Study of Tangent Handrail Geometry

2/5 Slope, 3/5 Slope and 108° Corner Angle between Tangents in Plan View (Handrail negotiates a 72° Turn)

Isometric Sketch of Tangent Handrailing Planes	•••	Page 2
Development and Relationship of the Tetrahedra to the Corner Angle in Plan View and the Tangent Planes		Page 3
Development of the Tetrahedron and Angles associated with the 3/5 Tangent Plane		Page 4
Development of the Tetrahedron and Angles associated with the 2/5 Tangent Plane		Page 5
Location of the Centroid and Foci of the Ellipse on the Oblique Plane	•••	Page 6
Alternative Method of finding the Centroid and Semi-Major Axes of the Ellipse		Page 7
Checking the Points of Tangency		Page 8
Isometric Sketch of Points, Lines and Planes to be Developed		Page 9
Trace of the Handrail on the Oblique Plane		Page 10
Analytic Data	•••	Page 11
Definition of Angles, Solution of General Plan Angle Formula given Slopes of the Tangent Planes and Angle between Tangents in Plan View (Corner Angle),		
rangent Handrannig Angle Formulas	rage	\$ 12, 13

Development of Tangent Handrailing Angles Unequal Slopes, 108° Corner Angle R5P=Angle of 3/5 Tangent Plane, r5P= Angle of 2/5 Tangent Plane R1=Dihedral Angle between Level Plane and Oblique Plane 180°-(R4P+r4P)= Angle between Tangents on Oblique Plane DD and dd are plan angles measured on Level Plane Development of Angles associated with the 3/5 Tangent Plane

Tangent Line

*

R1

· Jangent

RSP

12 alore

DD

Obligue Plane

RYP

55= 34.4053117° (not illustrated)

DD=69.390972479°

ASP

R1=32.660799031°

R5P=30.9637565330

R4P= 17.567441502°

A5P=10.950217443°

* 900 - ASP is the dihedral angle between the 3/5 Tangent Plane and the Obligue Plane Development of the Angles associated with the 2/5 Tangent Plane

55=45.77083185° (not illustrated) dd = 38.6090275215° R1 = 32.660799042° r5P = 21.80140949° r4P = 46.513144047° a5P = 24.942326051°

* 90°+a5P is the dihedral ongle between the 2/5 Tangent Plane and the Oblique Plane Locating the Centroid and Faci of the Ellipse on the Obligue Plane The Tangent Line, Ordinate or x-oxis is the intersection of the Level Plane and the Oblique Plane. All measurements on the y-axis are referenced from G the Tangent Line.

- Construct angle R1, with respect to the diameter of the circle
- Bisect hypotenuse JH; lengths a are the semi-major axes
- With point R as the center, Scribe arc of length DEC", the intersect at point EC on the y-axis is the centroid of the ellipse
- With point EC as the center, mark lengths a on the y-axis, the intersects at G and H define the major axis
- Using radius a, with point E on the semi-minor axis as the center, mark foci F1 and F2 on the major axis.

Alternative Method of finding the Centroid and Semi-Major Axes

- Construct tangents to the circle at its intersections with the y-axis

- Construct angle RI through point R, intersecting the tangents at points G'and H'
- Bisect line G'H' at EC" into equal lengths a, the Semi-major axes
- With point R as the center, draw arcs to intersect the y-axis at point EC, the centroid of the ellipse, and points G and H, defining the extent of the major axis

Checking the Points of Tangency

- With center at external point P, swing an arc through focus F1
- Centered at focus F2, swing an arc of radius Za to intersect the first arc at point B
- Point TZ, the intersection of the ellipse and line FZB, is the point of tangency

- Point T1, the intersection of the ellipse and line F1A, is the point of tangency for line PT1

Analytic Data

The Origin is the Centroid of the Ellipse

Circle Center ... Point CC (0, 1.010019339)Trace of 2/5 Tangent Plane, Point of Tangency with Ellipse (4.294330347, -6.387698198)Point **T1** Trace of 3/5 Tangent Plane, Point of Tangency with Ellipse (6.441495519, 2.877318344) Point **T2** Intersection of Traces of Tangent Planes (8.201441168, 2.681691581) Point **P** Intersection of Trace of 3/5 Tangent Plane and Tangent Line (9.374738266, -6.387698198)Point **C** Intersection of Trace of Major Axis of Ellipse and Tangent Line Point **R** (0, -6.387698198)Focus of Ellipse ... Point **F1** (0, 4.411461248)Focus of Ellipse ... Point F2 (0, -4.411461248)Point A (6.041095803, -10.78037346)Point **B** (10.82644303, 7.839041257)

Equation of the Ellipse

 $y = \pm 8.174452282 \sqrt{(6.881909602^2 - x^2) \div 6.881909602}$

Equation of Trace of 2/5 Tangent Plane (tangent to Ellipse at Point T1)

y = .948528666x - 10.46099364

Equation of Trace of 3/5 Tangent Plane (tangent to Ellipse at Point T2)

y = -3.15862591x + 23.22359299

Equation of Line through F1 A

y = -2.51474818x + 4.411461248

Equation of Line through F2 B

y = -1.131535304x - 4.411461248

Definitions of Angles

W = Corner Angle measured between traces of Tangent Planes in Plan View
R5P = Upper Tangent Plane Slope Angle
r5P = Lower Tangent Plane Slope Angle
R1 = Dihedral Angle measured between Level Plane and Oblique Plane
DD = Plan Angle of Upper Tangent Plane
dd = Plan Angle of Lower Tangent Plane
R4P = Angle created by trace of Upper Tangent Plane on the Oblique Plane
r4P = Angle created by trace of Lower Tangent Plane on the Oblique Plane
90° - A5P = Dihedral Angle between Upper Tangent Plane and Oblique Plane
90° + a5P = Dihedral Angle between Lower Tangent Plane and Oblique Plane

Solution of General Plan Angle Formula given unequal Tangent Plane Slope Angles and any Corner Angle

Given ...

 $\tan \mathbf{R1} = \tan \mathbf{R5P} / \sin \mathbf{DD}$ $\tan \mathbf{R1} = \tan \mathbf{r5P} / \sin \mathbf{dd}$

Since both expressions are equal ... $\tan R5P / \sin DD = \tan r5P / \sin dd$

Rearranging the terms ... $\sin dd / \sin DD = \tan r5P / \tan R5P$

Since ... dd = W - DD

Substituting ... sin (W - DD) / sin $DD = \tan r5P$ / tan R5P

Applying the Sine of the Difference of Angles Identity ... $(\sin W \cos DD - \cos W \sin DD) / \sin DD = \tan r5P / \tan R5P$

Dividing by sin DD ... sin W / tan DD - cos W = tan r5P / tan R5P

Adding $\cos W$ to both sides of the equation ... sin W / tan DD = tan r5P / tan R5P + $\cos W$

 $\tan \mathbf{D}\mathbf{D} = \sin \mathbf{W} / (\tan \mathbf{r}\mathbf{5}\mathbf{P} / \tan \mathbf{R}\mathbf{5}\mathbf{P} + \cos \mathbf{W})$

Employing a similar chain of reasoning ... tan $dd = \sin W / (\tan R5P / \tan r5P + \cos W)$

Tangent Handrailing Angle Formulas

 $\tan \mathbf{R4P} = \cos \mathbf{R1} / \tan \mathbf{DD}$ $\tan \mathbf{r4P} = \cos \mathbf{R1} / \tan \mathbf{dd}$

 $\tan A5P = \tan R1 \sin R4P$ $\tan a5P = \tan R1 \sin r4P$

Angle measured between traces of Tangent Planes on the Oblique Plane: $180^{\circ} - (\mathbf{R4P} + \mathbf{r4P})$

Slope Angles entered in Javascript Calculator: tan $SS = tan R5P sin^2 DD$ tan $ss = tan r5P sin^2 dd$

DD + dd + Angle negotiated by Handrail = 180°