
R. M. McCLUR£, Editor

Regular Expression Search
Algorithm

I~EN THOMPSON
Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

A method for locating specific character strings embedded
in character text is described and an implementation of this
method in the form of a compiler is discussed. The compiler
accepts a regular expression as source language and pro-
duces an IBM 7094 program as object language. The object
program then accepts the text to be searched as input and
produces a signal every time an embedded string in the text
matches the given regular expression. Examples, problems,
and solutions are also presented.

KEY WORDS AND PHRASES: search, match, regular expression
CR CATEGORIES: 3.74, 4.49, 5.32

T h e A l g o r i t h m

Previous search algorithms involve backtracking when
a partially successful search path fails. This necessitates
a lot of storage and bookkeeping, and executes slowly. In
the regular expression recognition technique described in
this paper, each character in the text to be searched is
examined in sequence against a list of all possible current
characters. During this examination a new list of all
possible next characters is built. When the end of the
current list is reached, the new list becomes the current
list, the next character is obtained, and the process con-
tinues. In the terms of Brzozowski [1], this algorithm con-
tinually takes the left derivative of the given regular ex-
pression with respect to the text to be searched. The
parallel nature of this algorithm makes it extremely fast.

T h e I m p l e m e n t a t i o n

The specific implementation of this algorithm is a com-
piler that translates a regular expression into IBM 7094
code. The compiled code, along with certain runtime
routines, accepts the text to be searched as input and
finds all substrings in the text that match the regular
expression. The compiling phase of the implemention does
not detract from the overall speed since any search routine
must translate the input regular expression into some
sort of machine accessible form.

In the compiled code, the lists mentioned in the algo-
r i thm are not characters, but transfer instructions into
the compiled code. The execution is extremely fast since
a transfer to the top of the current list automatically
searches for all possible sequel characters in the regular
expression.

This compile-search algorithm is incorporated as the
context search in a time-sharing text editor. This is by
no means the only use of such a search routine. For
example, a variant of this algorithm is used as the symbol
table search in an assembler.

I t is assumed that the reader is familiar with regular
expressions [2] and the machine language of the IBM 7094
computer [3].

T h e C o m p i l e r

The compiler consists of three concurrently running
stages. The first stage is a syntax sieve that allows only
syntactically correct regular expressions to pass. This
stage also inserts the operator " . " for juxtaposition of
regular expressions. The second stage converts the regular
expression to reverse Polish form. The third stage is the
object code producer. The first two stages are straight-
forward and are not discussed. The third stage expects a
syntactically correct, reverse Polish regular expression.

The regular expression a(b I c) ,d will be carried through
as an example. This expression is translated into abc I * " d •
by the first two stages. A functional description of the
third stage of the compiler follows:

The heart of the third stage is a pushdown stack. Each
entry in the pushdown stack is a pointer to the compiled
code of an operand. When a binary operator ("1" or ". ")
is compiled, the top (most recent) two entries on the stack
are combined and a resultant pointer for the operation re-
places the two stack entries. The result of the binary
operator is then available as an operand in another opera-
tion. Similarly, a unary operator ("*") operates on the top
entry of the stack and creates an operand to replace that
entry. When the entire regular expression is compiled,
there is just one entry in the stack, and that is a pointer to
the code for the regular expression.

The compiled code invokes one of two functional rou-
tines. The first is called NNODE. N N O D E matches a
single character and will be represented by an oval con-
taining the character that is recognized. The second func-
tional routine is called CNODE. CNODE will split the

Volume 11 / Number 6 / June, 1968 Communications of the ACM 419

current search path. It is represented by @ with one input
path and two output paths.

Figure 1 shows t:he functions of the third stage of the
compiler in translating the example regular expression.
The first three characters of the example a, b, c, each
create a stack entry, S[i], and an NNODE box.

o b c

FIG. 1

NNODE onto the existing code to produce the final regu-
lar expression in the only stack entry. (See Figure 5.)

s (o) - ~

a-(b c}~-d

FIG. 5

The next character "*" combines the operands b and c
with a CNODE to form bIc as an operand. (See Figure 2.)

s(o)

a b~c

FIG. 2

The next character "*" operates on the top entry on the
stack. The closure operator is realized with a CNODE by
noting the identity X , = h l X X * , where X is any regular
expression (operand) and h is the null regular expression.
(See Figure 3.)

o [blc) ~
FiG. 3

The next character " . " compiles no code, but just
combines the top two entries on the stack to be executed
sequentially. The stack now points to the single operand
a-(b[c),. (See Figure 4.)

s(o) - ~ j

a-(bic)*
FIG. 4

The final two characters d. compile and connect an

A worldng example of the third stage of the compiler
appears below. It is written in ALGOL-60 and produces
object programs in IBM 7094 machine language.

begin
integer procedure get character; code;
integer procedure instruction(op, address, lag, decrement);

code;
integer procedure value(symbol); c o d e ;
integer procedure index(character); c o d e ;
integer char, lc, pc;
integer a r r a y stack[0:lO], code[O:300];
switch switch := alpha, juxta, closure, or, eof ;
lc := pc := 0;

advance:
char := get character;
go t o switch[index(char)J;

alpha:
code[pc] := instruction('tra', v a l u e (' c o d e ') + p c + l , 0, 0);
code[pc+l] := instruction('txl', valuc('fail'), 1, --char--l);
code[pc+2] := instruetion('lxh', value('fail'), 1, --char) ;
code[pc+3] := instruction('tsx', value('nnode'), 4, O) ;
stack[lc] := pc;
pc := pc+4;
lc := lc+l;
go t o advance;

juxta :
lc := lc--1;
go t o advance;

closure:
code[pc] := instruction('tsx', value('cnode'), 4, 0);
code[pc+l] := code[stack[lc--1]];
code[stack[lc-1]] := instruction('tra', value('code')+pc, O, 0);
pc := pc+2;
go t o advance;

o r :

code[pc] := instruction('tra', value('code')+pc+4, O, 0);
code[pc+l] := instruction('tsx', value('cnode'), 4, 0);
code[pc+2] := code[stack[lc-1]];
code[pc+3] := code[stack[le-2]];
code[stack[le--2]] := instruction('tra', value('code')+pc+l, O, 0);
code[stack[lc--1]] := instruction('tra', value('code')+pc+4, O, O) ;
pc := pc+4;
lc := l c -1;
go t o advance;

eof :
code[pc] := instruction('tra', value('found'), 0, 0);
pc := pc+l

end

The integer procedure get character returns the next
character from the second stage of the compiler. The

420 Communications of t i l e A C M V o l u m e 11 / N u m b e r 6 / J u n e , 1968

integer procedure index returns an integer index to classify
the character. The integer procedure value returns the
location of a named subroutine. I t is an assembler symbol
table routine. The integer procedure instruction returns an
assembled 709,i instruction.

When the compiler receives the example regular expres-
sion, the following 7094 code is produced:

CODE TRA CODE+i 0 a
TXL FAIL,1,- 'a w --1 1
TXH FAIL,1,-Wa t 2
TSX NNODE,4 3
TRA CODE+16 4 b
TXL FAIL,l, - I b' - 1 5
TXH FAIL,1,- 'b I 6
TSX NNODE,4 7
TRA CODE+16 $ c
TXL FAIL,1,- 'cT-I 9
TXH FAIL,l, - ~ c I 10
TSX NNODE,4 11
TRA CODE+16 12 [
TSX CNODE,4 13
TRA CODE+9 14
TRA CODE+5 15
TSX CNODE,4 16 *
TRA CODE+i3 17
TRA CODE+19 18 .d
TXL FAIL,1,--'d'--i 19
TXH FAIL,1,--'d' 20
TSX NNODE,4 21
TRA FOUND 22 • eof

R u n t i m e R o u t i n e s

During execution of the code produced by the compiler,
two lists (named CLIST and NLIST) are maintained by
the subroutines CNODE and NNODE. CLIST contains
a list of TSX **,2 instructions terminated by a TRA
XCHG. Each TSX represents a partial match of the
regular expression and the TRA X C H G represents the
end of the list of possible matches. A call to CNODE from
location x moves the TRA X C H G instruction down
one location in CLIST and inserts in its place a TSX
x + l , 2 instruction. Control is then returned to x + 2 .

This effectively branches the current search path. The
deferred until later while the branch at
immediately. The code for CNODE is as

path at x + l is
x + 2 is searched
follows:

CNODE AXC
CAL
SLW

**,7 CLIST COUNT
CLIST,7
CLIST+i,7 MOVE TRA XCHG

INSTRUCTION
PCA ,4
ACL TSXCMD
SLW CLIST,7

TXI *+1,7,-1
SCA CNODE,7

TRA 2,4
$

TSXCMD TSX 1,2

INSERT NEW TSX **,2
INSTRUCTION

INCREMENT CLIST
COUNT

RETURN

CONSTANT, NOT
EXECUTED

The subroutine N N O D E is called after a successful

match of the current character. This routine, when called
from location x, places a TSX x + l , 2 in NLIST. I t
then returns to the next instruction in CLIST. This sets
up the place in CODE to be executed with the next
character. The code for N N O D E is as follows:

NNODE AXC **,7 NLIST COUNT
PCA ,4
ACL TSXCMD
SLW NLIST,7 PLACE NEW TSX **,2

INSTRUCTION
TXI ,+1,7,-1
SCA NNODE,7 INCREMENT NLIST

COUNT
TRA 1,2

The routine FAIL simply returns to the next entry in
the current list CLIST.

FAIL TRA 1,2

The routine X C H G is transferred to when the current
list is exhausted. This routine copies NLIST onto CLIST,
appends a TRA X C H G instruction, gets a new character
in index register one, and transfers to CLIST. The instruc-
tion TSX CODE,2 is also executed to start a new
search of the entire regular expression with each character.
Thus the regular expression will be found anywhere in the
text to be searched. Variations can be easily incorporated.
The code for X C H G is:

XCHG LAC NNODE,7
AXC 0,6

X1 TXL X2,7,0
TXI *+1,7,1
CAL NLIST,7
SLW CLIST,6
TXI X1,6,-1

X2 CLA TRACMD
SLW CLIST,6

SCA CNODE,6

SCA NNODE,0

TSX GETCHA,4
PAC ,1
TSX CODE,2
TRA CLIST

TRACMD TRA XCHG

PICK UP NLIST COUNT
PICK UP CLIST COUNT

COPY NLIST ONTO CLIST

PUT TRA XCHG AT
BOTTOM

INITIALIZE CNODE
COUNT

INITIALIZE NNODE
COUNT

GET NEXT CHARACTER
START SEARCH
FINISH SEARCH

CONSTANT, NOT
EXECUTED

Initialization is required to set up the initial lists and
start the first character.

INIT SCA NNODE,0
TRA XCHG

The routine FOUND is transferred to for each successful
match of the entire regular expression. There is a one
character delay between the end of a successful match
and the transfer to FOUND. The null regular expression
is found on the first character while one character regular
expressions are found on the second character. This means
that an extra (end of file) character must be put through

Volume 11 / Number 6 / June , 1968 C o m m u n i c a t i o n s o f the ACM 421

the code in order to obtain complete results. FOUND de-
pends upon the use of the search routine and is therefore
not discussed in detail.

The integer procedure G E T C H A (called from XCHG)
obtains the next character from the text to be searched.
This character is right adjusted in the accumulator.
G E T C H A must also recognize the end of the text and
terminate the search.

N o t e s

Code compiled for a** will go into a loop due to the
closure operator on an operand containing the null regular
expression, k. ']?here are two ways out of this problem. The
first is to not allow such an expression to get th rough the
syntax sieve. I n mos t practical applications, this would
not be a serious restriction. The second way out is to
recognize l ambda separately in operands and remember
the C O D E location of the recognition of lambda. This
means tha t a , is compiled as a search for h l a a , . I f the
closure operation is performed on an operand containing
lambda, the instruction TRA FAIL is overlaid on that
portion of the operand that recognizes lambda. Thus a**
is compiled as h]aa,(aa,),.

The array lambda is added to the third stage of the pre-
vious compiler. I t contains zero if the corresponding
operand does not contain X. I t contains the code location
of the recognition of X if the opcrand does contain h. (The
code location of the recognition of X can never be zero.)
begin

integer procedure get character; code;
integer procedure instruction(op, address, tag, decrement);

code ;
integer procedure value(symbol); code;
integer procedureindex(character); code;
integer char, lc, pc;
integer array stack, lambda[0:lO], code[O:300];
switch switch := alpha, juxta, closure, or, eof ;
lc := pc := 0;

advance :
char := get character;
go to switch[index(char)J;

alpha :
code[pc] := instruetion('tra', value('code')+pc+l, O, 0);
code[pc+l] := instruetion('txl', value('fail'), 1, --char--i);
code[pc+2] := instruction('txh', value('fail'), 1, ~char);
code[pc+3] := instruction('tsx', value('nnode'), 4, 0);
stack[lc] := pc;
lambda[lc] :-~ 0;
pc := pc-4-4;
lc := lc+l;

g o t o advance;
juxta :

if lambda[lc~l] = 0 thezi
lambda[lc--2] := 0;

le := lc--1;
g o t o advance;

closure :
code[pc] := instruction('tsx', value('cnode'), 4, 0);
code[pc+l] := code[stack[lc-1]];
code[pc+2] := instruction('tra', value('code')Wpc+6, O, 0);
code[pc+3] := instruetion ('tsx', value ('cnode') , 4, 0);
code[pc +4] : = code[stack[lc- 1]] ;
code[pc+5] := instruction('tra', value('code')-4-pc+6, O, 0);
code[stack[lc--1]] := instruction('tra', value('code')-~-pc-4-3, O, 0);

if lambda[lc--1] ~ 0 then
code[lambda[le--1]] := instruction('tra', value('fail'), O, 0);

lambda[lc-1] := pc+5;
pc := pc+6;
go to advance;

o r :

code[pc] := instruction('tra', value('code')+pc+4, O, 0);
code[pcA-1] := instruction('tsx', value('cnode'), 4, 0);
code[pc+2] := code[staek[lc--1]];
code[pc+3] := code[stack[lc-2]];
code[stack[lc- 2]] := instruetion('tra', value('code') + p c + l, 0, 0);
eode[stack[lc--1]] := instruction ('tra', value('code') +pc+4, O, O)
if lambda[lc-2] = 0 then

begin if lambda[lc--1] ~ 0 then
lambda[lc-- 2] = lambda[le--1]

end else
if lambda[lc--1] ~ 0 then

code[lambda[lc--1]] :=
instruction ('tra', value('code') + lambda[lc-- 2], 0, 0);

pc := pc+4;
lc := lc--1;
go to advance;

eof:
code[pc] := instruetion('tra', value('found'), O, 0);
pc := p c + l

end

The next note on the implementation is that the sizes
of the two runtime lists can grow quite large. For example,
the expression a . a . a * a * a . a * explodes when it encounters
a few concurrent a 's. This expression is equivalent to a*
and therefore should no t generate so m a n y entries. Such
redundan t searches can be easily t e rmina ted by hav ing
N N O D E (C N O D E) search N L I S T (CLIST) for a ma tch-
ing en t ry before it puts an en t ry in the list. This now gives
a m a x i m u m size on the number of entries t ha t can be in the
lists. The m a x i m u m number of entries t ha t can be in
C L I S T is the number of T S X C N O D E , 4 and T S X
N N O D E , 4 instruct ions compiled. The m a x i m u m num-
ber of entries in N L I S T is just the number of T S X
N N O D E , 4 instruct ions compiled. I n practice, these
maxima are never met.

The execution is so fast, t ha t any other recognition and
deleting of r edundan t searches, such as described by K u n o
and Oett inger [4], would p robab ly waste time.

This compiling scheme is ve ry amenable to the extension
of the regular expressions recognized. Special characters
can be in t roduced to ma tch special si tuations or sequences.
Examples include: beginning of line character , end of line
character , any character , alphabetic character , any num-
ber of spaces character, lambda, etc. I t is also easy to
incorporate new operators in the regular expression rou-
tine. Examples include: not , exclusive or, intersection, etc.

REFERENCES
1. BRZOZOWSKI, J. A. Derivatives of regular expressions. J.

ACM 11, 4 (Oct. 1964), 481-494.
2. I~LEENE, S. C. Representation of events in nerve nets and

finite automata. In Automata Studies, Ann. Math. Stud. No.
34. Princeton U. Press, Princeton, N.J., 1956, pp. 3-41.

3. IBM Corp. IBM 7094 principles of operation. File No. 7094-01,
Form A22-6703-1.

4. KuNO, S., AND OETTINGER, A. G. Multiple-path syntactic
analyzer. Proc. IFIP Congress, Munich, 1962, North-Holland
Pub. Co., Amsterdam.

422 Connmunications of the ACM Volume 11 / Number 6 / June , 1968

