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In 1936 van Stockum solved the Einstein equations Gy
rapidly rotating infinite cylinder. It is shown that such a ﬁald viclates causality, in the aensa

a finite rotating cylinder would also act as a time machine,

Since the work of Hawking and Penrose, it has
become accepted that classical ganera.l relativity
predicts some sort of pathological behavior. How-
ever, the exact nature of the pathology is under
intense debate at present, primarily because so-
lutions to the field equations can be found which ex-
hibit virtually any type of bizarre behavior.? It
is thus of utmost importance to know what types of
pathologies might be expected to occur in actual
physical situations. One of these pathologies is
causality violation, and in this paper I shall argue
that if we make the assumptions concerning the be-
havior of matter and manifold usual in general rel-
ativity, then it should be possible in principle to
set up an experiment in which this particular pa-
thology could be observed.

Because general relativity is a local theory with
no a priori restrictions on the global topology,
causality violation can be introduced into solutions
quite easily by injudicious choices of topology; for
example, we could assume that the timelike coor-
dinate in the Minkowski metric is periodic, or we
could make wormhole identifications in Reissner-
Nordstrém space.? In both of these cases the cau-
sality violation takes the form of closed timelike
lines (CTL) which are not homotopic to zero, and
these need cause no worries since they can be re-
moved by reinterpreting the metric in a covering
space (following Carter,® CTL removable by such
means will be called trivial—others will be called
nontrivial).

In 1949, however, Gddel® discovered a solutlon
to the field equations with nonzero cosmological
constant that contained nontrivial CTL. Still, it
could be argued that the Godel solution is without
physical significance, since it corresponds to a
rotating, stationary cosmology, whereas the actual
universe is expanding and apparently nonrotating.

The low-angular-momentum Kerr field, on the
other hand, cannot be claimed to be without physi-
cal relevance: It appears to be the unique final
state of gravitational collapse,” and so Kerr black
holes probably exist somewhere, possibly in the
center of our galaxy.® This field also contains
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= 8T, for the gravitational fleld of n;'

nontrivial CTL, though the region of causality vi-

olation is confined within an event horizon; causal-
ity violation from this source could never be ob-
served by terrestrial physicists.® In addition,
since the CTL must thread their way through a re-
gion near the singularity, it is quite possible that
matter of a collapsing star will replace this re-
gion, as matter replaces the past horizon in the
case of spherical collapse.’® The final Kerr field
with collapsed star could be causally well behaved,
so the CTL pathology might still be eliminated
from general relativity’s physical solutions.

I doubt this, because nontrivial causality viola-
tion also occurs in the field generated by a rapidly
rotating infinite cylinder.

The field of such a cylinder in which the centrif-
ugal forces are balanced by gravitational attraction
was discovered by van Stockum in 1936, The
metric is expressed in Weyl-Papapetrou form:

ds®=H (dv? +dz?) + Ld® + 2Mdpdt - Fdt®, (1)

where 2z measures distance along the cylinder axis,
r is the radial distance from the axis, ¢ is the an-
gle coordinate, and ¢ is required to be timelike at
r=0. (=0 <z<w, 0<y<ew, 05 =27, =0 <{<w,)
The metric tensor is a function of » alone, and the
coordinate condition FL + M?* =2 has been imposed
(units G=c =1),

It is clear that since g=detg,,=—+?H?* is nega-
tive, the metric signature is (+++—) for all » >0,
provided H#0. van Stockum assumes the Einstein
equations

G*,=-87T",
-—8n dx* dx,
P s ds
where p is the particle mass density. Also
dr _dz _
ds ds '
dg
s d =constant,
T=T¢, =
2203
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(particle paths required to be timelike).
In a frame in which the matter is at rest, the
equations give for the interior field

L=r*1-a%?, p=4a’e“2”z, i
(2)

2,2

Hze"ﬂ r ,
M=ar®*, F=1,

where a is the angular velocity of the cylinder.
For »>1/a, the lines » =constant, ¢=constant,
z =constant are CTL (in fact, by a theorem due to
Carter,® nontrivial CTL can be found which inter-
sect any two events in the manifold), but one cpuld
hope that the causality violation could be elimi-
nated by requiring the boundary of the cylinder to
be at r=R <1/a. Here the interior solution would
be joined to an exterior solution which would be
(hopefully) causally well behaved; indeed, the re-
sulting upper bound to the “yelocity” aR would
equal 1, the speed of light in our units (though the
orbits of the particles creating the field are time=
like for all »).

van Stockum has developed a procedure which
generates an exterior solution for all aR >0. When
0<aR <}, the exterior solution is

_alR 3{?,/3}-29!&2

L= Ry sinh(3¢ +6)
~ 2 sinh2e coshe ’

_vsinh(e +8) (3a)
- sinh2e °’
Far sinh(e - 6)
~  Rsinhe '’
with
 p=(1-4a*R*)"*In(r/R),
e =tanh~1(1 — 4a® R*)"Y*.
For aR =1,
H=e"Vr/R)"VE,
L=iRr[3+In(/R)], -
(3b)
M =37[1+n(»/R)},
F=(r/R)M1-1n@/R)].
For aR >3,
H=e """ (r/R)*"*,
_ Rrsin(38 +v)
~ 92sin2B8cosB ’ )
M= ¥ sin(g +y) (3c)
- sin2g '’
_rsin(@-v)
F= Rsing '’
" with

y =(4a* R* -1)"?In(r/R),
3 =tan-l(4a3R2 - 1)1.1’2

[as in the interior solution, FL+M?®=7? so the
metric signature is (+++=) for R <7 <],

We see that causality violation is avoided for
aR <3, but Carter’s theorem tells us that it is
possible to connect any two events by nontrivial
CTL when aR > #%.

There are several objections to be met before
this result can be interpreted physically. First of
all, Egs. (3), which van Stockum derived by as-
suming a special functional form for the g,,,
might not be the only candidates for the exterior
field; it is known, for instance, that the gravita-
tional field (3a) is static™ in the sense that a
“transformation” of the form

t'=At+By, A,B,C,D constants
(4)
@'=Ct+ Dy
will eliminate the g,, component. [Transformation
is placed in quotes since {'is a periodic coordi-
nate: ¢’=¢'+B2n. Interpreted globally, the new
metric covers a manifold with topology

§% x (half plane).

We ean return to the original topology by taking a
covering space, an operation which is no! equiva-
lent to changing a coordinate system.]

Fortunately, it is easy to prove that (3) are the
only possible exterior fields for a rotating infinite
cylinder. Levy and Robinson?® have shown that in
this case, the Weyl-Papapetrou metric can be
written [modulo (4)] in the form

ds? = =™ (dt +ad ? +2*~¥ (dr? +dz?)
+rie™de?, (5)

where u, a, k are functions of r only. A procedure
developed by Davies and Caplan’ and myself al-
lows the equations R, =0 to be integrated; the so-
lutions are equivalent to (3). (Details of the
uniqueness proof can be found in the Appendix.)

Since the causality problems come from the si-
nusoid factors of (3¢), we might hope to avoid
these factors by “transforming” (3a) via (4) and
then attempting to join the interior field to the
“new” (topologically distinct) field. But the
“tyansformation” (4) will not change the exponents
of », which for aR >} become imaginary—in fact,
for aR >4, (3a)is (3c) with the substitutions € =if
and 8 =iy.

Thus we expect causality viclation to occur in
the matter-free space surrounding a rapidly rotat-
ing infinite cylinder. As Thorne'® has emphasized,
however, it is risky to claim that the properties
of such a cylinder also hold for realistic eylinders.
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In addition to the already mentioned static nature
of the field, there is the fact that it is not even
asymptotically Minkowskian (especially when aR
>1). Still, the gravitational potential of the cylin-
der’s Newtonian analog also diverges at radial in-
finity, yet this potential is a good approximation
near the surface in the middle of a long but finite
cylinder, and if we shrink the rotating cylinder
down to a “ring” singularity, we end up with the
Kerr field, which also has CTL. These facts sug-
gest that there is a region near the surface of a
finite cylinder where g,, becomes negative, im=
plying causality violation.

Since H+#0 for »+0, there are no event horizons
around the infinite cylinder. By analogy with the
static case,'® I expect this to be true for a finite
cylinder; if so, then a timelike line from any
event in the universe could enter the region where
g, i negative and return to any other event.'’

In short, general relativity suggests that if we
construct a sufficiently large rotating cylinder,
we create a time machine.

I would like to thank Dr. D. Schmidt for helpful
‘discussions, and Professor D. R. Brill for reading
the manuscript.

APPENDIX: PROOF THAT VAN STOCKUM'S EXTERIOR
SOLUTIONS (3) ARE THE ONLY POSSIBLE
EXTERIOR FIELDS FOR AN INFINITE
ROTATING CYLINDER

Davies and Caplan have shown’® that the field
equations R, =0 for the Levy-Robinson metric
[Eq. (5)] reduce to

Py, Ldu, g da)
dr? oy dr  2r* o
d’a _1da
dr® oy dr

2 dk du\ 1 “(da)’_

¥ dr _2(dr)+2r“e i) =% (A3)

(A1)

4 — —=0, (A2)

We have three coupled equations for three func-
tions: second order in u, second order in a, first
order in k. Thus we expect five arbitrary con-
stants. A general physical solution to the above
system will be defined to be a set of functions
a, u, k in which the five constants are allowed to
assume all real values from — to . I will show
that this general solution is given by Egs. (3a)-
(3c).

Equation (A2) can be written

d (1 nda)_
rdr(?'e df)_a'

Thus (1/7)e* da/dr =2w (where w is a constant).
Substituting this into (Al), we obtain

2 1
g—r—’: + = g—: +2wie™ =0,
Suppose first that w =0. Then a little manipulation

yields
u=A(lnr)+B, k=A%lw)+C, a=D,

where A, B, C, D are constants.

By the transformation t=t’'-ap, ¢=¢’, 2=2/,

y =r’, we discover that except for global topology
this solution is just the Weyl solution (3a).

Suppose now that w#0. It is at this point that
Davies and Caplan err; their “general” solution in
fact places implicit restrictions on the value of
their constant A. The complete general solution is
obtained via the following procedure. Let v=e~*,
b =(wr)?, so that u=-%In(v), and d/dr
=2w?r(d/dp), which gives

du __1dy

ok 2
o 4vdp2w1‘.

Equation (A4) becomes

l i( ’ @-) +2wze""

r dr dr
2% d{ 2w dy .
=y dp( e dp)+2“’”'°
“or
12@,) _
dp(ydp 20=0. (A5)

Let w=pv, giving dv/dp=v'=w'/p—w/p*. (A5)be-
comes ’

dfpw’\_ 2w _
dp( w ) p =0. (A6)

‘Let ¢ =1n(p), d/dp=(1/p)d/dt. (AB)becomes

d{w \
a(;)-Zw—U. (A

Let Q=w=dw/dt, d/dt=(Q)d/dw. (AT)becomes

-Q;%( Q)-2w=o

w

or

%(5) -2 %:0.

Thus
Qd( 9)’=2dw
w w

‘or

(Q/wP=4ws A®,

which can be written



22086

w=w(dws A%, (A8)

The next integral depends on the sign choice in
(A8). First choose the + sign. Then performing
the integration, we obtain

1, [(mm*}”’-z{
A n (dw+ A2V 4 A

[The constant of integration (1/4)1nB has values
from = to =, though 0<B<w.] This can be in-
verted (after the appropriate substitutions are
made) to give

1
}—lnp+A InB.

_l' (1= w4 y24py
”‘41“[ A% (wr A2 }

which is identical to Eq. (2.3) of Davies and Caplan
(in Ref. 14), The computation proceeds as they
outline to obtain % and ¢. Frehland'* has shown
that this solution is the same as the Weyl solution
(3a).

Suppose now that A=0. We get
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Bua =8 =Fr™'72,

8q: ==7(1 = Ewlnw?r ?D?),
g',:fw In(w?r 2D?),

e ==TE(2 + Ew Inw®r 2D?),

(A9)

where E, D, F are constants. These solutions are
identical to (3b), with a suitable choice of con-
stants. Suppose now that the integration constant
is =A% We obtain

2wr

& = A cos[ In(w?r»4)+C],

—(14 43
See .=g"=F'r faea “2! (A10)
&o¢ =7 { sin[In(w*r*) +C]
+ D cos| In(w*r 4) +C]}.
Zoo is determined by the relation FL + M?=7?,
where A, C, D, F are constants.
Thus the general exterior field is given by (3).
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