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Abstract—Technical developments in computer hardware and
software now make it possible to introduce automation into virtu-
ally all aspects of human-machine systems. Given these technical
capabilities, which system functions should be automated and to
what extent? We outline a model for types and levels of automa-
tion that provides a framework and an objective basis for making
such choices. Appropriate selection is important because automa-
tion does not merely supplant but changes human activity and can
impose new coordination demands on the human operator. We pro-
pose that automation can be applied to four broad classes of func-
tions: 1) information acquisition; 2) information analysis; 3) de-
cision and action selection; and 4) action implementation. Within
each of these types, automation can be applied across a continuum
of levels from low to high, i.e., from fully manual to fully automatic.
A particular system can involve automation of all four types at dif-
ferent levels. The human performance consequences of particular
types and levels of automation constitute primary evaluative cri-
teria for automation design using our model. Secondary evaluative
criteria include automation reliability and the costs of decision/ac-
tion consequences, among others. Examples of recommended types
and levels of automation are provided to illustrate the application
of the model to automation design.

Index Terms—Automation, cognitive engineering, function allo-
cation, human-computer interaction, human factors, human-ma-
chine systems, interface design.

I. INTRODUCTION

CONSIDER the following design problem. A human op-
erator of a complex system provided with a large number

of dynamic information sources must reach a decision relevant
to achieving a system goal efficiently and safely. Examples
include an anesthesiologist given various vital signs who must
decide whether to increase the dosage of a drug to a patient
undergoing surgery; an air defense operator given various
sensor readings who has to decide whether to shoot down a
potentially hostile enemy aircraft; or a securities analyst given
various financial data who must judge whether to buy a large
block of stocks. Technical developments in computer hardware
and software make it possible toautomatemany aspects of the
system, i.e., to have a computer carry out certain functions that
the human operator would normally perform. The automation
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can differ in type and complexity, from simply organizing the
information sources, to integrating them in some summary
fashion, to suggesting decision options that best match the
incoming information, or even to carry out the necessary action.

The system design issue is this: given these technical capabil-
ities, which system functions should be automated and to what
extent? These fundamental questions increasingly drive the de-
sign of many new systems. In this paper we outline a model of
human interaction with automation that provides a framework
for answers to these questions. The human performance con-
sequences of specific types and levels of automation constitute
the primary evaluative criteria for automation design using the
model. Secondary evaluative criteria include automation relia-
bility and the costs of action consequences. (Both these sets of
criteria are described more fully later in this paper). Such a com-
bined approach—distinguishing types and levels of automation
and applying evaluative criteria—can allow the designer to de-
termine what should be automated in a particular system. Be-
cause the impact of the evaluative criteria may differ between
systems, the appropriate types and levels of automation for dif-
ferent systems can vary widely. Our model does not therefore
prescribewhat should and should not be automated in a partic-
ular system. Nevertheless, application of the model provides a
more complete and objective basis for automation design than
do approaches based purely on technological capability or eco-
nomic considerations.

II. A UTOMATION

Machines, especially computers, are now capable of carrying
out many functions that at one time could only be performed
by humans. Machine execution of such functions—or automa-
tion—has also been extended to functions that humans do not
wish to perform, or cannot perform as accurately or reliably as
machines. Technical issues—how particular functions are au-
tomated, and the characteristics of the associated sensors, con-
trols, and software—are major concerns in the development of
automated systems. This is perhaps not surprising given the so-
phistication and ingenuity of design of many such systems (e.g.,
the automatic landing of a jumbo jet, or the docking of two
spacecraft). The economic benefits that automation can provide,
or are perceived to offer, also tend to focus public attention on
the technical capabilities of automation.

In contrast to the voluminous technical literature on automa-
tion, there is a small but growing research base examining the
humancapabilities involved in work with automated systems
[1]–[8]. This work has shown clearly that automation does not
simply supplant human activity but rather changes it, often in
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ways unintended and unanticipated by the designers of automa-
tion [8], and as a result poses new coordination demands on
the human operator [7]. Until recently, however, these findings
have not had much visibility or impact in engineering and de-
sign circles. Examination of human performance issues is es-
pecially important because modern technical capabilities now
force system designers to consider some hard choices regarding
what to automate and to what extent, given that there is little that
cannot be automated. In the present paper we propose a model
for types and levels of automation that provides a framework
and an objective basis for making such choices. Our approach
was guided by the concept of “human-centered automation” [9]
and by a previous analysis of automation in air traffic control
(ATC) [10].1

Let us begin by defining automation, because the term has
been used many different ways. The Oxford English Dictionary
(1989) defines automation as

1) Automatic control of the manufacture of a product
through a number of successive stages;

2) the application of automatic control to any branch of in-
dustry or science;

3) by extension, the use of electronic or mechanical devices
to replace human labor.

The original use of the term implies automatic control (auto-
matic having many alternative definitions suggesting reflexive
action, spontaneity, and independence of outside sources). Au-
tomatic control can be open loop as well as closed loop, and
can refer to electronic as well as mechanical action. Automation
does not simply refer to modernization or technological innova-
tion. For example, updating a computer with a more powerful
system does not necessarily constitute automation, nor does the
replacement of electrical cables with fiber optics. The present
paper is concerned with human performance in automated sys-
tems. We therefore use a definition that emphasizes human-ma-
chine comparison and define automation as a device or system
that accomplishes (partially or fully) a function that was previ-
ously, or conceivably could be, carried out (partially or fully) by
a human operator [8].

III. A M ODEL FORTYPES ANDLEVELS OFAUTOMATION

In our definition, automation refers to the full or partial re-
placement of a function previously carried out by the human
operator. This implies that automation is not all or none, but
can vary across a continuum of levels, from the lowest level of
fully manual performance to the highest level of full automation.
Several levels between these two extremes have been proposed
[11], [12]. Table I shows a 10-point scale, with higher levels rep-
resenting increased autonomy of computer over human action
[10], based on a previously proposed scale [11]. For example, at
a low level 2, several options are provided to the human, but the
system has no further say in which decision is chosen. At level
4, the computer suggests one decision alternative, but the human

1In principle, our approach does not exclude the possibility of full automation,
without any human operator involvement. This might suggest that our model is
not needed if total automation is technically feasible. As we discuss later, how-
ever, full automation does not necessarily eliminate a human role in automated
systems [8].

TABLE I
LEVELS OF AUTOMATION OF DECISION

AND ACTION SELECTION

Fig. 1. Simple four-stage model of human information processing.

retains authority for executing that alternative or choosing an-
other one. At a higher level 6, the system gives the human only
a limited time for a veto before carrying out the decision choice.

Automated systems can operate at specific levels within this
continuum. For example, a conflict detection and resolution
system that notifies an air traffic controller of a conflict in
the flight paths of two aircraft and suggests a resolution
would qualify as level 4 automation. Under level 6 or higher,
the system would automatically execute its own resolution
advisory, unless the controller intervened.

In the proposed model we extend Table I to cover automa-
tion of different types of functions in a human-machine system.
The scale in Table I refers mainly to automation of decision and
action selection, oroutputfunctions of a system. However, au-
tomation may also be applied toinput functions, i.e., to func-
tions that precede decision making and action. In the expansion
of the model, we adopt a simple four-stage view of human in-
formation processing (see Fig. 1).

The first stage refers to the acquisition and registration of
multiple sources of information. This stage includes the posi-
tioning and orienting of sensory receptors, sensory processing,
initial pre-processing of data prior to full perception, and se-
lective attention. The second stage involves conscious percep-
tion, and manipulation of processed and retrieved information
in working memory [13]. This stage also includes cognitive op-
erations such as rehearsal, integration and inference, but these
operations occurprior to the point of decision. The third stage is
where decisions are reached based on such cognitive processing.
The fourth and final stage involves the implementation of a re-
sponse or action consistent with the decision choice.

This four-stage model is almost certainly a gross simplifica-
tion of the many components of human information processing
as discovered by information processing and cognitive psychol-
ogists [14]. The performance of most tasks involves inter-de-
pendent stages that overlap temporally in their processing oper-
ations [15]. The stages can also be considered to be coordinated
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Fig. 2. Levels of automation for independent functions of information
acquisition, information analysis, decision selection, and action
implementation. Examples of systems with different levels of automation
across functional dimensions are also shown.

together in “perception-action” cycles [16] rather than in a strict
serial sequence from stimulus to response. Our goal is not to de-
bate the theoretical structure of the human cognitive system but
to propose a structure that is useful in practice. In this respect,
the conceptualization shown in Fig. 1 provides a simple starting
point with surprisingly far-reaching implications for automation
design. Similar conceptual models have been found to be useful
in deriving human factors recommendations for designing sys-
tems in general [17].

The four-stage model of human information processing has
its equivalent in system functions that can be automated. Ac-
cordingly, we propose that automation can be applied to four
classes of functions (see also [18] and related proposals in [9]
and [19]):

1) information acquisition;
2) information analysis;
3) decision and action selection;
4) action implementation.

Each of these functions can be automated to differing de-
grees, or many levels. The multiple levels of automation of
decision making as shown in Table I can be applied, with
some modification, to the information acquisition, information
analysis, and action implementation stages as well, although
the number of levels will differ between the stages. Fig. 2
provides a schematic of our model of types and levels of
automation. As a convenient shorthand, we refer to the four
types asacquisition, analysis, decision, andactionautomation.
We also occasionally refer jointly to acquisition and analysis
automation asinformationautomation.

A particular system can involve automation of all four dimen-
sions at different levels. Thus, for example, a given system (A)
could be designed to have moderate to high acquisition automa-
tion, low analysis automation, low decision automation, and low
action automation. Another system (B), on the other hand, might
have high levels of automation across all four dimensions.

A. Acquisition Automation

Automation of information acquisition applies to the sensing
and registration of input data. These operations are equivalent to
the first human information processing stage, supporting human
sensory processes. At the lowest level, such automation may
consist of strategies for mechanically moving sensors in order to
scan and observe. For example, the radars used in commercial
ATC acquire information on aircraft by scanning the sky in a
fixed pattern, but in military ATC the radars may “lock on” as a
function of detected targets. Artificial visual and haptic sensors
could also be used with an industrial robot to allow it to find and
grasp an object, thereby providing information about that object.
Moderate levels of automation at this stage may involve organi-
zation of incoming information according to some criteria, e.g.,
a priority list, and highlighting of some part of the information.
For example “electronic flight strips” for air traffic controllers
could list aircraft in terms of priority for handling; and the elec-
tronic data block showing aircraft on the controller’s radar dis-
play (which itself represents an earlier form of acquisition au-
tomation) could be highlighted to indicate a potential problem
with a particular aircraft. Note that both organization and high-
lighting preserve the visibility of the original information (“raw”
data). This is not necessarily the case with a more complex op-
eration at this stage of automation, filtering, in which certain
items of information are exclusively selected and brought to the
operator’s attention. Highlighting and filtering can lead to dif-
fering human performance consequences, as described in a later
section in a discussion of automation reliability.

B. Analysis Automation

Automation of information analysis involves cognitive func-
tions such as working memory and inferential processes. At a
low level, algorithms can be applied to incoming data to allow
for their extrapolation over time, orprediction. For example,
predictor displays have been developed for the cockpit that show
the projected future course of another aircraft in the neighboring
airspace [20], [21]. Trend displays have also been developed for
use in process control (e.g., nuclear power plants), in which a
model of the process is developed and used to show both the cur-
rent and the anticipated future state of the plant [22]. A higher
level of automation at this stage involvesintegration, in which
several input variables are combined into a single value. One
example is to use a display with anemergent perceptual fea-
ture such as a polygon against a background of lines [23]. An-
other example of information analysis automation in ATC is the
converging runway display aid (CRDA), which eliminates the
need for the controller to mentally project the approach path
of one aircraft onto that of another landing on a converging
runway [24]. In both these examples, information integration
serves the purpose of augmenting human operator perception
and cognition. More complex forms of analysis automation in-
clude “information managers” that provide context-dependent
summaries of data to the user [45].

C. Decision Automation

The third stage, decision and action selection, involves se-
lection from among decision alternatives. Automation of this
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stage involves varying levels of augmentation or replacement
of human selection of decision options with machine decision
making, as described previously in Table I. For example ex-
pert systems are designed with conditional logic (i.e., produc-
tion rules) to prescribe a specific decision choice if particular
conditions exist [25]. Examples can be found in medicine [26],
military command and control [27], and in route planning for
pilots to avoid bad weather [28]. As with the analogous de-
cision-making stage in human performance, such systems de-
part from those involved in inference (analysis automation) be-
cause they must make explicit or implicit assumptions about the
costs and values of different possible outcomes of the decision
process, and the nature of these outcomes is uncertain in a prob-
abilistic world. The different levels of automation at this stage
are best defined by the original taxonomy proposed by Sheridan
[11] and shown in Table I, which defines a continuum that pro-
gresses from systems that recommend courses of action, to those
that execute those courses. For example, in comparing proposed
and existing designs for decision automation in avoiding air-
craft–ground collisions, the current ground proximity warning
system (GPWS) is positioned at level 4, in which a single ma-
neuver is recommended, but the pilot can chose to ignore it. But
a proposed automatic ground collision avoidance (auto GCAS)
system for combat aircraft is defined at level 7, in which automa-
tion will automatically take control if the pilot does not [29].

D. Action Automation

The final stage of action implementation refers to the ac-
tual execution of the action choice. Automation of this stage
involves different levels of machine execution of the choice of
action, and typically replaces the hand or voice of the human.
Different levels of action automation may be defined by the rel-
ative amount of manual versus automatic activity in executing
the response. For example, in a photocopier, manual sorting, au-
tomatic sorting, automatic collation, and automatic stapling rep-
resent different levels of action automation that can be chosen
by the user. A somewhat more complex example from ATC is
the automated “handoff,” in which transfer of control of an air-
craft from one airspace sector to another is carried out automat-
ically via a single key press, once the decision has been made
by the controller. On the flight deck, systems are also being
considered in which a flight plan, uplinked from the ground,
can be “autoloaded” into the plane’s flight management com-
puter by a single keypress, rather than through more time-con-
suming manual data entry [30]–[32]. Finally, action automation
includes “agents” that track user interaction with a computer and
execute certain sub-tasks automatically in a contextually-appro-
priate manner [45].

E. Adaptive Automation

Levels of automation across any of these functional types
need not be fixed at the system design stage. Instead, the level
(and perhaps even the type) of automation could be designed to
vary depending on situational demands during operational use.
Context-dependent automation is known as adaptive automation
[33]–[35]. Two examples will illustrate the concept. In an air de-
fense system, the beginning of a “pop-up” weapon delivery se-
quence could lead to the automation at a high level of all aircraft

defensive measures [36]. The automation is adaptive because if
this critical event does not occur, the automation is not invoked
or is set at a low level. In another example, the decision to con-
tinue or abort an aircraft takeoff following an engine malfunc-
tion might be automated at either a low or a high level depending
upon the time criticality of the situation (e.g., how close the air-
craft is to the critical speed V1 for takeoff) [37]. Considerable
empirical research on adaptive automation has been reported in
recent years [38]–[44]. However, we do not describe this work
because it raises several complex ancillary issues, the discussion
of which would take us far afield from the primary purpose of
this paper.

IV. A FRAMEWORK FORAUTOMATION DESIGN

The model we have outlined provides a framework for exam-
ining automation design issues for specific systems. How can
the framework be used? We propose a series of steps and an iter-
ative procedure that can be captured in a flow chart (see Fig. 3).
The first step is to realize that automation is not all-or-none but
can vary by type. One can ask whether automation should be
applied to information acquisition, information analysis, deci-
sion selection, or to action implementation. Automation of one
class of function (e.g., information analysis), of different com-
binations of functions, or of all four functional domains, can be
entertained.

At a subsequent stage of design, one can ask what level of
automation should be applied within each functional domain.
There is probably no simple answer to this question, and trade-
offs between anticipated benefits and costs are likely. However,
the four-dimensional model we have proposed can provide a
guiding framework. As shown in Fig. 3, multiple levels of au-
tomation can be considered for each type of automation. We
propose that any particular level of automation should be eval-
uated by examining its associated human performance conse-
quences. These constitute primary evaluative criteria for levels
of automation. However, human performance is not the only im-
portant factor. Secondary evaluative criteria include automation
reliability and the costs of decision/action consequences2. These
should also be applied to evaluate the feasibility and appropri-
ateness of particular levels of automation. We envisage the ap-
plication of these criteria and their evaluation as constituting a
recursive process (see Fig. 3) that could be made part of an iter-
ative design procedure. We emphasize, however, that the model
should not be treated as a static formula or as a prescription that
decreesa particular type or level of automation. Rather, when
considered in combination with the primary and secondary eval-
uative criteria we have described, the model can provide princi-
pled guidelines for automation design.

We provide examples where, following consideration of these
evaluative criteria, particular levels of automation are recom-
mended for each of the four types or stages of automation. Such
recommendations refer to the appropriateupper boundon the
level of automation, i.e., the maximum, but not necessarily the
required level. In other words, we recommend that automation

2This is not an exhaustive list of criteria. Others that are important include
ease of system integration, efficiency/safety tradeoffs, manufacturing and oper-
ating costs, and liability issues.
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Fig. 3. Flow chart showing application of the model of types and levels of
automation. For each type of automation (acquisition, analysis, decision, and
action), a level of automation between low (manual) and high (full automation)
is chosen. This level is then evaluated by applying the primary evaluative criteria
of human performance consequence, and adjusted if necessary, in an iterative
manner as shown. Secondary evaluative criteria are then also iteratively applied
to adjust the level of automation. The process is then repeated for all four types
of automation.

could be designed to go as high as that particular level, but no
further. But the designer could choose a level lower than this
maximum if necessary, particularly after considering evaluative
criteria other than the ones we discuss (e.g., ease of system in-
tegration, or cost). Thelower boundon the level of automation
can also be determined by applying the same evaluative criteria.
Acceptable system performance may require a certain minimal
level of automation.

A. Human Performance Consequences: Primary Evaluative
Criteria for Automation Design

An important consideration in deciding upon the type and
level of automation in any system design is the evaluation of the
consequences for human operator performance in theresulting
system (i.e., after automation has been implemented). As shown
in Fig. 3, particular types and levels of automation are evalu-
ated by examining their associated human performance conse-
quences. To take a hypothetical example, suppose prior research
has shown (or modeling predicts) that compared to manual op-
eration, both human and system performance are enhanced by

level 4 automation but degraded by automation above level 6.
Application of our framework would determine the lower and
upper bounds of automation to be 4 and 6, respectively. This
initial specification would then be evaluated again with respect
to the secondary evaluative criteria, in an iterative manner, and a
final choice of level within this range could be made (see Fig. 3).

Over the past two decades, researchers have examined a
number of different aspects of human interaction with auto-
mated systems. This research, which has included theoretical
analyzes, laboratory experiments, simulation and modeling,
field studies, and analyzes of real-world incidents and acci-
dents, has found that automation can have both beneficial and
negative effects on human performance [1]–[10], [45]–[48]. We
briefly discuss four human performance areas: mental work-
load, situation awareness, complacency, and skill degradation.

1) Mental Workload: The evidence suggests that well-de-
signed information automation can change human operator
mental workload to a level that is appropriate for the system
tasks to be performed. At the simplest level, organizing infor-
mation sources, e.g., in a priority list, will help the operator in
picking the information relevant to a decision. Data summaries
can also help by eliminating time-consuming search or com-
munication operations. As mentioned previously, the electronic
data block on the air traffic controller’s radar display replaces
the need for the controller to communicate with pilots to
determine the aircraft position and altitude. Other information
automation operations that are beneficial include highlighting,
and integration, in which different information sources are
collated and presented together [10]. Cockpit predictor displays
have also shown that pilot workload decreases and hazard
detection performance improves with the addition of predictive
information concerning the flight path of neighboring aircraft
[21]. Data transformation, for example graphic presentation
of information, can also be beneficial. Transformation and
integration of raw data into a form (graphical or otherwise)
that matches the operator’s representation of system operations
has been found to be a useful design principle [49]. A good
example is the horizontal situation indicator in the cockpit,
which provides the pilot with a graphic display of the projected
flight plan and the current position of the aircraft. This, more
than any other automated system in the cockpit, has been
credited with reducing the workload of the pilot [50].

These results should not be construed to mean that automa-
tion always results in balanced operator workload. Instances of
automationincreasingworkload have also been found [8], [50].
These mostly involve systems in which the automation is diffi-
cult to initiate and engage, thus increasing both cognitive work-
load [51] and if extensive data entry is required, the physical
workload of the operator. Such systems have been referred to
as implementing “clumsy” automation [50]. In general, the ef-
fect of automation on mental workload has been mirrored by
the similarly mixed record of automation in improving human
productivity and efficiency [52].

In addition to unbalanced mental workload, other human per-
formance costs have been linked to particular forms of automa-
tion. We briefly consider three such costs.

2) Situation Awareness:First, automation of deci-
sion-making functions may reduce the operator’s awareness



PARASURAMAN et al.: TYPES AND LEVELS OF HUMAN INTERACTION WITH AUTOMATION 291

of the system and of certain dynamic features of the work
environment. Humans tend to be less aware of changes in en-
vironmental or system states when those changes are under the
control of another agent (whether that agent is automation or
another human) than when they make the changes themselves
[53]–[56]. Also, if a decision aid, expert system, or other type
of decision automation consistently and repeatedly selects and
executes decision choices in a dynamic environment, the human
operator may not be able to sustain a good “picture” of the
information sources in the environment because he or she is not
actively engaged in evaluating the information sources leading
to a decision. This might occur in systems where operators act
as passive decision-makers monitoring a process to determine
when to intervene so as to prevent errors or incidents [53]. Note
that such a cost may occur even as the use of automation of
information analysis, e.g., data integration, may improve the
operator’s situation awareness.

3) Complacency:Second, if automation is highly but not
perfectly reliable in executing decision choices, then the oper-
ator may not monitor the automation and its information sources
and hence fail to detect the occasional times when the automa-
tion fails [57], [58]. This effect of over-trust or “complacency” is
greatest when the operator is engaged in multiple tasks and less
apparent when monitoring the automated system is the only task
that the operator has to perform [58]. The complacency effect in
monitoring has recently been modeled using a connectionist ar-
chitecture [59]: the analysis suggested that complacency reflects
differential learning mechanisms for monitoring under manual
control and automation.

Automation of information analysis can also lead to compla-
cency if the algorithms underlying filtering, prediction, or in-
tegration operations are reliable but not perfectly so. A recent
study of a simulated air-ground targeting task [60] found that a
cue that incorrectly directed attention away from the target led to
poorer detection performance even though pilots were informed
that the cue was not perfectly reliable. Automated cueing (at-
tention guidance) can lead operators to pay less attention to un-
cued areas of a display than is appropriate [61]. Thus compla-
cency-like effects can also be obtained even if automation is ap-
plied to information acquisition and analysis and not just to de-
cision-making. It is not known, however, whether such effects
of unreliable automation apply equally strongly to all stages of
information processing. There is some evidence to indicate that
although complacency can occur with both information automa-
tion and decision automation, its effects on performance are
greater with the latter. In a study of decision aiding, both forms
of automation benefited performance equally when the automa-
tion was perfectly reliable [62]. When the automation was un-
reliable, however, performance suffered much more when un-
reliable recommendations were given by decision automation
than when only incorrect status information was provided by
information automation. This study, however, is the only one to
date that has directly compared the effects of automation unre-
liability at different stages of automation. The issue of whether
automation unreliability has similar negative effects for all four
stages of automation in our model needs further examination.

4) Skill degradation: Third, if the decision-making function
is consistently performed by automation, there will come a time

when the human operator will not be as skilled in performing
that function. There is a large body of research in cognitive
psychology documenting that forgetting and skill decay occur
with disuse [63]. Degradation of cognitive skills may be partic-
ularly important following automation failure. A recent simula-
tion study of human control of a telerobotic arm used for move-
ment of hazardous materials found that following automation
malfunction, performance was superior with an intermediate
level of decision automation compared to higher levels [53].

These potential costs—reduced situation awareness, com-
placency, and skill degradation—collectively demonstrate
that high-level automation can lead to operators exhibiting
“out-of-the-loop” unfamiliarity [47]. All three sources of
vulnerability may pose a threat to safety in the event of system
failure. Automation must therefore be designed to ensure that
such potential human performance costs do not occur. Human
performance costs other than the areas we have discussed
should also be examined. Automation that does not lead to
unbalanced mental workload, reduced situation awareness,
complacency, or skill loss may nevertheless be associated with
other human performance problems that ultimately impact
on system performance, including mode confusion and low
operator trust in automation [1]–[10], [45]–[48].

By considering these human performance consequences, the
relative merits of a specific level of automation can be deter-
mined. However, full application of our model also requires con-
sideration of other criteria. We consider two other secondary
criteria here, automation reliability and the cost of decision and
action outcomes.

B. Secondary Evaluative Criteria

1) Automation Reliability:The benefits of automation on
operator mental workload and situation awareness noted previ-
ously are unlikely to hold if the automation is unreliable. Hence
ensuring high reliability is a critical evaluative criterion in ap-
plying automation. Several procedures for estimating reliability
have been proposed, including fault and event tree analysis [64]
and various methods for software reliability analysis [65]. The
use of these techniques can be helpful, so long as their results
are interpreted cautiously. In particular, what appear to be “hard
numbers,” such as a reliability of .997, or a mean time to failure
of 100 000 hours, must be viewed with some skepticism because
such values represents an estimate of a mean, whereas what is
required is the variance around the mean, which can be consid-
erable. The complexity and size of software in many automated
systems may also preclude comprehensive testing for all pos-
sible faults, particularly those that arise from interaction with
the existing system in which the automated sub-system is placed
[10]. Furthermore, automation reliability cannot always simply
be defined in probabilistic terms. Failures may occur not be-
cause of a predictable (in a statistical sense) malfunction in soft-
ware or hardware, but because the assumptions that are modeled
in the automation by the designer are not met in a given opera-
tional situation [8].

Automation reliability is an important determinant of human
use of automated systems because of its influence on human
trust [66] [67]. Unreliability lowers operator trust and can there-
fore undermine potential system performance benefits of the
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automation. Automated systems may be underutilized or dis-
abled because of mistrust, as in the case of alarm systems that
frequently give false alerts [8]. Signal detection analysis [68]
can be used to determine the alerting threshold that balances
the competing requirements of timely detection (to allow for ef-
fective action), a near-zero missed detection rate (because of
potentially catastrophic consequences—e.g., a collision), and a
low false alert rate [69]. To ensure alert reliability, the proba-
bility that an alarm reflects a true hazardous event must also be
maximized to the extent possible: this can be examined by com-
bining signal detection theory and Bayesian statistics [70].

If information automation can be made extremely reliable,
then pursuing very high levels of information automation can
be justified. Of course, high reliability cannot be guaranteed in
many cases. As mentioned previously, the inherent uncertain na-
ture of information sources, either due to sensor imprecision or
to changes in operator priorities, means that there will always
exist conditions in which the algorithms used by the automation
are inappropriate for those conditions. Nevertheless, informa-
tion acquisition and analysis automation may still be retained at
a relatively high level,as long asthe operator has access to the
raw data (e.g., highlighting, but not filtering), and the operator is
aware of (calibrated to) the level of unreliability, such that some
attention will be allocated to the original information [60], [71].

Although many examples of highly reliable information au-
tomation exist, more sophisticated forms of such automation are
being developed in which complex algorithms are applied to the
raw data in order to predict future events. For example, traffic
displays in the cockpit, and conflict prediction tools for the air
traffic controller both attempt to project the future flight paths
of aircraft. Projecting the future is inherently less than perfectly
reliable, particularly if carried out far enough out in time (e.g.,
20 min. for ATC conflict prediction). Further work needs to be
done to evaluate not only the reliability of the algorithms un-
derlying these predictor systems, but also their susceptibility to
noise in the raw data, and the consequences for human perfor-
mance of information automation unreliability. Some emerging
research is beginning to define the conditions under which unre-
liability does or does not influence human performance. For ex-
ample, two recent studies found that when feedback is provided
as to the occasional errors made by information automation, ap-
propriate calibration of the operator’s trust in the automation
can take place fairly rapidly, and the benefits of information au-
tomation can still be realized [60], [71]. This suggests that the
negative effects of over-trust, noted earlier for decision automa-
tion, may be less apparent for information automation. How-
ever, as discussed previously, only one study has directly com-
pared information and decision automation [62]. Thus the issue
of whether automation unreliability has greater negative effects
for later stages of automation requires further examination.

2) Costs of Decision/Action Outcomes:Our analysis so far
indicates that high levels of automation may be associated with
potential costs of reduced situation awareness, complacency,
and skill degradation. This is not to say that high levels of au-
tomation should not be considered for decision and action au-
tomation. However, assessing the appropriate level of automa-
tion for decision automation requires additional consideration
of the costs associated with decision and action outcomes.

The decisions and associated actions that humans and auto-
mated systems take in most systems vary in the costs that occur
if the actions are incorrect or inappropriate. Many routine ac-
tions have predictable consequences that involve little or no cost
if the actions do not go as planned. Therisk associated with a
decision outcome can be defined as the cost of a error multi-
plied by the probability of that error. For decisions involving
relatively little risk, therefore, out-of-the-loop problems are un-
likely to have much impact, even if there is a complete automa-
tion failure. Such decisions are strong candidates for high-level
automation. In fact, if human operators had to be continually in-
volved in making each of these relatively simple decisions, they
could be so overloaded as to prevent them from carrying out
other more important functions.

Note that high-level automation of decision selection and ac-
tion may also be justified in highly time-critical situations in
which there is insufficient time for a human operator to respond
and take appropriate action. For example, if certain serious prob-
lems are detected in the reactor of a nuclear power plant, control
rods are automatically lowered into the core to turn off the re-
actor, without any human operator intervention. Bypassing the
human operator is justified in this case because the operator
cannot reliably respond in time to avoid an accident. As pre-
viously discussed, automating the decision to abort or continue
the takeoff of an aircraft when an engine malfunction occurs too
near in time to the critical V1 speed for appropriate pilot action
would represent another qualifying example [37], as would the
decision to take control of the aircraft if a fighter aircraft is about
to run into the ground [29].

It is also appropriate to consider high-level automation for
decisions involving high risk in situations in which human op-
erators have time to respond. In this case, the cost of adverse
consequences define major evaluative criteria for determining
appropriate levels of automation. The examples in anesthesi-
ology, air defense, and the stock market with which we began
this paper qualify as involving high-cost decisions. System de-
signers can certainlyconsiderimplementing decision automa-
tion above low to moderate levels for such systems, e.g., at
levels at or above level 6 in Table I, in which computer sys-
tems are given autonomy over decision making. This would be
appropriate if the human operator is not required to intervene or
manage the system in the event of automation failure. In fact,
in this case even full automation (Level 10) could be justified3 .
However, if the human operator is ever expected under abnormal
circumstances to take over control, then our analysis suggests
that high levels of decision automation may not be suitable be-
cause of the documented human performance costs associated
with such automation. The burden of proof should then be on
the designer to show that their design will not lead to the prob-
lems of loss of situation awareness, complacency, and skill loss
that we have discussed.

3Full automation requires highly reliable error handling capabilities and the
ability to deal effectively and quickly with a potentially large number of anoma-
lous situations. In addition to requiring the technical capability to deal with all
types of known errors, full automation without human monitoring also assumes
the ability to handle unforeseen faults and events. This requirement currently
strains the ability of most intelligent fault-management systems.
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A system designer may object to the recommendation that
decision automation should not exceed a moderate level for
high-risk situations on the grounds that if information automa-
tion can be made highly reliable, then decision automation
can also be, so why not implement high-level automation for
this function too? The answer is that although decision-aiding
systems can be engineered to be highly reliable for many
known conditions, the “noisiness” of the real world, with
unplanned variations in operating conditions, unexpected
or erratic behavior of other system components or human
operators, system malfunctions, etc., as well as the inherent
unreliability of predicting the future, will mean that there will
always be a set of conditions under which the automation
will reach an incorrect decision. If under such conditions of
system failure the human operator is required to intervene and
salvage the situation, the problem of out-the-loop unfamiliarity
may prevent the operator from intervening successfully or in a
timely manner [8], [47], [55].

Finally, the inter-dependence of the decision automation and
action automation dimensions for high-risk functions should
be noted. A system could be designed to have high-level deci-
sion automation, in which decision choices are selected without
human involvement or veto power. For example, currently an
air traffic controller issues a verbal clearance to a pilot, who ac-
knowledges and then executes a flight maneuver consistent with
the clearance. With the development of two-way electronic data
link communications between aircraft and ATC, however, the
clearance (which itself may be a computer choice) could be up-
linked and loaded in the aircraft’s flight management system
(FMS) automatically. The aircraft could then carry out the ma-
neuver, without pilot intervention. If the consequences of an
incorrect or inappropriate decision are great, however, then it
would be prudent to require that the action automation level be
sufficiently low so that the (automated) decision choice is exe-
cuted by the pilot (i.e., by actively pressing a button that “loads”
the proposed flight plan into the FMS). Giving the pilot the op-
portunity to review the decision choice and forcing a conscious
overt action, provides an “error-trapping” mechanism that can
guard against mindless acquiescence in computer-generated so-
lutions that are not contextually appropriate. Note that we are
not implying that some degree of human action isalwaysneeded
for the purposes of error trapping. The need only arises at the last
action implementation stage if the previous decision selection
stage has been highly automated. In this situation having some
human involvement at the action stage provides a “last chance
opportunity” to trap errors.

Recent studies have examined the relative effects of low and
high levels of action automation on use of the FMS [30], [31].
Use of a lower level of automation of action selection—in en-
tering data-linked flight information into the flight management
computer—allowed for more errors of decision making automa-
tion to be caught, than a higher level, in which data entry was ac-
complished by pressing a single “accept” button. Of course this
advantage for error trapping must be balanced against the added
workload, and possible error source of less automated (manual)
data entry [32]. Certainly cumbersome and clumsy data entry
remains a viable candidate for automation. But to reiterate the
linkage between decision and action automation, if high au-

tomation is selected for the latter, then designers should resist
the temptation for high automation levels of decision making.

C. Application Example

Our multi-stage model of human-automation interaction can
be applied to specific systems in conjunction with a considera-
tion of evaluative criteria, of which we have discussed three in
this paper—human performance consequences, automation re-
liability, and the costs of decision/action consequences. To fur-
ther illustrate application of the model, we briefly consider its
use in the design of future ATC systems, based on analyses pre-
viously presented in [10].

ATC systems are being redesigned because the volume of air
traffic is likely to double over the next two decades, posing a
significant threat to handling capacity [72]. One alternative is
Free Flight [73], which would allow user-preferred routing and
free maneuvering, among other changes aimed at minimizing
ATC restrictions [74]. Another approach is to supplement the
current system of ground-based ATC with additional automa-
tion to support air traffic controllers in the management of an
increasingly dense airspace [10]. Elements of both alternatives
are likely to be implemented, but the increasing complexity of
future airspace will require automation tools to support both air
traffic controllers and pilots. Automation tools will be needed
for planning, traffic management, conflict detection and resolu-
tion, etc.

Application of our model suggests the following recommen-
dations for future ATC automation. (We again emphasize that
each recommendation represents an upper bound or maximum
level of automation, not a required level.) High levels of infor-
mation acquisition and analysis automation can be pursued and
implemented if the resulting system can be shown to be reliable.
This recommendation is represented by the arrows on the left
part of the scales in Fig. 4. Several examples of such automation
(such as CRDA) already exist and others are being developed.
For decision and action automation, however, high levels should
be implemented only for low-risk situations (indicated by the
upper arrow in the middle scale in Fig. 4). For all other situ-
ations, the level of decision automation should not exceed the
level of the computer suggesting (but not executing) a preferred
alternative to the controller (indicated by the lower arrow). For
example, in risky situations, as when a climb clearance has to
be issued to resolve a crossing conflict in dense airspace, con-
flict resolution automation can provide alternatives to the con-
troller but should not select one of them without controller in-
volvement. If relatively high-level decision automation is im-
plemented in risky situations, however, then we recommend that
some degree of human action be retained by having a moderate
level of action automation. As discussed previously, this allows
for last-stage error trapping. This recommendation is indicated
by the right-most arrow in Fig. 4.

V. ALTERNATIVES, LIMITATIONS, AND EXTENSIONS

Before concluding, we briefly consider two alternative ap-
proaches to the implementation of automation, and discuss some
limitations and extensions of our framework. One alternative to
our approach is to automate everything that one can. This can be
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Fig. 4. Recommended types and levels for future ATC systems, consistent
with three evaluative criteria-human performance consequences, automation
reliability, and costs of actions.

a viable option and to some extent has been the default strategy
used in most systems that have been automated to date, often be-
cause increasing efficiency or reducing costs are major driving
forces for automation. However, a problem with this strategy is
that the human operator is left with functions that the designer
finds hard, expensive, or impossible to automate (until a clev-
erer designer comes around). This approach therefore defines
the human operator’s roles and responsibilities in terms of the
automation [8]. Designers automate every subsystem that leads
to an economic benefit for that subsystem and leave the operator
to manage the rest. Technical capability or low cost are valid
reasons for automation, given that there is no detrimental im-
pact on human performance in theresulting wholesystem, but
this is not always the case. The sum of subsystem optimizations
does not typically lead to whole system optimization. A second
alternative is to use task allocation methods to match human and
machine capabilities, as in the Fitts list approach [75]. That is,
tasks that are putatively performed better by machines should
be automated, whereas those that humans do better should not.
Unfortunately, although function allocation methods are useful
in principle, it has proved difficult in practice to use procedures
such as the Fitts List to determine which functions should be
automated in a system [76].

Some limitations of our model for types and levels of automa-
tion should also be noted. First, while we used Sheridan’s 10
levels of automation [11] for decision automation, we did not
explicitly specify the number of levels for the other types of au-
tomation, e.g., information automation. One reason is that while
there is extensive research pointing to the benefits of informa-
tion automation vs. no automation (e.g., as in predictor displays
for CDTI, see [20], [21]), there is as yet little empirical work
explicitly comparing the effects on human performance ofdif-
ferent levelsof automation for information acquisition and anal-
ysis. Another reason is that any proposed taxonomy is likely to
be superceded by technological developments in methods for
information integration and presentation, so that new levels will
need to be specified.

Second, in proposing human performance benefits and
costs as evaluative criteria for determining appropriate types

and levels of automation, we did not discuss how the relative
benefits and costs should be weighed. Should the benefit (of
a particular automation level) of balanced mental workload
be outweighed by the cost of reduced situation awareness or
increased likelihood of complacency? What is the relative
weighting of the human performance costs we discussed in
this paper, as well as of those we did not? Similarly, which
is the most important of the several secondary evaluative
criteria we have listed, such as automation reliability, costs of
action outcomes, ease of system integration, efficiency/safety
tradeoffs, manufacturing and operating costs, and liability?
These are difficult issues to which there are no simple answers.
Of course, as a qualitative model our approach is meant to
provide a framework for design, not a set of quantitative
methods. Nevertheless, one way forward might be to examine
the possibility of formalizing the model. More generally, it
would be desirable to have quantitative models that could
inform automation design for human-machine systems [77].
Several computational models of human-automation interac-
tion have been put forward very recently, including models
based on expected value statistics [37], [78], task-load models
[79], cognitive-system models [80], and a model based on
state-transition networks [81] (for a recent review of these
models, see [82]). As these and related models mature and are
validated, it may be possible to improve automation design
by supplementing the qualitative analysis presented here with
quantitative modeling.

VI. CONCLUSIONS

Automation design is not an exact science. However, nei-
ther does it belong in the realm of the creative arts, with suc-
cessful design dependent upon the vision and brilliance of indi-
vidual creative designers. (Although such qualities can certainly
help the “look and feel” and marketability of the automated
system—see [83]). Rather, automation design can be guided by
the four-stage model of human-automation interaction we have
proposed, along with the consideration of several evaluative cri-
teria. We do not claim that our model offers comprehensive de-
sign principles but a simple guide. The model can be used as a
starting point for considering what types and levels of automa-
tion should be implemented in a particular system. The model
also provides a framework within which important issues rel-
evant to automation design may be profitably explored. Ulti-
mately, successful automation design will depend upon the sat-
isfactory resolution of these and other issues.
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