Study of Tangent Handrail Geometry

40° Slope, 50° Slope and 120° Corner Angle between Tangents in Plan View (Handrail negotiates a 60° Turn)

Developments of Tetrahedra

Development and Relationship of the Tetrahedra to the Corner Angle in Plan View and the Tangent Planes ... Page 3
Construction of the Dihedral Angles measured between the Oblique Plane and Tangent Planes

$$
\text { ... Page } 4
$$

Developments of Posterboard Polyhedra

Developed Tetrahedron (Lower Tangent Plane) ... Page 5
Developed Tetrahedron (Upper Tangent Plane) ... Page 6
Developed Juxtaposed Tetrahedra (Tangent Planes) ... Page 7
Developed Pentahedron ... Page 8
Developed Prismatic Solid ... Page 9

Drawings of Face Mould

Ellipses and Quadrilateral (Oblique Plane) superimposed on Circles and Kite (Plan View)

Page 10
Face Mould: Ellipses superimposed on Quadrilateral ... Page 11
Face Mould: Analytic Data ... Page 12
Navigating the Dimensions and Angles between the Face Mould and Plan View
... Page 13

Supplementary Data

Table of Angles ... Page 14

Development of Face Mould
Railing negotiates 60° in Plan View Angle between Tangents in Plan View $=120^{\circ}$ Lower Tangent Plane Angle $=50^{\circ}$ Upper Tangent Plane Angle $=40^{\circ}$

Tangent Line
(Ordinate)
$\angle K^{\prime} R K=$ Dihedral Angle between Level Plane and Oblique Plane
$\angle T 2 P T 1=$ Angle between tangents on the Oblique Plane
$\overline{K^{\prime} H^{\prime}}=\overline{K H}=$ Major Axis of Ellipse
H Points $F 1, T 1$ and A are collinear
Points $F 2, T 2$ and B are collinear
$2 \times$ Radius $=$ Minor Axis of Ellipse Points $K, T 2, P$ and C are collinear

Construction of Twist Angles (Dihedral Angles measured between Tangent Planes and Oblique Plane)

Lower Tangent Plane Angle $=50^{\circ}$
Upper Tangent Plane Angle $=40^{\circ}$

Point U is the center of all radii
$\angle V T I C=$ Plan Angle associated with Lower Tangent Plane.
$\angle V C T 1=$ Plan Angle associated with Upper Tangent Plane

Ellipses and Quadrilateral (Oblique Plane) superimposed on Circles and Kite (Plan View)

Semi-Minor Axis $=$ Radius $=5$ Semi-Major Axis $=7.90435$
Semi-Minor Axis $=$ Radius $=4$
Semi-Major Axis $=6.32348$
Semi-Minor Axis $=$ Radius $=3$
Semi-Major Axis $=4.74261$

Ellipses superimposed on Quadrilateral

 $\angle \mathrm{T} 2 \mathrm{P}$ T1 $=18 \mathbf{0}^{\circ}-(\mathrm{R} 4 \mathrm{P}+\mathbf{1 4 P})$$=$ Angle betveen Tangents on the Oblique Plane

$$
\begin{aligned}
\mathrm{Tl} & =(4.866688,-1.813080) \\
\mathrm{tl} & =(2.920013,-1.087848)
\end{aligned}
$$

Oblique Plane ...

Data for Analytic Solution

$\mathrm{T1}(x)=5 \sin 76.739582^{\circ}=4.866688$
T1 $(y)=-5 \cos 76.739582^{\circ} / \cos 50.760553^{\circ}=-1.813080$
$\mathrm{T} 2(x)=5 \sin 43.260418^{\circ}=3.426577$
$\mathrm{T} 2(y)=5 \tan 30^{\circ}\left(\tan 40^{\circ}+\tan 50^{\circ}\right) / \sin 50.760553^{\circ}-1.813080=5.756318$
t1 $(x)=3 \sin 76.739582^{\circ}=2.920013$
tl $(y)=-3 \cos 76.739582^{\circ} / \cos 50.760553^{\circ}=-1.087848$
$\mathrm{t} 2(x)=3 \sin 43.260418^{\circ}=3.426577$
t2 $(y)=3 \tan 30^{\circ}\left(\tan 40^{\circ}+\tan 50^{\circ}\right) / \sin 50.760553^{\circ}-1.0878748=3.453791$

Trigonometric Solution of Dimensions ...
relationships between lengths on the Level Plane and the Oblique Plane
Distance between Radii in Plan View $=2$

Table of Angles

50° Slope, 40° Slope and 120° Corner Angle between Tangents in Plan View (Handrail negotiates a 60° Turn)

Angles associated with the 40° (Upper) Tangent Plane

$\mathbf{S S}=60.76357^{\circ} \ldots \arctan \left(\tan \mathbf{R 5 P} \div(\sin \mathbf{D D})^{\mathbf{2}}\right) \ldots$ angle entered calculator *
DD $=43.26042^{\circ} \ldots$ Upper Tangent Plane Plan Angle
R5P $=40.00000^{\circ} \ldots$ Upper Tangent Plane Slope Angle
R4P $=33.90856^{\circ} \ldots$ produced on Oblique Plane by trace of Upper Tangent Plane
$\mathbf{A 5 P}=34.33520^{\circ}$
90° - A5P ... Dihedral Angle between Oblique Plane and Upper Tangent Plane
Angles associated with the 50° (Lower) Tangent Plane
$\mathbf{s s}=51.51701^{\circ} \ldots \arctan \left(\tan \mathbf{r} \mathbf{5} \mathbf{~} \div(\sin \mathbf{d d})^{\mathbf{2}}\right) \ldots$ angle entered calculator $*$ $\mathbf{d d}=76.73958^{\circ}$... Lower Tangent Plane Plan Angle
$\mathbf{r 5 P}=50.00000^{\circ}$... Lower Tangent Plane Slope Angle
$\mathbf{r 4 P}=8.47866^{\circ} \ldots$ produced on Oblique Plane by trace of Lower Tangent Plane
$\mathbf{a 5 P}=10.23320^{\circ}$
$90^{\circ}+\mathbf{a 5 P} \ldots$ Dihedral Angle between Oblique Plane and Lower Tangent Plane
$\mathbf{R 1}=50.76055^{\circ} \ldots$ Slope of Plank: Dihedral Angle measured between the Level Plane and the Oblique Plane
$180^{\circ}-(\mathbf{R} 4 \mathbf{P}+\mathbf{r} 4 \mathbf{P})=137.61278^{\circ} \ldots$ Angle between Tangents: angle produced on the Oblique Plane by traces of Upper and Lower Tangent Planes

DD + dd = Angle between Tangents in Plan View
DD + dd + Angle negotiated by Handrailing $=180^{\circ}$

* SS and ss are theoretical angles used to obtain a trigometric solution of the tangent handrailing angles with a Javascript calculator. These two angles are not needed to understand the geometric constructions and developments.

Tangent $=$ Radius $\tan (.5 \times$ Angle negotiated by Handrailing $)=2.86675$
Distance from Point \mathbf{R} to Point \mathbf{C}
$=$ Radius $\sin \mathbf{d d}+$ Tangent $\cos \mathbf{d d}+$ Tangent $\sin d d \div \tan D D$
$=8.51464$

