane

 $180^{\circ} - (\mathbf{R4P} + \mathbf{r4P}) = 137.61278^{\circ}$... Angle between Tangents: angle produced on the Oblique Plane by traces of Upper and Lower Tangent Planes

DD + **dd** = Angle between Tangents in Plan View **DD** + **dd** + **Angle negotiated by Handrailing** = 180°

* SS and ss are theoretical angles used to obtain a trigometric solution of the tangent handrailing angles with a Javascript calculator. These two angles are not needed to understand the geometric constructions and developments.

Tangent = Radius tan (.5 × **Angle negotiated by Handrailing**) = 2.86675

Distance from Point **R** to Point **C** = **Radius** sin **dd** + **Tangent** cos **dd** + **Tangent** sin **dd** ÷ tan **DD** = 8.51464