A Dual Compartment Chimney Tray

Wayne Chung and Dick Nielsen

Fluor Daniel Aliso Viejo, California

Presented to AIChE 2001 Spring National Meeting

April 26, 2001 at Houston, Texas

A Dual Compartment Chimney Tray

History of the Hydrocracker Unit

- Built in 1962 for a capacity of 8,800 BPD
- Revamped in 1971 to a capacity of 11,200
 BPD
- Revamped in 1992 to a capacity of 17,500
 BPD
- Now running at 22,000 BPD

Debutanizer Revamp in 1971

- Reused the existing 3-pass trays in the bottom section of the Debutanizer
- Added a pumped side reboiler loop to recover heat from the reactor effluent
- Installed 3 x 12" draw-off nozzles at tray
 25 and piped to side reboiler pump suction
- Installed 3 x 8" distributors and one 8" and one 10" return nozzle at tray 25

Side View of the Side Reboiler Drawoff and Return Nozzles Installed in 1971

Top View of the Side Reboiler Return Distributors and Nozzles Installed in 1971

Problems

- Side reboiler pump cavitates at 2/3 of the rated flow of 42,000 BPD, or at about 28,000 BPD
- Debutanizer performance doesn't meet the 1971 revamp requirements
- Side reboiler feed stream is a "mixed" stream consisting of side reboiler return and liquid from tray 24 (loss of LMTD)

Causes of Side Draw Limitations

- Poor Drawoff Tray Design
 - Uneven drawoffs in a 3-pass tray
 - Inadequate degassing of the boiling liquid
- Poor Side Reboiler Return Design
 - Uneven side reboiler return to each flow pass
 - Inadequate segregation of cold and hot fluids
- Poor Mixing of Fluids
 - Fluid mixing on the deck and troughs
 - No assurance of fluid flow direction

'Idea' Hot Fluid Flow Direction

Drawoff Rate < 28,000 BPD

'Actual' Hot Fluid Flow Direction

Drawoff Rate > 28,000 BPD

Process Design Objectives

Design a Dual Compartment Chimney Tray to perform the following tasks:

- Cold fluid surge for pump drawoff
- Hot fluid surge for liquid stabilization and degassing prior to flowing to tray below
- Side-reboiler return vapor/liquid separation
- Isolation of the cold fluid for a better LMTD
- Vapor chimney for vapor from the tray below

Column Design Limitations

- Limited free vertical space for a chimney tray and pump liquid surge.
- How to control a 90 to 95% drawoff of cold fluid without a level or flow controller?
- How to prevent the cold fluid from being mixed with the hot side reboiler return fluid?
- How to safeguard the pump?

Innovative Solution

A Dual Compartment
Chimney Tray with
A Special *Double Wall*

Process Innovations

- Install a special *double wall* partition for separating the cold and hot compartments
- Isolate the cold fluid and allow excess cold fluid to sweep inside the *double wall*
- Reverse hot fluid flow as an emergency backup for pump protection
- Use temperature sensors to indicate the fluid flow direction on the chimney tray

Chimney Tray Features

- A new 20" pump draw nozzle designed for automatic degassing
- A new 10" U type side reboiler return distributor and a new nozzle
- A vapor chimney of 27" X 40" X 43" (High)
- A 32"(High) double wall
- Two tray 26 downcomer chutes
- Two 29" (High) liquid dams to tray 27

Front View of the Chimney Tray

Side View of the Chimney Tray

Partial View of the Chimney Tray

The Double Wall -Heart of The Design

Tray 26 Downcomer Chute

Double Wall & Tray 26 Chute

Reboiler Return Distributor

Partial View of the Chimney Tray

Tray 26 Deck

Partial View of the Chimney Tray

Normal Flow Path

Reverse Flow Path

Side Draw and Return Flow Schematic

Operating Results

- Hot fluid reserves flow to the cold compartment during initial startup as anticipated
- Draw rate increases to 30,000 BPD with a peak rate of 35,000 BPD
- The system has been operating successfully since initial startup

Conclusion: Benefits of the Double Wall

- Maintain the coldest possible temperature to the side reboiler
- Maximize the side reboiler LMTD
- Minimize the column space loss, i.e., 2 tray loss (or less) for the chimney tray
- Indicate or control the flow direction of the cold or the hot fluid with temperature sensors
- *Isolate and insulate* the cold compartment with excess cold fluid flowing through the *double wall*

Acknowledgement

Comments/Questions?

Email: wayne.chung@fluor.com

Tel: (949) 349-4479

