
SOUTH ASIAN LANGUAGE REVIEW
VOL.XIII, Nos 1&2, January-June,2003.

A Query Answering System for E-Learning Hindi
Documents

Praveen Kumar, Shrikant Kashyap, Ankush Mittal

Indian Institute of Technology, Roorkee, India
{pkmaxuec,shrikuec,ankumfec}@iitr.ernet.in

 Sumit Gupta

 MVGR College of Engineering, A. P., India
sumitfec@mail.com

Abstract. To empower the general mass through access to information and
knowledge, organized efforts are being made to develop relevant content in
local languages and provide local language capabilities to utility software. We
have developed a Question Answering (QA) System for Hindi documents that
would be relevant for masses using Hindi as primary language of education.
The user should be able to access information from E-learning documents in a
user friendly way, that is by questioning the system in their native language
Hindi and the system will return the intended answer (also in Hindi) by
searching in context from the repository of Hindi documents. The language
constructs, query structure, common words, etc. are completely different in
Hindi as compared to English. A novel strategy, in addition to conventional
search and NLP techniques, was used to construct the Hindi QA system. The
focus is on context based retrieval of information. For this purpose we
implemented a Hindi search engine that works on locality-based similarity
heuristics to retrieve relevant passages from the collection. It also incorporates
language analysis modules like stemmer and morphological analyzer as well
as self constructed lexical database of synonyms. The experimental results
over corpus of two important domains of agriculture and science show
effectiveness of our approach.

1. Introduction

With the web content being written in different languages of the world, it has
become important to have tools that can retrieve information from the documents
written in different languages. In the context of Indian languages, Hindi language has
been given much emphasis leading to the development of significant number of
Hindi documents. In fact, of the top 100 languages in the world, English occupies the
top position, with Hindi coming fifth.

E-learning is a novel method for presenting information to students for the
purpose of education. The government has envisioned providing primary and
secondary education through E-learning. With computer education facilities being
set up in secondary schools at block level throughout the country, the need is to give
local language capabilities to utility softwares to cater the needs of diverse
population of users [1]. A general student is not an expert in linguistics, statistics, or
computer science but he has some expertise in his native language and prefers their
native language for computer interaction. A majority of school-going children pursue
their education in regional languages, among which Hindi language stands out to be
most prominent. Schools are being provided with computer education facilities and
internet connectivity so that vast educational resources already available and to be
developed by schools themselves could be shared amongst them. Searching for

70 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

topics through table-of-contents or index pages can be tedious and impractical on
account of large volume of information present in these domains. For instance, a user
may be interested in looking for an answer to a question like “

”. The complete answer may be in
more than one passage that will be distributed throughout the corpus. So manual
searching will be very cumbersome in this case. To effectively realize this
foundational and organized setup of information resources, an effective information
retrieval system is required.

As information needs are naturally represented as questions, a good solution is to
have a QA system that provides direct answers rather than a ranked list of documents
(as done by most search engines) to questions posed by the user by consulting its
knowledge base. We have developed a QA System targeted at such students for
access to information in E-learning documents (in Hindi) in a most user friendly
way, that is by allowing them to pose question in Hindi and the system will return
the intended answer by searching in context from the repository of Hindi documents.
It is different from the keyword based search engines that match only patterns.
Searching for a particular concept by keyword or phrase matching is insufficient
because in many cases like for the question “ ?” (How to
increase the production of wheat?) Words like “ ” or “ ” may be there for
“ ” or “ ” in place of “ ” etc. Thus semantically related terms should be
identified during search which is not done in normal search engine.

The system can supplement various Information and Communication Technology
(ICT) applications aimed at benefiting general mass who are not English-literate.
ICT has the potential of getting vast amounts of information to rural populations in a
more timely, comprehensive and cost-effective manner. It can penetrate under-
serviced areas and enhance education through distance learning. It can also facilitate
development of relevant local content and faster delivery of information on technical
assistance and basic human needs such as food, agriculture, health and water [2]. The
internet can also enable the remotest village to access regular and reliable
information from a global library (i.e., the web). Organized efforts are being made to
empower the general mass through access to information and knowledge. In face of
such a situation, a Hindi QA system becomes a necessary supplement for various
ICT applications

2. Literature Review and Background

2.1 Related Work

Most of the research and development in multilingual question answering has been
done in the development of cross–language information management systems.
Research work has been done in Surprise Language Exercise (SLE) within the
TIDES program where viability of Hindi-English Cross Lingual Question-
Answering (CLQA) has been shown by [3] by developing a basic system. It accepts
questions in English, finds candidate answers in Hindi newspapers, and translates the
answer candidates into English along with the context surrounding each answer.
However it is again aimed for English speaking users.

Another approach taken by some researchers at IIT Kanpur, India is that if source
text is given in several languages, one can answer queries in some other language,
without translating the sources into the language of the questioner [4]. Their
approach is to convert queries and the documents into an intermediate representation,
an inter–lingua called “the Universal Networking Language” (UNL). UNL is a

A Query Answering System for E-learning Hindi Documents

71

computer language suitable to represent contents. It represents the meaning of a text
by building a (hyper) graph whose nodes are concepts and whose arcs are relations
between concepts. They have attempted to demonstrate this kind of multilingual
Question-Answering for source text in English and questions posed in Hindi and
English. However the performance of the system, for any language, critically
depends on the effectiveness of the enconversion (NL to Interlingua) and the de-
conversion (Interlingua to NL). Venakata and Badodekar [5] discusses an
implementation of a multilingual Question-to-Query conversion system in their
attempt of integrating two independent systems called aAQUA and AgroExplorer. It
converts English, Marathi and Hindi questions to syntactically correct and
meaningful queries. AgroExplorer [6] is a meaning-based, multilingual search engine
that considers the semantics of a query using UNL. aAQUA is an online
multilingual, multimedia question and answer based community forum for
disseminating information from and to the grassroots of the Indian community [7].

2.2 Background on Question Answering

There are many trends in question answering but in this paper, we only briefly
introduce the systems most closely related to our system strategy. Specific research
in the area of question answering has been prompted in the last few years in
particular by the Question Answering track of the Text REtrieval Conference
(TREC-QA) competitions [8]. Most of the QA systems that have been developed
such as Mulder [9], AskJeeves [10], Webclopaedia [11] and LCC [12] treat the web
as a collection of documents, that is, deal with open-domain question answering. The
commercial search engine known as AskJeeves responds to natural-language
questions but its recall is very limited because it uses its knowledge base (which is at
least partially hand constructed) to answer questions and updates the knowledge base
when asked a question which it has not encountered before.

Another QA system, MULDER is claimed to be the first general-purpose, fully-
automated question-answering system available on the web. MULDER's
architecture, relies on multiple search-engine queries, natural-language parsing, and
a novel voting procedure to yield reliable answers (recall of same level as Google).
However, the difficulty of Natural Language Processing (NLP) has limited their
ability to give accurate answer to questions that are quite specific to a domain. In
addition to the traditional difficulties associated with syntactic analysis, there
remains many other problems to be solved, e.g., semantic interpretation, ambiguity
resolution, discourse modelling, inference, common sense, etc.

2.3 Unicode Standard

Unicode Standard, by the California-based Unicode Consortium, is the universal
character-encoding standard used for the representation of text for computer
procession [13]. The World Wide Web Consortium (W3C) has recognized this fact
and now expects all new RFCs (Request for Comments) use Unicode for text. Many
other products and standards now require or allow use of Unicode; for example,
XML, HTML, Microsoft JScript, Java, Perl, Microsoft C#, and Microsoft Visual
Studio (C++ and Basic). We have developed our QA system using Microsoft Visual
C++ as it provides good support (such as data types and string handling routines) to
handle Unicode text.

The Unicode Standard, unlike ASCII, assigns each character a unique 16-bit
value, which means that it can represent 65536 unique characters. Each of these 16-
bit numbers is called a code value and, when referred to in text, is listed in

72 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

hexadecimal form following the prefix "U". For example the code value U+0041 is
the hexadecimal number 0041(decimal 65). It represents the character "A" in the
Unicode Standard. Each character is also assigned a unique name that specifies it and
no other. For example, U+0041 is assigned the character name Latin character "A",
U+0915 is assigned the character name Devanagari letter "KA" that is ‘ ’. The
Unicode Standard 2.0 defines codes for characters used in the major languages
written today. The coding starts at U+0000 with the standard ASCII characters, and
continues with Greek, Cyrillic, Hebrew, Arabic, Devanagari, Bengali, Gurumukhi,
Gujrati, Oriya, Tamil, Telegu, Kannada, Malayalam, Thai, Lao, Georgian, Tibetan,
Japanese Kana, the complete set of modern Hangul, and a unified set of
Chinese/Japanese/Korean (CJK) ideographs. The Unicode Standard does not define
glyph images. The Standard defines how characters are interpreted, not how glyphs
are rendered. The Unicode Standard specifies the order of characters used to create a
composite character. The base character comes first, followed by one of more non-
spacing marks. If text elements encoded with more than one non-spacing mark, the
order in which the non-spacing marks are stored is not important if the marks do not
interact typographically.

3. The Methodology and Architecture

The language constructs, query structure, common words, etc. are completely
different in Hindi as compared to English. In the absence of a parser and a POS (Part
of speech) tagger for Hindi finding the syntactic structure of a question is difficult.
The task becomes more challenging as Hindi Wordnet is not released till our
development period and the available morphological analyzer does not give
satisfactory results. For converting the question to query, we rely on an approach of
deleting words and use self constructed lexical database of synonyms to extend the
query with semantically related terms. For improving the performance of search, we
also implement a light weight stemmer for Hindi. By experimentation and analysis of
question types, we developed case-based rules to classify the question. This
classification helps in the later part of answer selection to put selectional restrictions
to check which candidate answers satisfy the semantic constraints.

The architecture for the proposed QA System is shown in Figure 1. The user
begins by configuring the system to the particular course domain by triggering the
Automatic Entity Generator module which recognizes domain specific entities from
that particular course documents. The question submitted by the user is classified in
Question Classification to identify its case. The question is then parsed to separate
out important Keywords by identifying the domain entities (based on the domain
knowledge) and filtering out Stop-words. Subsequently Query formulation translates
the question into a set of queries that is given as keyword input to the Retrieval
engine. The engine returns top passages after weighting and ranking them on basis of
locality. Finally Answer selection is done by further extensive passage analysis and
presented to user.

A Query Answering System for E-learning Hindi Documents

73

Figure 1. Architecture of the proposed QA system for Hindi

3.1 Automatic Entity Generator

This module tries to recognize the entities in a particular course (domain specific
entity) to which the user wants to pose questions. This configures the system
automatically to any type of course domain. The system administrator on the server
providing distance learning (or the user who wants to search answer from documents
present in his local system) gives the directory of files as input. The module then
searches through the Main heading and sub-headings of the text files, recognizing
them through their font size (larger than usual text size) and thus finds out the
domain-specific entities. Word filtering is done to remove any elementary words. If
no elementary words are found in the string then the whole string is also taken as an
entity. The output is stored in the Entity file for subsequent use. This file contains
domain specific entities.

3.2 Question Classification

Question classification is done by matching the patterns of interrogative words.

Words like etc are identified and questions are then put into the

respective categories as described below.
 Questions which require reasoning and thus long explanations are identified by

keywords like

 Questions that ask for numerical data like .

 Questions that request for or indicated certain events like .

 Questions which require persons as answer (, ,) or place

(,).

74 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

 Questions that need answers from different passages like - , - ,

.

 Rest of the questions is put in this category and answers are identified on the
basis of domain-specific entities or question-specific keywords as mentioned in
the question.

This module basically helps in selection of appropriate answers from the results of
retrieval engine, thus proving an important improvement over normal search engines.

3.3 Question Parsing

This module of parsing the question has been implemented at very elementary level
in absence of a POS tagger for Hindi. In this module we find out the domain-specific
and question-specific entities after removing the Stop Words. We also extract the
longest phrase from the question which can then be used during the answer selection
process to help find a more suitable answer to the question posed.

Stop Word Removal: In some languages such as English, functional words (e.g.
"the", "a", "and", "that") are useless for indexing purposes. Similarly there are many
words (as shown in Table 1) occurring in Hindi as well. These words occur in almost
every document of the language, and therefore do not help in distinguishing between
documents that are about different topics. For this reason, these functional words are
removed and are not indexed. The process of removing these functional words is
called stop words removal, and the functional words being removed are called stop
words.

Table 1. Examples of removed words

3.4 Query Formulation

The query formulation module transforms the question into a query which is
eventually fed into the retrieval engine to extract answers. The system uses the entity
file to recognize the domain specific entities in the question. During initialization,
the system reads from default file (which can be set to a particular set of documents
by the user) and constructs a hash table of these entities. Individual words in the
question are compared from this table to identify the entities. These keywords are
considered most important and are given the maximum weightage of 2. Stop words
are given the weightage 0. Rest of the words in the question is given the weightage 1.

Query Expansion: Extending the query through query expansion enhances the
search process by including semantically related terms and thus retrieves texts in
which the query terms do not specifically appear [12]. For example words like
and , and , are used interchangeably. So inclusion of these synonyms

A Query Answering System for E-learning Hindi Documents

75

along with the keywords can help in better extraction of results. Due to non
availability of Hindi Wordnet we had to construct a very limited lexical database of
synonyms that served our experimentation purpose. For each word we have included
two closest possible synonyms after consulting Hindi grammar books. With the
Hindi Wordnet incorporated in the system, the semantic structure of the question can
be tapped more effectively.

Only those query terms are expanded which do not occur as domain entities.
Gaining from this knowledge, query evaluation is no longer restrained to query terms
submitted by users but embodies synonymous or semantically related terms.
However, caution is taken as these newly found terms are not as reliable as the initial
terms obtained from users. Only closely related terms are taken that have direct
relation with either the query term itself or with the words that are directly related to
the query term. An appropriate weighting scheme with weight =0.5 allows a smooth
integration of these related terms by reducing their influence over the query.

3.5 Answer Extraction

To extract passages from the collection of documents an information retrieval engine
is needed which can analyze the keywords and passages in detail. The answers to a
query are locations in the text where there is local similarity to the query, and the
similarity is assessed by a mechanism that employs as one of its parameters the
distance between keywords [14]. For this purpose it has been found that the locality-
based similarity heuristic (in which every word location in each document is scored)
provides good retrieval effectiveness because of the following features:
 The focus is on local context by considering top n ranked passages, instead of the

top n documents.
 Each term has a certain scope, where its importance decreases with respect to the

distance from that term
 Similarity is computed as the sum of weighted overlaps between terms. It is based

on intuitive notion that the distance between terms is indicative of some semantics
of the sentence.

 Example Text Table
Document Example Text

1

2

3

76 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

 A word Level Inverted Page List

Number Words Position (Document : Word)

1 (1:3), (2:2), (4:1), (4:7)

2 (1:3), (2:3)

3 (1:7),(1:14),(1:26),(3:1)

4 (1:1),(1:27),(2:8) (3:9), (3:12)

…. …. ………..

Figure 2: An example of construction of word-level inverted page list.

 The first table shows some sample texts from three different documents

and second table shows the corresponding page list.

We used an available information retrieval engine SEFT (search for text) for

English that uses this approach and modified it for searching in Hindi text. The
implementation code has to be made Unicode complaint by changing the data types
and string handling routines as specified in [15] to handle Hindi Unicode characters.
The searching technique remains the same as described in [14]. The entire retrieval
process is carried out using a word-level inverted index using all of the terms in the
automatically generated query as shown in Figure 2. The text collection is considered
to be a sequence of words rather than a collection of documents, and query term
occurrences within the collection are presumed to exert an influence over a
neighborhood of nearby words. Then, supposing that the influence from separate
query terms is additive, the contribution of each occurrence of each query term is
summed to arrive at a similarity score for any particular location in any document in
the collection.

The contribution function Ct is then defined in terms of l, the location of the query
term (as an integral word number); x, the word location at which we seek to calculate
a contribution; ht, the peak height assigned to the term, assumed to occur at the word
position occupied by the term in question; and st, the one-sided spread of the term.
The parameters that are used for scoring the passages are:

 N: total number of terms in the collection
 Term frequency (ft): how often does term t appears
 Fq,t : Within query frequency of the term
 Inverse document frequency (idf): log (N/ ft)
 Height (ht): The height assigned to a term t is a monotonic function of the

term’s scarcity in the collection.
 ht = Fq,t * log (N/ ft)
 d = |x – l| is the distance in words between the term in question and the location

at which its influence is being evaluated. In each case the value of Ct (x, l) is
defined to be zero when |x - l| > st

Ct (x , l) = ht * √(1 - (d / st)
2)

The top ranked passages (window surrounding the location) is returned after
scoring all the locations of the query term according to the weightage assigned to
them. The implementation also handles Stemming (to match up a keyword with any

A Query Answering System for E-learning Hindi Documents

77

of its other grammatical forms) of word while searching the word and indexing them
into the inverted page list.

Stemming of Hindi words:
Stemming is an operation that conflates morphologically similar terms into a single
term without doing complete morphological analysis. Stemming is used in
information retrieval systems to improve performance. Additionally, this operation
reduces the number of terms in the information retrieval system, thus decreasing the
size of the index files. In many languages, including Hindi and English, a word may
exist in a number of morphological variants. For example, the English word compute
also exists in other morphological variants such as ‘computing’, ‘computed’,

‘computers’ etc. Similarly the word can also exist in other morphological

variant such as , etc. While these morphological variants are different

word forms, they represent the same concept. For indexing purposes it is desirable to
combine these morphological variants into the same canonical form. This process is
called word stemming and this canonical form is called root-word or base-word.

We implemented a lightweight stemmer for Hindi, which conflates terms by suffix
removal based on the work given in [16]. The complete suffix list is shown in table
2. The Stemmer is implemented by simply removing from each word the longest
possible suffix from this list.

Table 2. Suffix list

78 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

3.6 Answer Selection and Presentation

The top ranked passages which are returned are answer candidates. These are further
processed to select those answer passages that will be presented to the user. The
system processes the passages according to the classification done in question
classification. If the question was classified in the second or third category requiring
any date or numerical expression then the system searches for these terms in the
passages to match the answer type. For questions of other categories, we construct a
list of related words that appear normally while answering specific type of questions.

For example, the questions belonging to the fifth category having words like

in them may have related words like or in the answer passage. The

answer passages are re-ranked using this information. Top three answers are
presented along with the links to the specific location in relevant document as shown
in Figure 3.

Figure 3: Output of the system: The answer was obtained in the first

passage with full confidence (100%) giving also the information and link to
the specific location in the relevant document

A Query Answering System for E-learning Hindi Documents

79

4. Experiments and Results

In order to perform experiment on the system, we took the corpus of Hindi Unicode
documents available on the site of LTRC, IIIT Hyderabad, India. We selected two
technical domains of agriculture and science and picked up those documents from
the corpus that belong to these domains. For the purpose of testing, 30 questions
were picked from a survey done on the students who read these files and 30
questions were formed by us to test the different aspects of implementation. The
questions covered a wide range of topics on agriculture and science. They were of
different types, complexity and difficulty. Questions were not only looking for facts
rather they were explanation seeking. The result is shown in table 3.

Table 3: Experimental Results of System on our data set

Type 1: Survey questions; Type 2: Our questions

The main goal of our experiments was to determine the efficiency of the system to
locate the exact answers in either top 3 answer passages or direct the user to the
relevant documents containing the answer (nearby to the retrieved passages). Three
answers per query were extracted. The retrieval speed of QA system including
information retrieval is fast enough to be negligible. The results of the questions
were classified in six different categories as shown in the table 3. Questions that
were answered in first, second and third passages are shown in the column Answer I,
Answer II and Answer III respectively. Under the column Directs, those questions
were included which were not answered directly in the retrieved passages but
directed the user to the document containing the answer. Some questions which
could not be answered by the system were included under the column Failed.

The system directly answered 75% of the questions in the three retrieved passages.
For nearly 12% of the questions, the user was directed to the relevant documents.
Finally the system failed to get the right answer in 13 % of the questions. Amongst
these, nearly half of the questions were not within the purview of the material.
Failure can be attributed to lack of clear boundary between classes of classification
and inadequate use of syntactic information. The failure cases can be solved by
extending the resources and classification rules.

5. Conclusions and Future Work

This paper presents a Hindi QA system that can be targeted to any restricted
domain catering to Hindi documents in particular and uses NLP techniques to extract

Data set

domain

Question

type

Questions

(Q)

Answer

(I)

Answer

(II)

Answer

(III)

Directs Failed Accuracy

(I+II+III)/

Q (%)

Type 1 15 5 3 2 2 3 66.7 Agriculture

Type 2 15 5 3 4 1 2 80.0

Type 1 15 6 4 1 2 2 73.3 Science

Type 2 15 5 6 1 2 1 80.0

Overall 60 21 16 8 7 8 75.0

80 Praveen Kumar, Shrikant Kashyap, Ankush Mittal

answer passages. The implementation is done in Visual C++ and it tightly integrates
Unicode compliant search engine with the various NLP modules build by us viz.
light-weight parser, question classification module, query formulation module etc.
Using the concept of entities the system is fully automated to work in any specific
domain. The system is based on searching in context by using similarity heuristic
and utilizes syntactic and partial semantic information. This achieves good accuracy
in results.

The future work may include employing better methods for extracting semantic
information to increase prediction accuracy. Hindi Wordnet and POS tagger can be
used for better tapping of syntactic and semantic structure of the question. The
current implementation utilizes only partial semantic information during answer
extraction and selection. When successfully developed for courses written in Hindi
language, it can then be generalized to cater to various fields like quizzing the
websites for information as varied as the best seed available for planting cotton
plants to the latest on government policies. It can go a long way in helping the needs
of the villagers who are not English-literate. The system can be made multilingual by
keeping the language independent modules of the architecture Unicode complaint
and implementing the language specific modules like stemmer, question
classification module and the graphical user interface for different languages like
Marathi, Punjabi or any other language to be targeted.

References

[1] National IT Mission-Background Information
 http://www.mit.gov.in/E-rural/ (last accessed 30th April 2005)
[2] Bhatnagar, S.C., Subhash. Information and Communication Technology in Rural
 Development: Case Studies from India. World Bank Institute (WBI) Working Papers,
 WBI Publications, 2000, Pp. 1-13.
[3] Sekine, S., Grishman, R. Hindi-English Cross-Lingual Question-Answering System.

ACM Transactions on Asian Language Information Processing, Vol. 2, No. 3,
September 2003, Pages 181-192.

[4] Shukla, P., Mukerjee, A., Raina, A. "Towards a Language Independent Encoding of
Documents: A Novel Approach to Multilingual Question Answering." In Proceedings of the
1st International Workshop on Natural Language Understanding and Cognitive

 Science, NLUCS 2004, Porto, Portugal, April 2004, pp. 116-125
[5] Venkata S.R.S.K, Badodekar, S., Bhattacharyya, P. Question-to-Query Conversion in the

Context of a Meaning-based, Multilingual Search Engine. Symposium on Indian
Morphology, Phonology and Language Engineering, IIT Kharagpur, February, 2005

[6] Sarvjeet Singh, M. Surve and P. Bhattacharyya. Agro-Explorer: A Meaning based
Multilingual Search Engine. International Conference on Digital Libraries (ICDL), New
Delhi, India, Feb 2004

[7] Ramamritham, K., Bahuman, A., Kumar, R., Chand, A., Duttagupta, S., Kumar
 G.V.R., Rao, C. aAQUA - A Multilingual, Multimedia Forum for the community.
 IEEE International Conference on Multimedia and Expo,2004.
[8] Voorhees, E.M. & Tice, D.M. Implementing Question Answering Evaluation. In
 Proceedings of LREC’2000 Workshop on Using Evaluation within HLT Programs:

Results and Trends. 2000.
[9] Cody, C. T. K., Oren, E., & Daniel, S. W. (2001). Scaling question answering to the Web.

Proceedings of the Tenth International Conference on World Wide Web, 150-161.
[10] Askjeeves: http://askjeeves.com/, 2000.
[11] Hovy E., Gerber L., & Hermjakob, U, Michael Junk and Chin-Yew Lin. Question

Answering in Webclopedia. Ninth Text REtrieval Conference (TREC-9).Gaithersburg,
 MD. November 13-16, 2000

http://www.mit.gov.in/E-rural/
http://askjeeves.com/,

A Query Answering System for E-learning Hindi Documents

81

[12] Harabagiu, S., Moldovan, D. Pasca, M., Surdeanu, M. , Mihalcea, R., Girju,R.,Rus,
M., Lacatusu,F., Morarescu, P. and Razvan Bunescu. Answering Complex, List and
Context Questions with LCC's Question-Answering Server. Tenth Text REtrieval

 Conference (TREC-10).
[13] Unicode Home page http://www.unicode.org/
[14] Kretser, O.D. and Moffat, A. Effective Document Presentation with a Locality-Based

Similarity Heuristic. Proc. 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, San Francisco, pp 113-20,1999.

[15] Unicode Enabled: Overview and Description. http://www.unicode.org, 2000.
[16] Ramanathan, A., Rao, D.D. A Lightweight Stemmer for Hindi. Proceedings of
 EACL, 2003.

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13

