
Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

1

An Investigation into Coupling Measures for C++

Lionel Briand Prem Devanbu Walcelio Melo
Fraunhofer IESE AT&T Labs Research CRIM
Technologie Park 600, Mountain Ave 1801 McGill College Ave

Sauerwiesen 6, D-67661 Murray Hill, Montreal,
Kaiserslautern, Germany New Jersey 07974, USA Canada H3A24

briand@iese.fhg.de prem@research.att.com wmelo@crim.ca

Abstract

This paper proposes a comprehensive suite of measures to
quantify the level of class coupling during the design of
object-oriented systems. This suite takes into account the
different OO design mechanisms provided by the C++ lan-
guage (e.g., friendship between classes, specialization, and
aggregation) but it can be tailored to other OO languages.
The different measures in our suite thus reflect different
hypotheses about the different mechanisms of coupling in
OO systems. Based on actual project defect data, the hy-
potheses underlying our coupling measures are empirically
validated by analyzing their relationship with the probabil-
ity of fault detection across classes. The results demon-
strate that some of these coupling measures may be useful
early quality indicators of the design of OO systems. These
measures are conceptually different from the OO design
measures defined by Chidamber and Kemerer; in addition,
our data suggests that they are complementary quality indi-
cators.

Key-words: Coupling on Object-Oriented Design; C++
programming language; prediction model of fault-prone
components.

INTRODUCTION
Coupling refers to the degree of interdependence among the
components of a software system. Good software design
should obey the principle of low coupling. Strong cou-
pling makes a system more complex; highly inter-related
modules are harder to understand, change or correct. By
minimize coupling, one can avoid propagating errors
across modules.

Copyright 1997 IEEE. Published in the Proc. of the 19th Int’l
Conf. on S/W Eng., May 1997. Personal use of this material is
permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE.

However, the goal of minimizing coupling contradicts
some aspects of OO design, particularly the use of inheri-
tance: Inheritance couples a class to its descendants and
ancestors. Thus one might ask the following questions:
Should one discourage the use of inheritance and other
aspects of OO technology that introduce coupling in soft-
ware? Or does the old notion of coupling not hold in the
OO paradigm? There are also other facilities in OO lan-
guages like C++, such as friendship, which may introduce
stronger coupling. Should one discourage the use of these
facilities as well? To settle these questions, we have inves-
tigated coupling in the design of OO systems and quanti-
tatively evaluated the impact of coupling on software qual-
ity.

The goals of this work are:

a) to define a suite of measures that quantify the level of
coupling between classes in OO software systems. The
suite will differentiate among different linguistic mecha-
nisms, and between different approaches to design.

b) to empirically evaluate the capability of this suite to
predict fault-prone classes.

We have created a metrics suite designed to investigate the
quality impact of the different design mechanisms in C++.
Classes can be coupled in many different ways (e.g., spe-
cialization, generalization, aggregation, and friendship).
Our measures distinguish these types of coupling during
the design phase. We can thus provide early feedback to
the software developers regarding, for example, where to
focus design/code inspections or which design alternative
is more appropriate.

RELATED WORK
Despite the importance of evaluating and predicting the
quality of software products based on design properties
such as coupling, there is little work in this area. Most
existing measures capture coupling between modules using
source code which is only available after implementation,
e.g., [3]. Some research has addressed this issue, e.g., [8]
and [4], which measure coupling using OO design docu-
ments usually available before implementation. In [8], a
coupling measure named Coupling Between Object classes
(CBO) is defined, and empirically validated in [2]. With
the CBO measure, class A is coupled to class B if A uses

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

2

B's member functions and/or instance variables. CBO
counts the number of classes to which a given class is
coupled.

Chidamber and Kemerer [8] do not distinguish between
the different types of interactions two C++ classes can have
and do not take into account the extent of the dependency
between classes.

These issues have been partially addressed by [4] where
ratio scale coupling measures have been defined. These
measures are used to detect difficult to maintain and fault-
prone Ada packages [4]. Abstract Data Types (ADT) is
used as a unit of analysis. They define different types of
interactions between pairs of Ada packages: import cou-
pling and export coupling, which capture, respectively, the
impact of changes performed in external packages on a
given package and the impact on external packages when
changes are performed in a given package.

Our suite of C++ coupling measures is based on the suite
of cohesion and coupling measures proposed in [4], i.e.,
the concepts of import and export coupling. However, to
handle OO language features, we enhanced those metrics to
handle inheritance and aggregation. In addition, the meas-
ures proposed in [4] do not handle coupling by friendship,
which is specific to C++. Friendship is a mechanism to
selectively allow the body of a class to be accessed by
other classes; it reduces information hiding, and increases
coupling. Thus, it is important to measure the impact of
friendship on software quality. However, we do adopt the
coupling concepts and the underlying product abstraction
representation proposed in [4].

A SUITE OF COUPLING MEASURES FOR
OBJECT-ORIENTED DESIGN
We define here fine-grained measures which capture differ-
ent types of interactions between classes. Based on them,
we can provide more precise guidance and feedback to
software designers, e.g., which type of coupling is likely
to increase error density, increase maintenance costs,
and/or reduce reusability.

There are 3 different facets, or modalities, of coupling be-
tween classes in OO systems developed with C++. We
refer to them as locus, type, and relationship. Coupling
between classes in C++ can be due to any combination of
these facets. Using measures that can account for all differ-
ent types of interactions, we can evaluate the actual impact
of each coupling dimension on the quality of the resulting
artifact.

• Relationship refers to the type of relationship: friend-
ship, inheritance, or other (neither). Clearly, a class C is
most closely coupled with all its descendants, ancestors,
friends. We would like to measure the quality impact of
coupling due to each type of relationship.

• Locus refers to expected locus of impact; i.e., whether
the impact of change flows towards a Class (import) or
away from a Class (export) . Thus changes to an ancestor
flows towards a class (import) and changes to a class flows

towards its descendants (export). Which direction is more
important for predicting the number of faults in a class?
We would like our measures to distinguish between them.
With respect to the relationship dimension above, notice
that a Class C exports impact to its friends and descen-
dants, and imports impact from its ancestors and classes
that have C as their friend.

• Type refers to the type of interactions between classes
(or their elements): It may be Class-Attribute interaction ,
Class-Method interaction, or Method-Method interaction.
In the following, when we discuss attributes and methods
of a class C, we only mean newly defined or overriding
methods and attributes of C, (not ones inherited from C’s
ancestors in the inheritance hierarchy).

1) Class-Attribute (CA) interaction

From Figure 1, notice the CA interaction between
classes A and B through the attributes public_ab1
and public_ab2. Clearly, if class A is changed, class
B is impacted via the two public attributes of class B
that depend on class A (more precisely: its data type
identified by the class name). By definition, there is
no CA interaction between class B and class A di-
rectly, but only between elements of class B and class
A.

2) Class-Method (CM) interaction

The signature of a method m i of class ci, can have a
reference to another class cj. Here, ci is coupled with cj

via the method mi. In addition, the method mi can be
a function which returns an instance (or a pointer to an
instance) of cj. Consider the declarations of classes A
and B presented in Figure 1; there is an CM interac-
tion between class A and mb1, a method of class B.

3) Method-Method (MM) interaction

Let us consider two methods, mi and m j, which be-
long, respectively, to classes c i and cj. If a method m i

calls a method m j, or if mj is passed as parameter
(function pointer) to mi, we say that there is a MM in-
teraction between ci and cj through the methods mi

and mj. For instance, consider the declarations of
classes A and B in Figure 1. There is a MM interac-
tion between class A and class B through the method
mb2 and ma1, since ma1 is used as a parameter by
the method mb2. This kind of interaction occurs fre-
quently in the design of graphical user interfaces [18],
e.g., call-back procedures; such low-level design inter-
actions also occur frequently in the design patterns lit-
erature (e.g., Bridge, Adapter, Observer etc). Indeed,
the OMT-based notation (See pp 16-17, [12]) used for
design patterns indicates these MM interactions.

Which type of interaction more accurately indicates
fault likelihood ? We would like our measures to dis-
tinguish these three kinds of coupling.

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

3

1 class B{
2 public:
3 A* public_ab1;
4 A public_ab2;
5 private:
6 int i;
7 float r;
8
9 void mb1(A &);
10 A mb2((void *)());
11 …
12};
13 void B::mb1(A& a1)
14 { A a2;
15 …
16 a2 = mb2(&A::ma1);
17 };

class A{
public:

int aa;
void ma1();

};

Figure 1: Examples of interactions between two classes.

As can be seen above, we have three types of relationship,
two loci, and three types of interactions. Considering all
combinations, we have 18 different possible types of cou-
pling measures such as friendship attribute interaction ex-
port, ancestor method interaction import, and so on. This
certainly leads to a large number of measures, and a corre-
sponding increase in the difficulty of constructing tools,
data gathering, and also in the analysis; however, since
these types of coupling are different, arise from distinct
language features, and presumably cause varying "cognitive
loads" on programmers, it is important to evaluate them
separately. Generally, we use the letters “CA” for Class-
Attribute interaction, “CM” for Class-Method interac-
tion, and “MM” for Method-Method interaction. Our
goal is to define each of the 18 measures to gauge the level
of coupling along the appropriate dimensions; in general,
when the values of coupling are higher, we would expect
more interactions. We are now ready to state the hypothe-
ses that we intend to test in this study:

Hypothesis 1: The higher the export coupling of a class
C, the greater the impact of a change to C on other classes.
Many classes depend critically on the design of C, and
thus there is greater likelihood of failures being traced back
to faults in C.

Hypothesis 2: The higher the import coupling of a class
C, the greater the impact of a change in other classes on C
itself. Thus C depends critically on many other classes,
and the consequences are two-fold: (1) understanding C
may be more difficult and therefore more fault-prone, (2)
coupled classes are more likely to be misunderstood and
therefore misused by C.

Hypothesis 3: Coupling based on friendship between
classes is in general likely to increase the likelihood of a
fault even more than other types of coupling, since friend-
ship violates modularity in OO design.

The above 3 hypotheses are consistent with current beliefs
about good OO design; there may be other hypotheses to

be tested about coupling, of course. On some issues, there
appears to be no popular consensus; thus for example,
there seems to be no folklore on whether attribute coupling
is better or worse than method coupling. In any case, the
measures defined above measure coupling along several
dimensions, including the import/export locus and the
friend relationship, and we would expect to be able to shed
light on the above hypotheses. We can now introduce the
formalism to define the 18 measures. First, we present
some definitions:

Definition: System

A system is defined as a collection of OO classes. Let us
assume a function called Classes which when applied to a
system S, gives the distinct classes of S, such that

Classes(S) = { c1, c2, c3, …, cn} such that if c i = c j then i
= j where i, j = 1, …, n.

In addition, the following functions need to be specified to
enable the definition of our metrics:

• Friends
-1

(c) is a function that returns the set of classes
that have class c as a friend.

• Ancestors(c) is a function that returns the set of classes
that are the ancestors of c. Ancestors(c) refers to the
base classes of c, and their base classes, and so on
(closure).

• Friends(c) is a function that returns the set of classes
that are the friends of c.

• Descendants(c) is a function that returns the set of
classes that are the descendants of c.

• Others(c) = System(S) - Friends(c) - Descendants(c) -
Friends-1 (c) - Ancestors(c) - {c}.

All the metrics presented in the sections below correspond
to particular counts of interactions and are of the generic
form:

Metric(ci)

= Interactions c ci j
c lationshipcj i

(,)
Re ()∈

∑
where the two sources of variation across metrics: Interac-
tion(ci, c j) and relationship(ci) in the formula above, corre-
sponds to a particular type of interaction in a certain direc-
tion and a particular type of relationship, respectively, be-
tween ci and cj.

The acronyms for the metrics follow the rationale below:

• The (two) first letter(s) represent the type of relation-
ship considered (i.e., IF for Inverse Friend, F for
Friend, D for descendant, A for ancestor, O for others).

• The 2 letters afterwards capture the type of interaction
(i.e., CA, CM, MM).

• The last 2 letters says whether this is import (IC) or
export coupling (EC).

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

4

Class coupling through Class-Attribute Interaction

Function: Actual CA interaction(ACA)
ACA(ci, c j) is defined as the number of Actual Class-
Attribute interactions that are present among the attribute
declarations of class ci and the class c j. For example, from
Figure 1, the Actual Attribute Interaction between class A
and B is 2.

However, it should be noted that ACA(B,A) = 0.

Measures for import coupling based on CA interactions

Interactions(Ci, Cj) Relationship(Ci)

IFCAIC: Inverse
Friend CA Import
Coupling

ACA(Ci, Cj) Friends-1

ACAIC: Ancestors
CA Import Coupling

ACA(Ci, Cj) Ancestors

OCAIC: Others
CA Import Coupling

ACA(Ci, Cj) Others

Measures for export coupling based on CA interactions

Interactions(Ci, Cj) Relationship(Ci)

FCAEC: Friends
CA Export Coupling

ACA(Cj, Ci) Friends

DCAEC: Descen-
dant CA Export
Coupling

ACA(Cj, Ci) Descendants

OCAEC: Others
CA Export Coupling

ACA(Cj, Ci) Others

Class coupling through Class-Method interaction
Definition: Actual CM interaction(ACM)
ACM(ci, c j) is defined as the number of Actual Class-
Method interactions between the methods of the class cj

and the class ci. For instance, from Figure 1, ACM(A,B) =
2. However, ACM(B,A) = 0.

Measures for Import Coupling based on CM interactions

Interactions(Ci, Cj) Relationship(Ci)

IFCMIC: Inverse
Friend CM Import
Coupling

ACM(Ci, Cj) Friends-1

ACMIC: Ances-
tors CM Import Cou-
pling

ACM(Ci, Cj) Ancestors

OCMIC: Others
CM Import Coupling

ACM(Ci, Cj) Others

Measures for Export Coupling based on CM interactions

Interactions(Ci, Cj) Relationship(Ci)

FCMEC: Friends
CM Export Coupling

ACM(Cj, Ci) Friends

DCMEC: De-
scendant CM Export
Coupling

ACM(Cj, Ci) Descendants

OCMEC: Others
CM Export Coupling

ACM(Cj, Ci) Others

Class coupling through method-method interaction

Definition: Actual MM interaction (AMM)
AMM(ci, c j) is defined as the number of Actual Method-
Method interactions that are present among the methods
of class cj and the methods of class cj.

For example, from Figure 1, AMM(A,B) = 1 whereas
AMM(A,B) = 0.

Measures for Import Coupling based on MM interactions

Interactions(Ci, Cj) Relationship(Ci)

IFMMIC: Inverse
Friend MM Import
Coupling

AMM(Ci, Cj) Friends-1

AMMIC: Ances-
tors MM Import
Coupling

AMM(Ci, Cj) Ancestors

OMMIC: Others
MM Import Coupling

AMM(Ci, Cj) Others

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

5

Measures for Export Coupling based on MM interactions

Interactions(Ci, Cj) Relationship(Ci)

FMMEC: Friends
MM Export Coupling

AMM(Cj, Ci) Friends

DMMEC: De-
scendant MM Export
Coupling

AMM(Cj, Ci) Descendants

OMMEC: Others
MM Export Coupling

AMM(Cj, Ci) Others

EMPIRICAL VALIDATION OF COUPLING
MEASURES
Validation data
In order to validate the three hypotheses stated in the pre-
vious section, we used the data from an empirical study
performed at University of Maryland (for further details see
[1] and [2]).

This empirical study is not what could be called formally
a controlled experiment since the levels of the independent
variables (i.e., OO design coupling measures) are not con-
trolled for and not assigned randomly to classes. Such a
design is not practical. Our study is more observational.
However, we have tried to make the results of our study as
general as possible (i.e., maximizing external validity) by
a careful selection of the study participants, the study mate-
rial, and the development process.

We collected: (1) the source code of the C++ programs
delivered at the end of the implementation phase, (2) data
about these programs, (3) data about errors found during
the testing phase and fixes during the repair phase. To
collect items (2) and (3), we used the following forms:

• Fault Report Form.

• Component Origination Form.

A fault report form was used to gather data about (1) the
faults found during the testing phase, (2) classes changed
to correct such faults [1][2].

A component origination form was used to capture whether
the class was developed from scratch or was derived from
an existing class. In the latter case, we collected the
amount of modification needed to meet the system re-
quirements and design: none, slight (less than 25% of code
changed) or extensive (more than 25% of code change) as
well as the name of the reused class. Classes reused with-
out modification were labeled: verbatim reused.

The actual data for suite of measures we have proposed
were collected directly from the source code by a tool set
consisting of a source code analyzer built with GEN++
[10] and some simple shell scripts. It is important to note
here that the metrics were derived purely by static analy-
sis; thus, MM interactions resulting via dynamic interac-
tions due to run-time virtual function bindings are not

captured.

Validation Strategy
Logistic regression analysis [14] is used here as a means to
empirically validate the coupling measures we defined.
When validating a product measure, there are at least four
questions to be considered [6]: (1) is the measure ade-
quately capturing the attribute it purports to measure (i.e.,
construct validity)? (2) is the attribute itself well-defined
based on an explicit empirical model (i.e., empirical rela-
tional system) (3) is there any empirical evidence support-
ing the underlying hypotheses of the empirical model? (4)
Is the measure useful from a practical perspective? (1) and
(2) have been already addressed in the previous sections,
(3) is addressed by applying univariate logistic regression
analysis, and (4) is addressed by building multivariate
prediction models.

Logist ic Regression: a brief overview
To validate the OO design measures as quality indicators,
we use a binary dependent variable aimed at capturing the
fault-proneness of classes: was a fault detected in a class
during testing phases? We used logistic regression, a
standard technique based on maximum likelihood estima-
tion, to analyze the relationships between measures and the
fault-proneness of classes. Logistic regression has already
been used in several instances to predict error-prone com-
ponents [2] [4].

Other classification techniques such as classification trees
[17], Optimized Set Reduction [5], or neural networks [15]
could have been used. However, our goal here is not to
compare multivariate analysis techniques but, based on a
suitable and standard technique, to validate empirically a
set of product measures. We first used univariate logistic
regression, to evaluate the relationship of each of the meas-
ures in isolation with fault probability. We then performed
multivariate logistic regression to evaluate the predictive
capability of those measures that had been assessed as suf-
ficiently significant in the univariate analysis.

A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic
regression model is a special case of this, where only one
variable appears):

π(, . . . ,)
(.).

(.)X X
e

1 e1 n

C C X C X Y

C C X C X

0 1 1 n n

0 1 1 n n
=

+

+ + +

+ + +

where π is the probability that a fault was found in a class
during the validation phase, Xi's are the design coupling
measures included as explanatory variables in the model
(called covariates of the logistic regression equation), Y is
a binary variable capturing whether or not class contains
one or several faults, and the Ci's are regression coefficients
to be estimated. The curve between π and any single X

i
—

i.e., assuming that all other X
j
’s are constant takes a flexi-

ble S shape which ranges between two extreme cases:

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

6

(1) when a variable is not significant, then the curve ap-
proximates a horizontal line, i.e., π does not depend on X

i

(2) when a variable entirely differentiates error-prone soft-
ware parts, then the curve approximates a step function.

The coefficients C
i
's will be estimated through the maxi-

mization of a likelihood function, built in the usual fash-
ion, i.e., as the product of the probabilities of the single
observations, which are functions of the covariates (whose
values are known in the observations) and the coefficients
(which are the unknowns). This procedure assumes that all
observations are statistically independent.

In our context, an observation is the (non) detection of a
fault in a C++ class. Each (non) detection of a fault is as-
sumed to be an event independent from other fault (non)
detection. Each data vector in the data set describes an
observation and has the following components: an event
category (fault, no fault) and a set of OO design measures
characterizing either the class where the fault was detected
or a class where no fault was detected. For each measure,
we provide the following statistics:

• Coefficient (appearing in Tables 2, 6 and 7, the esti-
mated regression coefficient. The larger the coefficient
in absolute value, the stronger the impact (positive or
negative, according to the sign of the coefficient) of the
explanatory variable on the probability of a fault to
be detected in a class.

• ∆ ψ (appearing in Table 2 only), which is based on the
notion of odds ratio, and provides an evaluation of the
impact of the measure on the response variable. More
specifically, the odds ratio ψ(X) represents the ratio be-
tween the probability of having a fault and the probabil-
ity of not having a fault when the value of the measure
is X. As an example, if, for a given value X, ψ(X) is 2,
then it is twice as likely that the class does contain a
fault than that it does not contain a fault. The value of
∆ψ is computed by means of the following formula:

∆ψ =
ψ(+ 1)

ψ()
X

X

Therefore, ∆ψ represents the reduction/increase in the
odds ratio when the value X increases by 1 unit. ∆ψ
provides an insight into the impact of explanatory
variables and is more interpretable than logistic re-
gression coefficients. In this study, use ∆ψ's to assess
quantitatively the impact of coupling measures on π.

• Τhe statistical significance (p-value, appearing in Ta-
bles 2, 6 and 7) provides an insight into the accuracy
of the coefficient estimates. It tells the reader about the
probability of the coefficient being different from zero
by chance. Historically, a significance threshold of
= 0.05 (i.e., 5% probability) has often been used to
determine whether an explanatory variable was a sig-
nificant predictor. However, the choice of a particular
level of significance is a subjective decision and other

levels such as = 0.01 or 0.1 are common. Also, the
larger the level of significance, the larger the standard
deviation of the estimated coefficients, and the less be-
lievable the calculated impact of the explanatory vari-
ables. The significance test is based on a likelihood
ratio test [14] commonly used in the framework of lo-
gistic regression.

Univariate Analysis
Descriptive Statistics
We look first at the distribution and variance of the various
coupling measures we intend to validate. This will allow
us to interpret more accurately the results of the next sec-
tions. In addition, it will facilitate the comparison of re-
sults in future studies and across different systems.

Table 1 shows that many coupling measures have a lim-
ited variance in our data set (which excludes verbatim re-
used classes, for reasons explained in the next section). For
instance, measures IFCAIC, ACAIC, FCAIC, DCAIC,
IFMIC, ACMIC, FCMIC, DCMIC, and AMMIC show a
low standard deviation and mean below 2 interactions (the
measurement units are all expressed in terms of number of
interactions). As a consequence, at least in our data set, the
measures with low variance are not likely to be useful pre-
dictors. This issue will be further discussed in the next
section.

Univariate Logistic Regression
Table 2 shows the results when performing univariate lo-
gistic regressions with the coupling measures defined in a
previous section. The analysis is only performed with
classes that are either new or modified. Verbatim reused
classes are typically from well-tested libraries and are usu-
ally defect-free [1]. To prevent bias in our validation study,
they will not be considered. In this context, seven meas-
ures show a significant relationship with the probability π
of fault detection: four import coupling measures and three
export coupling measures.Two of these seven measures
capture coupling with friend classes.

For example, OCAIC shows a regression coefficient of
0.32 and a ∆ψ of 1.38, which represents an increase of
38% of the odds ratio (ψ) when OCAIC increases by one
unit. In addition, the regression coefficient p-value is
0.0056 and is far below the threshold α = 0.05. The rela-
tionship between OCAIC and π is therefore significant and
this result supports hypothesis 1. A detailed discussion of
the results is provided below.

From Table 1 we can see that most of the coupling meas-
ures we have defined do not appear in Table 2 because they
are not statistically significant (p-value > α, where α =
0.05). Therefore, none of these measures can realistically
be empirically validated with our data set. Whether these
measures are too rough or show more variability in other
systems remains an open question. Certain relationships
were made significant and /or stronger because of an unique
outlier in the dataset. Therefore, in order to obtain more
realistic results, they were not considered to compute the
results shown in Table 2. Because of space limitations, we

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

7

cannot present a detailed outlier analysis here.

Table 3 presents rank correlations between our coupling
measures by computing Spearman Rho (rs), a well known
non-parametric, ordinal measure of association. Based on
these results, we can see that seven rank correlations (rs)
between coupling measures are significant (Table 3 shows
them in bold characters). In order to interpret these correla-
tion results more precisely, it is better to consider r2s
instead of rs since the former is a PRE (Proportionate Re-
duction in Error) measure of association, i.e., it indicates
the degree to which errors in predicting the categories of
one variable may be reduced by knowing the categories of
the other variable [7]. Based on Table 3, we can see clearly
that none of these correlations shows a r2s value approach-
ing 1 and therefore these measures do not appear to capture
similar dimensions. Although all significant, these meas-
ures seem to actually capture different dimensions of cou-
pling.

In the paragraphs below, we will discuss and interpret the
results we obtained in Table 2:

Import Coupling from “other” classes: OCAIC,
OCMIC, OMMIC

When a high number of attribute interactions exist between
a class C and classes which are not an ancestor, descen-
dant, or friend of C (as measured by OCAIC), C appears to
be more fault-prone. This can be explained by the fact that
the class has to be developed and maintained while con-
sidering numerous dependencies between its attributes and
other classes.

Similarly, when a high number of class-method or
method-method interactions exist between classes which
are not ancestor, descendant, or friend of a class and this
class (OCMIC and OMMIC, respectively), it appears to be
more fault-prone prone. This can be explained by the fact
that designing and implementing the class’ methods re-
quires the use and understanding of different classes which
are not related through inheritance or friend dependencies.
Hypothesis 2 is therefore supported by empirical evidence.

Export Coupling to “other” classes: OCMEC, OMMEC

When a class interacts with many methods in classes that
are not ancestors, descendants, or friends (OCMEC), then
it seems to be more fault-prone. This class has therefore to
be designed to satisfy the requirements of many methods.

Similarly, when many methods (defined in classes which
are not hierarchically related or friend) use and depend on a
class’ methods (OMMEC), then the class appears to be
more fault-prone. In this case, the class’ methods have to
fulfill the requirements of many other methods and this
makes it more difficult to specify, design, and code the
class. Hypothesis 1 is therefore supported by empirical
evidence.

Import Coupling from friend classes: IFMMIC

When the methods of a particular class depends on many

methods of friend classes, this class tends to be fault-prone.
In addition, there is evidence that import coupling from
friend classes makes classes even more fault-prone than
import coupling from “other” classes. This is visible in
Table 2 since the coefficient associated with IFMMIC is
significantly higher than the one associated with OMMIC.
This result supports Hypothesis 3.

Export Coupling to friend classes: FMMEC

When many external methods depend on the methods of a
particular class and that these external methods belong to
friend classes, this class tends to be fault-prone. Again,
there is evidence that export coupling to friend classes
makes classes even more fault-prone than export coupling
to “other” classes. Table 2 shows a higher coefficient for
FMMC as compared to OMMIC. This result further sup-
ports Hypothesis 3.

Relationships between Coupling Measures and Class
Sizes
Table 4 shows rank correlations between simple size
measures (i.e., source lines of code without blanks, execu-
table number of statements) and our coupling measures.
This is important in the context of certain applications of
product measurement such as targeting inspections on
fault-prone parts. If the model tells the developers to in-
spect bigger classes then this model is not of much help.
On the other hand, if the model indicates fault-prone
classes which are not systematically bigger than average,
then the model can really help concentrate inspections on
fault-prone system parts without creating an important cost
overhead. Based on Table 4, we can see that OMMIC and
OMMEC are strongly associated with the number of
source lines of code and executable statements in the class.
Therefore, larger classes may have a tendency to show
more import and export coupling between methods. How-
ever, it is important to notice that, although statistically
related, they still capture different dimensions (r2s values
are not approaching 1).

Relationships between Coupling Measures and Chidam-
ber&Kemerer’s (C&K) Measures
Given the current interest, e.g. [9],[13], and [2], on the
measures proposed in [8], it is also important to compare
our measures with those measures. Table 5 shows that,
even though several statistically significant associations
exist between the coupling measures we defined and C&K
measures, none of them is sufficiently strong (i.e., near r2s
= 1) to claim that they capture identical or similar phe-
nomena. In the next section, the multivariate analysis re-
sults show that our coupling measures complement the
C&K measures. Many of these associations can be easily
explained; but this is beyond the scope of this paper.

Multivariate Analysis
Table 6 shows the resulting regression coefficients and
statistical significance when running a backward stepwise
multivariate logistic regression on the whole data set mi-
nus verbatim reused classes. In addition, multivariate out-
lier analysis was performed (i.e., Mahalanobis distance

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

8

[11] was computed for each observation) and 7 data points
(out of 113), showing to be far away in the sample space
from the sample centroid (multivariate mean), were re-
moved in order to ensure more realistic and stable results.
Results when considering the outliers will also be dis-
cussed. We used, as a starting set for the stepwise regres-
sion analysis, metrics that were significant in the univari-
ate analysis and belonging to either C&K’s or our suite of
coupling metrics. In addition, a dummy variable indicat-
ing whether or not the class was slightly modified (Class
Origin = 0, otherwise 1) was also considered but did not
appear to be a significant covariate. The multivariate
model in Table 6 shows 2 covariates coming from our
suite of metrics and 2 covariates coming from C&K’s
suite. This shows that some of our coupling metrics
(OCMEC, FMMEC) are complementary quality predictors
to 2 C&K metrics (DIT, RFC). OCMEC and FMMEC
therefore help improve the goodness of fit of the best mul-
tivariate regression model obtained with backward step-
wise regression. Therefore, they appear to be useful predic-
tors of fault-proneness. When considering the outliers, 3
additional variables appear significant in the multivariate
model (OMMEC, WMC, CBO). However, the validity of
this result is uncertain and it does not change the conclu-
sions stated above regarding the usefulness of our coupling
metrics.

From a practical perspective, some measures require high-
level design information only (i.e., class interface) whereas
others require the program call graph which is usually
(depending on the design method adopted) available later
on during low-level design. In particular, some MM inter-
actions are not visible from the class interface (although
they are described in some high-level design formalisms).
Several metrics that showed to be significant during uni-
variate analysis can be completely derived from class in-
terface information: WMC, NOC, DIT, OCAIC, OCMIC,
and OCMEC. From later design stages, the remaining
metrics can be derived: RFC, CBO, OMMIC, OMMEC,
and IFMMIC. Table 7 shows the results of multivariate
analysis when using exclusively early design metrics as
covariates: OCAIC, DIT, and WMC are selected as sig-
nificant covariates. Therefore, one of our coupling metrics
appears to contribute significantly to a better fit of an early
design quality model. The models presented in Tables 6
and 7 are the results of a backward stepwise regression
analysis and slightly different models with different subsets
of covariates could have been obtained if we had used a
different heuristic. However, results and conclusions were
in general similar.

CONCLUSIONS
Empirical results show that some of the coupling measures
we defined are:

• significant predictors of fault detection probability, a
reasonable measure of fault-proneness.

• complementary to Chidamber and Kemerer’s measures
as quality predictors.

In particular, hypotheses 1 and 2 are supported by the re-
sults since several import and export coupling measures
appear to be significant predictors of fault-proneness. How-
ever, some measures did not seem significant, very likely
because of their small variance in our sample. This sug-
gests the need for replications of this study on other sys-
tems, with different distributions, to improve understand-
ing of the relationships of these coupling measures with
fault-proneness.

In addition, because measures of coupling by friendship
show higher regression coefficients, there seems that the
use of “friend” classes in C++ increases fault-proneness of
classes even more than other types of coupling. This sup-
ports hypothesis 3. Again, further studies are needed in
order to confirm this result .

Our plans for the future include the refinement of our meas-
ures, the investigation of other measurement concepts such
as cohesion, and the replication of our study in industrial
object-oriented software systems.

Acknowledgments. We are grateful to Jürgen Wüst, who
built tools to gather the data and Hakim Lounis for help-
ing us prepare the final version of this paper. During this
work W. Melo was, in part, supported by Bell Canada.

REFERENCES
[1] V. Basili, L. Briand et W. Melo. “How reuse in-

fluences productivity in object-oriented systems”.
Communications of ACM, 39(10):104-116, Octo-
ber 1996.

[2] V. Basili; L. Briand; W. Melo, “A validation of
object-oriented design metrics as quality indica-
tors.”, IEEE TSE, 22(10), 1996.

[3] J. M. Bieman and L. M. Ott, “Measuring Func-
tional Cohesion”. Computer Science Dept., Colo-
rado State Univ., June 1993, Fort Collins, CO,
USA. TR#: CS-93-109.

[4] L. Briand; S. Morasca; V. Basili; “Defining and
validating high-level design metrics”, UMD-CSD,
College Park, MD, USA, TR#: CS-TR-3301,
1994.

[5] Briand, V. Basili and C. Hetmanski “Developing
Interpretable Models with Optimized Set Reduction
for Identifying High Risk Software Components,”
IEEE Trans. Software Eng., SE-19 (11):1028-
1044, 1993

[6] L. Briand, K. El Emam, S. Morasca. “Theoretical
and Empirical Validation of Software Product
Measures.” ISERN technical report 95-03, 1995.

[7] J . Capon, “ Elementary Statistics for the Social
Sciences”, Wadworth Publishing Company, 1988.

[8] S. R. Chidamber and C. F. Kemerer . “A metrics
suite for object-oriented design.”, IEEE TSE,
20(6):476–493, 1994.

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

9

[9] N. I. Churcher and M. J. Shepperd. “Comments on
‘A Metrics Suite for Object-Oriented Design’”.
IEEE TSE, 21(3):263–265, 1995.

[10] P. Devanbu, “A language and front-end independ-
ent source code analyzer”, in Proc. of the Twelfth
Int’l Conference on Software Engineering, Mel-
bourne, Australia, 1992.

[11] Everitt, “Cluster Analysis.”, Edward Arnold, 1993.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
“Design Patterns: Elements of Reusable Object-
Oriented Software” Addison Wesley. October
1994.

[13] M. Hitz and B. Montazeri. “Chidamber and Ke-
merers’s metrics suite: a measurement theory per-
spective.”, IEEE TSE, 22(4):267-271, April, 1996.

[14] D. Hosmer and S. Lemeshow. “Applied Logistic
Regression.” Wiley-Interscience. 1989.

[15] T.M. Khohgoftaar, A.S. Panday, and H.B. More.
“A Neural Network Approach for Predicting Soft-
ware Development Faults.” In Proc. of the 3rd Int’l
IEEE Symp. on S/W Reliability Engineering, NC.
1992

[16] W. Li and S. Henry. “Object-oriented metrics that
predict maintainability.”, JSS. 23(2):111–122,
1993.

[17] Selby and A. Porter. “Learning from Examples:
Generation and Evaluation of Decision Trees for
Software Resource Analysis.”, IEEE TSE, 14(2):
1743-1747. 1988.

[18] D. A. Young, "Object-Oriented Programming with
C++ and OSF/Motif", Prentice-Hall, 1992.

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

10

Maximum Minimum Median Mean Std Dev
OCAIC 10 0 0 0.97 1.55
IFCAIC 2 0 0 0.07 0.32
ACAIC 3 0 0 0.07 0.35
OCAEC 33 0 0 0.99 3.34
FCAIC 4 0 0 0.10 0.47
DCAIC 3 0 0 0.02 0.28
OCMIC 50 0 3 4.9 6.42
IFMIC 8 0 0 0.46 1.47
ACMIC 2 0 0 0.09 0.41
OCMEC 84 0 1 4.61 10.62
FCMIC 8 0 0 0.49 1.5
DCMIC 0 0 0 0 0
OMMIC 112 0 4 9.14 14.31
IFMMIC 13 0 0 0.57 2.08
AMMIC 11 0 0 0.72 1.85
OMMEC 59 0 4 8.12 11.1
FMMEC 16 0 0 0.69 2.5
DMMEC 26 0 0 0.27 2.45

Table 1 Descriptive Statistics (excluding verbatim reused classes)

Measures Coefficient ∆ψ p-value Type From/To

OCAIC 0.32 1.38 0.0056 Import Others
OCMIC 0.093 1.10 0.001 Import Others
OCMEC 0.11 1.12 0.0001 Export Others
OMMIC 0.115 1.12 0.0000 Import Others
IFMMIC 0.485 1.62 0.0000 Import Friend
OMMEC 0.06 1.06 0.0000 Export Others
FMMEC 0.868 2.38 0.0000 Export Friend

Table 2 Significant Univariate Relationships (excluding verbatim reused classes)

Spearman Rho (r2
s)

OCAIC OCMIC OCMEC OMMIC IFMMIC OMMEC FMMEC

OCAIC 1 0 . 4 0 0.13 0 . 4 7 0.03 0.16 -0.17

OCMIC 1 0 . 3 6 0 . 5 2 0.23 0 . 3 5 -0.05

OCMEC 1 0.07 -0.04 0.06 -0.06

OMMIC 1 0 . 3 5 0 . 6 1 0.10

IFMMIC 1 0.31 -0.02

OMMEC 1 0.14

Table 3 Rank correlation’s between Significant Coupling Measures

Spearman Rho (r2s)

DIT RFC NOC CBO LCOM WMC

OCAIC 0.17 0 . 4 3 -0.17 0 . 2 4 -0.002 0.17

OCMIC 0.05 0 . 4 5 - 0 . 3 0 0 . 3 1 -0.09 0 . 3 3

OCMEC 0.23 0.07 -0.18 -0.07 0.07 0 . 3 2

OMMIC 0.10 0.70 - 0 . 2 7 0 . 3 7 -0.03 0 . 2 9

IFMMIC -0.04 0 . 3 1 -0.19 0.16 -0.03 0.11

OMMEC -0.08 0 . 5 7 0.02 0 . 3 8 0.065 0.14

FMMEC -0.15 -0.05 0.02 -0.03 0.13 0.14

Table 4 Associations between Coupling Measures and C&K Measure

Proc. of the 19th International Conference on Software Engeneering, 18-23 May, 1997, Boston, MA.

11

Spearman Rho (r2s)

SLOC STMT
OCAIC 0 . 2 4 0 . 2 4
OCMIC 0 . 2 8 0 . 4 2
OCMEC 0.15 0.06
OMMIC 0 . 5 0 0 . 6 3
IFMMIC 0 . 2 8 0 . 3 2
OMMEC 0 . 4 4 0 . 5 9
FMMEC -0.06 -0.03

Table 5 Associations between Coupling Measures and Size Measures

Coefficient p-value
Intercept 3.32 0.0000
 DIT 1.15 0.0000
 RFC 0.10 0.0000
OCMEC 0.15 0.0004
FMMEC 0.28 0.0054

Table 6 Multivariate Logistic Regression Model (see [8] for further details about C&K metrics). DIT
stands for Depth of Inheritance Tree of a class and RFC for Response For a Class.

Coefficient p-value
Intercept 0.83 0.0320
DIT 0.86 0.0000
WMC 0.10 0.0003
OCAIC 0.1 0.0050

Table 7 Multivariate Logistic Regression Model (high-level design measures only). WMC [8] stands for
Weighted Method per Class.

