Study of Tangent Handrail Geometry

2/5 Slope, 3/5 Slope and $108{ }^{\circ}$ Corner Angle between Tangents in Plan View (Handrail negotiates a $\mathbf{7 2}^{\circ}$ Turn)

Isometric Sketch of Tangent Handrailing Planes ... Page 2

Development and Relationship of the Tetrahedra to the
Corner Angle in Plan View and the Tangent Planes ... Page 3
Development of the Tetrahedron and Angles associated with the $3 / 5$ Tangent Plane
... Page 4
Development of the Tetrahedron and Angles associated with the $2 / 5$ Tangent Plane
... Page 5
Location of the Centroid and Foci of the Ellipse on the Oblique Plane
... Page 6
Alternative Method of finding the Centroid and Semi-Major Axes of the Ellipse
... \quad Page 7
Checking the Points of Tangency
... Page 8
Isometric Sketch of Points, Lines and Planes to be Developed
... Page 9
Trace of the Handrail on the Oblique Plane ... Page 10
Analytic Data ... Page 11
Definition of Angles, Solution of General Plan Angle Formula given Slopes of the Tangent Planes and Angle between
Tangents in Plan View (Corner Angle),
Tangent Handrailing Angle Formulas ... Pages 12, 13

Development of Tangent Handrailing Angles Unequal Slopes, $108^{\circ} \mathrm{Corner}$ Angle
$R 5 P=$ Angle of $3 / 5$ Tangent Plane, $r 5 P=$ Angle of 215 Tangent Plane
$R 1=$ Dihedral Angle between Level Plane and Oblique Plane $180^{\circ}-(R 4 P+r 4 P)=$ Angle between Tangents on Oblique Plane DD and $d d$ are plan angles measured on Level Plane

Development of Angles associated with the 3/5 Tangent Plane

* 900-A5P is the dihedral angle between the 3/5 Tangent Plane and the Oblique Plane

Development of the Angles associated with the 2/5 Tangent Plane

$$
\begin{aligned}
& S s=45.77083185^{\circ} \text { (not illustrated) } \\
& d d=38.6090275215^{\circ} \\
& R 1=32.660799042^{\circ} \\
& r 5 P=21.80140949^{\circ} \\
& r 4 P=46.513144047^{\circ} \\
& a 5 P=24.942326051^{\circ}
\end{aligned}
$$

* $90^{\circ}+a 5 \mathrm{P}$ is the dihedral angle between the 2/5 Tangent Plane and the Oblique Plane

Locating the Centroid and Foci of the Ellipse on the Oblique Plane The Tangent Lime, Ordinate or x-axis is the intersection of the Level Plane and the Oblique Plane. All measurements on the y-axis are referenced from ${ }^{Q} G$ the Tangent Line.

- Construct angle R1, with respect to the diameter of the circle
- Bisect hypotenuse JH; lengths a are the semi-major axes
- With point R as the center, scribe arc of length $D E C^{\prime \prime}$, the intersect at point EC on the y-axis is the centroid of the ellipse
- with point EC as the center, mark lengths a on the y-axis, the intersects at G and H define the major axis
- Using radius a, with point E on the Semi-minor axis as the center, mark foci F1 and F2 on the major axis.

Alternative Method of finding the Centroid and Semi-Major Axes

- Construct tangents to the circle at its intersections with the y-axis
- Construct angle RI through point R, intersecting the tangents at points G^{\prime} and H^{\prime}
- Bisect line $G^{\prime} H^{\prime}$ at $E C^{\prime \prime \prime}$ into equal lengths a, the semi-major axes
- With point R as the center, draw arcs to intersect the y-axis at point EC, the centroid of the ellipse, and points G and H, defining the extent of the major axis

Checking the Points of Tangency

- With center at external point P, swing an arc through focus F1
- Centered at focus F2, swing an arc of radius 2 a to intersect the first arc at point B
- Point T2, the intersection of the ellipse and line F2 B, is the point of tangency for line CT2

Isometric Sketch of Planes, Lines and Points to be Developed

Trace of Handrail on the Oblique Plane

Analytic Data

The Origin is the Centroid of the Ellipse

Circle Center ... Point CC (0, 1.010019339)
Trace of $2 / 5$ Tangent Plane, Point of Tangency with Ellipse
Point T1 (4.294330347, - 6.387698198)
Trace of $3 / 5$ Tangent Plane, Point of Tangency with Ellipse
Point T2 (6.441495519, 2.877318344)
Intersection of Traces of Tangent Planes
Point $\mathbf{P} \quad(8.201441168,2.681691581)$
Intersection of Trace of $3 / 5$ Tangent Plane and Tangent Line
Point C (9.374738266, - 6.387698198)
Intersection of Trace of Major Axis of Ellipse and Tangent Line
Point $\mathbf{R} \quad(0,-6.387698198)$
Focus of Ellipse ... Point F1 (0, 4.411461248)
Focus of Ellipse ... Point F2 (0, - 4.411461248)
Point A (6.041095803, - 10.78037346)
Point B (10.82644303, 7.839041257)

Equation of the Ellipse

$y= \pm 8.174452282 \sqrt{ }\left(6.881909602^{2}-x^{2}\right) \div 6.881909602$
Equation of Trace of $\mathbf{2 / 5}$ Tangent Plane (tangent to Ellipse at Point T1)
$y=.948528666 x-10.46099364$
Equation of Trace of $\mathbf{3 / 5}$ Tangent Plane (tangent to Ellipse at Point T2)
$y=-3.15862591 x+23.22359299$

Equation of Line through F1 A

$y=-2.51474818 x+4.411461248$

Equation of Line through F2 B

$y=-1.131535304 x-4.411461248$

Definitions of Angles

$\mathbf{W}=$ Corner Angle measured between traces of Tangent Planes in Plan View
R5P = Upper Tangent Plane Slope Angle
r5P = Lower Tangent Plane Slope Angle
R1 = Dihedral Angle measured between Level Plane and Oblique Plane
DD = Plan Angle of Upper Tangent Plane
dd = Plan Angle of Lower Tangent Plane
$\mathbf{R 4 P}=$ Angle created by trace of Upper Tangent Plane on the Oblique Plane
$\mathbf{r 4 P}=$ Angle created by trace of Lower Tangent Plane on the Oblique Plane
90° - A5P = Dihedral Angle between Upper Tangent Plane and Oblique Plane
$90^{\circ}+\mathbf{a 5 P}=$ Dihedral Angle between Lower Tangent Plane and Oblique Plane

Solution of General Plan Angle Formula given unequal Tangent Plane Slope Angles and any Corner Angle

Given ...
$\tan \mathbf{R 1}=\tan \mathbf{R 5 P} / \sin \mathbf{D D}$
$\tan \mathbf{R 1}=\tan \mathbf{r} \mathbf{5 P} / \sin \mathbf{d d}$
Since both expressions are equal ...
\tan R5P $/ \sin \mathbf{D D}=\tan \mathbf{~ 5 P} / \sin \mathbf{d d}$

Rearranging the terms ...
$\sin \mathbf{d d} / \sin \mathbf{D D}=\tan \mathbf{~ r 5 P} / \tan$ R5P
Since ...
$\mathbf{d d}=\mathbf{W}-\mathbf{D D}$

Substituting ...
$\sin (\mathbf{W}-\mathbf{D D}) / \sin \mathbf{D D}=\tan \mathbf{r} \mathbf{5 P} / \tan \mathbf{R 5} \mathbf{P}$

Applying the Sine of the Difference of Angles Identity ...
$(\sin \mathbf{W} \cos \mathbf{D D}-\cos \mathbf{W} \sin \mathbf{D D}) / \sin \mathbf{D D}=\tan \mathbf{r 5 P} / \tan \mathbf{R 5 P}$
Dividing by sin DD ...
$\sin \mathbf{W} / \tan \mathbf{D D}-\cos \mathbf{W}=\tan \mathbf{r} \mathbf{5 P} / \tan \mathbf{R 5 P}$

Adding $\cos \mathbf{W}$ to both sides of the equation ...
$\sin \mathbf{W} / \tan \mathbf{D D}=\tan \mathbf{r 5 P} / \tan \mathbf{R 5 P}+\cos \mathbf{W}$
$\tan \mathbf{D D}=\sin \mathbf{W} /(\tan \mathbf{r} \mathbf{5} \mathbf{P} / \tan \mathbf{R 5} \mathbf{P}+\cos \mathbf{W})$
Employing a similar chain of reasoning ...
$\tan \mathbf{d d}=\sin \mathbf{W} /(\tan \mathbf{R 5 P} / \tan \mathbf{r} \mathbf{P}+\cos \mathbf{W})$

Tangent Handrailing Angle Formulas

```
tan R4P = cos R1 / tan DD
tan r4P = cos R1 / tan dd
tan A5P = tan R1 sin R4P
tan \mathbf{5PP}=\operatorname{tan}\mathbf{R1}\operatorname{sin}\mathbf{r4P}
```

Angle measured between traces of Tangent Planes on the Oblique Plane:
$180^{\circ}-(\mathbf{R 4 P}+\mathbf{r 4 P})$
Slope Angles entered in Javascript Calculator:
$\tan \mathbf{S S}=\tan \mathbf{R 5 P} \sin ^{\mathbf{2}} \mathbf{D D}$
$\tan \mathrm{ss}=\tan \mathbf{r} 5 \mathrm{P} \sin ^{2} \mathbf{d d}$

DD + dd + Angle negotiated by Handrail = 180°

