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Abstract

We study a space of coherent risk measures M/ obtained as certain expansions of coherent

elementary basis measures. In this space, the concept of ‘‘risk aversion function’’ / naturally

arises as the spectral representation of each risk measure in a space of functions of confidence

level probabilities. We give necessary and sufficient conditions on / for M/ to be a coherent

measure. We find in this way a simple interpretation of the concept of coherence and a way

to map any rational investor’s subjective risk aversion onto a coherent measure and vice-versa.

We also provide for these measures their discrete versions M ðNÞ/ acting on finite sets of N inde-

pendent realizations of a r.v. which are not only shown to be coherent measures for any fixed

N, but also consistent estimators of M/ for large N.
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1. Introduction

It was recently discovered (Acerbi et al., 2001; Acerbi and Tasche, 2001, 2002;
Rockafellar and Uryasev, 2000, 2001) that the a-expected shortfall ESðaÞ, correctly
defined as the ‘‘average of the a100% worst losses’’ of a portfolio is a coherent
risk measure 1 for any chosen confidence level a 2 ½0; 1�. It is then natural to
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1 In this paper we will use ‘‘coherent measure’’ and ‘‘risk measure’’ as synonymous for the reasons

already explained in Acerbi and Tasche (2002).
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wonder whether there exist other ‘‘probability weighted averages’’ of the left tail
of a distribution which satisfy the axioms of coherency (Artzner et al., 1997,
1999). In other words we suspect that the a-expected shortfall might actually be only
one possible choice out of a large space of risk measures.

Given some known risk measures it is easy to generate a new risk measure. In fact,
it is elementary to prove that a convex combination of risk measures is coherent as
well. So, our strategy will be to study the properties of the space of coherent mea-
sures generated by the most general convex combination of a-expected shortfalls.
Then we will try to face two distinct questions. The first is whether this space of mea-
sures is in some sense complete, or if there exists, within the framework we are inves-
tigating, some risk measure which does not belong to it. The second question is
whether the expected shortfall plays any special role in this space as a natural choice,
or if any measure of this space could equally be a perfectly admissible and legitimate
risk measure.

The basic assumption we are making is that some (but essentially any) probability
space (X;R;P) has been chosen for the profit–loss random variables Xi of a set of
portfolios pi. We will then restrict our analysis to measures of risk which depend
on the probability measure P alone on which however we will not make any restric-
tive assumption. It is important to keep in mind that our investigation will not aim to
include all possible coherent measures. Suppose in fact to have two distinct proba-
bility measures P1 and P2 for a random variable X. Then, it is easy to see that the
statistic

qðX Þ ¼ �maxfEP1
½X �;EP2

½X �g ð1Þ

defines a coherent measure (Artzner et al., 1997). The space of risk measures we are
going to explore will certainly not contain examples of this sort.

2. Generating a new class of risk measures

The expected shortfall ESaðX Þ in its coherent version ðsee Acerbi and Tasche
(2002) for subtleties on this definitionÞ can be used as a basic object for obtaining
new risk measures. It is in fact natural to think of the one-parameter family (where
a 2 ½0; 1� is the confidence level) as a basis for expansions which define a larger class
of risk measures.

Remember that a risk measure is defined by the following ‘‘coherency axioms’’
(Artzner et al., 1997, 1999):

Definition 2.1. [risk measure] Consider a set V of real-valued random variables. A
function q : V ! R is called a risk measure if it is

(i) monotonous: X ; Y 2 V ; Y PX ) qðY Þ6 qðX Þ,
(ii) subadditive: X ; Y ;X þ Y 2 V ) qðX þ Y Þ6qðX Þ þ qðY Þ,
(iii) positively homogeneous: X 2 V ; h > 0; hX 2 V ) qðhX Þ ¼ hqðX Þ,
(iv) translation invariant: X 2 V ; a 2 R) qðX þ aÞ ¼ qðX Þ � a.
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It is easy to show that an equivalent set of axioms can be obtained by replacing
the monotonicity axiom with the following positivity axiom:

(i0) positive: X 2 V ; X P 0) qðX Þ6 0.

Our starting point for constructing an expansion of risk measures is the following
elementary

Proposition 2.2. Let qi be risk measures for i ¼ 1; . . . ; n. Then, any convex combi-
nation q ¼

P
i aiqiðai 2 Rþ and

P
i ai ¼ 1Þ is a risk measure. Similarly, if qa is a one-

parameter family of risk measures a 2 ½a; b�, then, for any measure dlðaÞ in ½a; b�
with

R b
a dlðaÞ ¼ 1, the statistic defined as q ¼

R b
a dlðaÞqa is a risk measure.

Proof. The check is elementary. One uses the requirement ai > 0 (or dlðaÞ > 0) to
check axioms (i) and (ii) and the requirement

P
i ai ¼ 1 (or

R b
a dlðaÞ ¼ 1) to check

axiom (iv). �

Let us now recall the definition of expected shortfall. Let FX ðxÞ ¼ P ½X 6 x� be the
distribution function of the profit–loss X of a given portfolio p and define the usual
generalized inverse of FX ðxÞ as 2

F X ðpÞ ¼ inffxjFX ðxÞP pg: ð2Þ

The a-expected shortfall defined for a 2 ð0; 1� as

ESðaÞðX Þ ¼ �
1

a

Z a

0

F X ðpÞdp ð3Þ

can be shown (Acerbi et al., 2001; Acerbi and Tasche, 2002) to be a risk measure
satisfying the axioms of Definition 2.1. For a ¼ 0 it is natural to extend (3) defining
ESð0ÞðX Þ as the very worst case scenario:

ESð0ÞðX Þ ¼ �ess: inffXg: ð4Þ

It is worth mentioning that the expected shortfall is closely related but not coincident
to the notion of conditional value at risk CVaRðaÞ or tail conditional expectation
TCEðaÞ defined as (Artzner et al., 1997, 1999; Pflug, 2000)

CVaRðaÞðX Þ ¼ TCEðaÞðX Þ ¼ �E X jX
�

6 F X ðaÞ
�
: ð5Þ

In fact, conditional value at risk is not a coherent measure in general. It coincides
with ESðaÞ (and it is therefore coherent) only under suitable conditions such as the
continuity of the probability distribution function FX ðxÞ ðsee Acerbi and Tasche
(2002) and references thereinÞ.

The mathematical tractability of Eq. (3) suggests to exploit Proposition 2.2 using
ESðaÞ as the basic building block for defining new coherent measures. Introducing a

2 Actually, any other sensible definition for the inverse of FX would not alter definition (3) and its

properties.
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measure dlðaÞ on a 2 ½0; 1�, and under suitable integrability conditions, Proposition
2.2 ensures that the statistic 3

MlðX Þ ¼
Z 1

0

dlðaÞaESðaÞðX Þ ¼ �
Z 1

0

dlðaÞ
Z a

0

dpF X ðpÞ ð6Þ

is a risk measure as long as the normalization conditionZ 1

0

adlðaÞ ¼ 1 ð7Þ

is satisfied. Interchanging the integrals thanks to the Fubini–Tonelli theorem,

MlðX Þ ¼ �
Z 1

0

dpF X ðpÞ
Z 1

p
dlðaÞ � �

Z 1

0

dpF X ðpÞ/ðpÞ � M/ðX Þ; ð8Þ

it is easy to see that the parametrization in terms of any measure dlðaÞ can be traded
with a parametrization in terms of a decreasing positive ‘‘risk spectrum’’ /ðpÞ ¼R 1

p dlðaÞ. The normalization condition Eq. (7) translates into the following nor-
malization condition for /:Z 1

0

/ðpÞdp ¼
Z 1

0

dp
Z 1

p
dlðaÞ ¼

Z 1

0

dlðaÞ
Z a

0

dp ¼
Z 1

0

dlðaÞa ¼ 1: ð9Þ

In other words, for any measure dlðaÞ satisfying normalization (7), we have a dif-
ferent risk measure defined by Eq. (6) which can also be expressed by Eq. (8) with
/ðpÞ ¼

R 1

p dlðaÞ. Conversely, for any decreasing positive function /ðpÞ : ½0; 1� ! Rþ

satisfying normalization (9), Eq. (8) provides a risk measure which can also be ex-
pressed by Eq. (6) with dlðaÞ ¼ �d/ðaÞ.

Taking a closer look to Eq. (8) we see that more than a pointwise characterization
of /, we need to define its properties as an element of the normed space L1ð½0; 1�Þ
where every element is represented by a class of functions which differ at most on
a subset of ½0; 1� of zero measure. The norm in this space is given by

k/k ¼
Z 1

0

j/ðpÞjdp: ð10Þ

Different representative functions /1, /2 ðk/1 � /2k ¼ 0Þ of the same element
/ 2L1ð½0; 1�Þ will in fact define the same measure M/.

The properties of monotonicity and positivity of an element of L1ð½0; 1�Þ cannot
be defined pointwise as for functions. Hence, we adopt the following

3 The most general convex combination of a-expected shortfall admits in fact also a share of ESð0Þ as

defined in (4). This is equivalent to allow for a / function singular in p ¼ 0 (d is a Dirac delta distribution)

/ ðpÞ ¼ cdðpÞ þ ~//ðpÞ

with c 2 ½0; 1� and
R
~// ¼ 1� c. In what follows, for simplicity we will restrict to the case c ¼ 0 and treat /

as a non-singular function. All the results of the paper can be however trivially generalized to the case

c 6¼ 0.
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Definition 2.3. We will say that an element / 2L1ð½a; b�Þ is ‘‘positive’’ if 8I � ½a; b�Z
I

/ðpÞdpP 0: ð11Þ

We will say that an element / 2L1ð½a; b�Þ is ‘‘decreasing’’ if 8q 2 ða; bÞ and 8� > 0
such that ½q� �; qþ �� � ½a; b�,

Z q

q��
/ðpÞdpP

Z qþ�

q
/ðpÞdp: ð12Þ

It is now convenient to give also the following

Definition 2.4. An element / 2L1ð½0; 1�Þ is said to be an ‘‘admissible’’ risk spectrum
if

(1) / is positive,
(2) / is decreasing,
(3) k/k ¼ 1.

From the above discussion we can therefore easily prove the following

Theorem 2.5. Let M/ðX Þ be defined by

M/ðX Þ ¼ �
Z 1

0

F X ðpÞ/ðpÞdp ð13Þ

with / 2L1ð½0; 1�Þ. If / is an admissible risk spectrum then M/ðX Þ is a risk measure.

Proof. For all admissible risk spectra / 2L1ð½0; 1�Þ it is always possible to find a
representative positive and decreasing function /ðpÞ which defines a measure l on
½0; 1� by dlðaÞ ¼ �d/ðaÞ. Then, the coherency of M/ follows from Eqs. (6) and (8)
and Proposition 2.2. �

Remark 2.6. The integrability conditions of Eq. (13) define the space V/ of random
variables on which M/ is a risk measure:

V/ ¼ fX j/F X 2L1ð½0; 1�Þg: ð14Þ

However, in a real-world risk management application the integral of (13) will
always be well defined and finite. For instance, for M/ to be finite, it is sufficient
to impose that the expectations E½Xþ� ¼ E½maxðX ; 0Þ� and E½X�� ¼ �E½minðX ; 0Þ�
are finite and that /ðpÞ is bounded.
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3. The risk-aversion function

To understand the meaning of the function /ðpÞ in Eq. (13), let us analyze its role
in the case of the expected shortfall. It is in fact easy to see that ESðaÞðX Þ can be iden-
tified as 4

ESðaÞðX Þ ¼ MlðX Þ ¼ M/ðX Þ with

(
dlðbÞ ¼ 1

a dða� bÞdb;

/ðpÞ ¼ 1
a 1f06 p6 ag ¼ 1

a hða� pÞ:
ð15Þ

Remember that the measure ESðaÞ represents the ‘‘average of the a100% worst losses’’
of X. In other words, this measure averages the possible outcomes contained in the a-
left tail of the r.v. X with equal weights. Looking at Eq. (15), one realizes that the /
function is nothing but the weight function in this average which in this case is
simply uniform in p 2 ½0; a� and zero elsewhere. In the general case, the function /ðpÞ
in Eq. (13) assigns in fact different weights /ðpÞ to different ‘‘p-confidence level sli-
ces’’ of the left tail. Normalization k/k ¼ 1 in turn ensures that the weights in the
average sum up to 1.

The fact that an admissible risk spectrum /ðpÞ is a decreasing monotonic function
in p provides us with an intuitive insight of the concept of coherence. In fact, The-
orem 2.5 simply teaches us the following reasonable rule: ‘‘a measure is coherent
if it assigns bigger weights to worse cases’’.

Any rational investor can express her subjective risk aversion by drawing a differ-
ent profile for the weight function /. To attain coherency she has just to restrict the
choice of this function to be positive, decreasing and normalized to one on the inter-
val ½0; 1�. Within these constraints, however, any choice for / will represent a per-
fectly legitimate attitude toward risk. The choice of a-expected shortfall, for
instance, could not be satisfactory for any a to a certain investor who wants to dis-
tinguish portfolios which might differ even just at a low risk confidence level. For
such an investor, a non-vanishing /ðpÞ function on all the confidence level domain
p 2 ½0; 1� would be more appropriate.

In general, in the space of measures spanned by all possible admissible risk spectra
via Theorem 2.5, no natural choice is provided by purely financial arguments and the
function / appears as the instrument by which an investor can express her subjective
attitude toward risk. We will therefore give the following

Definition 3.1 (risk aversion function and spectral risk measure). An admissible risk
spectrum / 2L1ð½0; 1�Þ will be called the ‘‘risk aversion function’’ of the risk
measure

M/ðX Þ � �
Z 1

0

F X ðpÞ/ðpÞdp: ð16Þ

The risk measure M/, in turn will be called the ‘‘spectral risk measure’’ generated by
/.

4 We make use of the Dirac delta function dðxÞ defined by
R b
a f ðxÞdðx� cÞdx ¼ f ðcÞ 8c 2 ða; bÞ:
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The following question now arises: is the admissibility of / also necessary for co-
herency? As a significative example let us consider the case of value at risk.

It is not difficult to see that VaRðaÞðX Þ ¼ �F X ðaÞ can also be expressed as 5

VaRðaÞðX Þ ¼ MlðX Þ ¼ M/ðX Þ with
dlðbÞ ¼ �d0ðb� aÞdb;
/ðpÞ ¼ dðp � aÞ:

�
ð17Þ

For this expression, however, Theorem 2.5 is not applicable since / is not a de-
creasing function in p and therefore it is not an admissible risk spectrum. Indeed, it is
well known that VaRðaÞ is not a risk measure, due to its lack of subadditivity.

This graphical interpretation of the non-coherency of VaR shows that, in the class
of measures we are exploring, VaRðaÞ is maybe the less appropriate one since its /ðpÞ
is somehow the furthest example one can imagine from the concept of a decreasing
function: it is a function which is zero everywhere but in p ¼ a where it blasts to in-
finity. The pictorial interpretation also illustrates the fact that VaRðaÞ actually does
not take into account at all the losses associated to the tail, focusing only on their
threshold value. Its risk aversion function displays the attitude of an incoherent in-
vestor who is only concerned about the threshold level of her worst a100% losses and
neglects at all the losses themselves.

This example enforces our belief that if / is not an admissible risk spectrum then
M/ cannot be a risk measure. In the next chapter we will prove that in fact this is the
case.

4. Necessity of the admissibility of /

In the following we will prove that for the measure M/ to be a risk measure the
conditions of admissibility of the risk aversion function / are not only sufficient
but also necessary. We want in other words to prove the following central result
of the paper:

Theorem 4.1. Let M/ðX Þ be defined by

M/ðX Þ ¼ �
Z 1

0

F X ðpÞ/ðpÞdp ð18Þ

with / 2L1ð½0; 1�Þ. M/ðX Þ is a risk measure if and only if / is an admissible risk
spectrum.

Proof. Necessity of condition (1) of Definition 2.4. Suppose that 9I ¼ ½q1; q2� � ð0; 1Þ
where

5 We use the usual first derivative d0ðxÞ of a Dirac delta. It may be thought of as a formal object on

which we can integrate by parts to get rid of the derivative on d. So
R b
a f ðxÞd0ðx� cÞdx ¼

�
R b
a f 0ðxÞdðx� cÞdx ¼ �f 0ðcÞ 8c 2 ða; bÞ.
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Z
I

/ðpÞdp < 0: ð19Þ

Consider two random variables Y > X on a probability space (X;R;P) with ele-
mentary events X ¼ fx1;x2;x3g and suppose that the probability P is defined by

where we suppose X1 < X2 < X3, Y1 < Y2 < Y3, and a > 0, so that

Now, it is easy to compute

M/ðY Þ �M/ðX Þ ¼ �
Z 1

0

/ðpÞðF X ðpÞ � F X ðpÞÞdp ¼ �a
Z
I

/ðpÞdp > 0 ð20Þ

This shows that Eq. (19) contradicts axiom (i) in Definition 2.1.
Necessity of condition (2) of Definition 2.4. Suppose that 9q 2 ð0; 1Þ and � > 0

such that ½q� �; qþ �� 2 ð0; 1Þ and

Z q

q��
/ðpÞdp <

Z qþ�

q
/ðpÞdp: ð21Þ

Consider three random variables X þ Y ¼ Z defined on a probability space (X;R;P)
with elementary events X ¼ fx1;x2;x3;x4g and suppose that the probability P is
defined by

Subscripts in X, Y, Z have been chosen for ordering the possible outcomes, so
Xi < Xj if i < j and so on. We have deliberately chosen the twist Y ðx2Þ ¼ Y3,
Y ðx3Þ ¼ Y2 and we supposed X2 þ Y3 < X3 þ Y2.

x PðxÞ X ðxÞ Y ðxÞ
x1 q1 X1 Y1 ¼ X1

x2 q2 � q1 X2 Y2 ¼ X2 þ a
x3 1� q2 X3 Y3 ¼ X3

p F X ðpÞ F Y ðpÞ
p 2 ð0; q1� X1 Y1

p 2 ðq1; q2� X2 Y2

p 2 ðq2; 1� X3 Y3

x PðxÞ X ðxÞ Y ðxÞ ZðxÞ
x1 q� � X1 Y1 Z1 ¼ X1 þ Y1

x2 � X2 Y3 Z2 ¼ X2 þ Y3

x3 � X3 Y2 Z3 ¼ X3 þ Y2

x4 1� q� � X4 Y4 Z4 ¼ X4 þ Y4
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Now it is easy to compute

and

M/ðZÞ �M/ðX Þ �M/ðY Þ ¼ �
Z 1

0

/ðpÞðF Z ðpÞ � F X ðpÞ � F Y ðpÞÞdp

¼ �
X4

i¼1

Z
Ii

/ðpÞðZi � Xi � YiÞdp

¼ �ðY3 � Y2Þ
Z
I2

/ðpÞdp
	

�
Z
I3

/ðpÞdp



> 0: ð22Þ

This shows that if Eq. (21) holds, then M/ violates axiom (ii) in Definition 2.1.
Necessity of k/k ¼ 1. For any r.v. X and a 2 R we have F XþaðpÞ ¼ F X ðpÞ þ a.

Then

M/ðX þ aÞ ¼ �
Z 1

0

/ðpÞF XþaðpÞdp ¼ M/ðX Þ � a
Z 1

0

/ðpÞdp ð23Þ

which satisfies axiom (iv) in Definition 2.1 only if
R 1

0
/ðpÞdp ¼ 1: �

Theorem 4.1 provides a one-to-one correspondence between risk aversion func-
tions / 2L11ð½0; 1�Þ and spectral risk measures M/. All the possible risk measures
which can be generated by the expansion (18) are spanned by all the possible
admissible risk spectra /. In this sense, this space of risk measures can be said to be
complete.

Remark 4.2. As pointed out to me by D. Tasche, it is interesting to notice that in
insurance mathematical literature, there exists a result which is amazingly similar to
Theorem 4.1, namely Theorem 4 in Wang (1996). It is surprising to notice that this
paper dates back to 1995 and it is therefore older than Refs. Artzner et al. (1997, 1999)
where the notion of coherent measure of risk was introduced in financial mathematics.

Remark 4.3. The scope of the present investigation is also enlarged by the results of
Bertsimas and Lauprete (2000), where the introduction of expected shortfall as a risk
measure was motivated by second-order stochastic dominance. This paper, in fact,
explores a connection between coherent measures and expected utility theory. 6

p F X ðpÞ F Y ðpÞ F Z ðpÞ
p 2 ð0; q� �� � I1 X1 Y1 Z1

p 2 ðq� �; q� � I2 X2 Y2 Z2

p 2 ðq; qþ �� � I3 X3 Y3 Z3

p 2 ðqþ �; 1� � I4 X4 Y4 Z4

6 Some care must be taken since in this paper a tacit assumption of continuity of the distribution

functions is made, under which the identification of expected shortfall as defined in Eqs. (3) and (8) is made

legitimate.
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Remark 4.4. The class of spectral measures has also been studied in a different
formalism in Kusuoka (2001). In this paper (Theorem 7), it is shown that the spectral
measures can be identified as all the coherent measures which are also law-invariant
and comonotonic additive. Law invariance in particular is a crucial property for
applications since it is a necessary property for a risk measure to be estimable from
empirical data.

Coherent measures q which are not law-invariant (as for instance WCEa Artzner
et al., 1997) on the contrary cannot have an estimator as a function of empirical data
only. For such measures it may happen that two indistinguishable portfolios X and
Y (i.e. two portfolios with exactly the same probability law FX ð�Þ ¼ FY ð�Þ and there-
fore with indistinguishable data samples) may have different value qðX Þ ¼ qðY Þ. The
lack of law-invariance therefore seriously jeopardize any concrete applicability of
these measures in the financial industry.

5. From theory to practice: Estimation of spectral measures

Despite its appearance, the risk measure M/ of Theorem 4.1 is in fact a very sim-
ple object to be used in practice. The integral of Eq. (18) is however computable only
when an explicit analytical expression for the inverse cumulative distribution func-
tion F X ðpÞ is available. In a real-world risk management system this is typically
the case only if the approach chosen for the probability distributions is parametric.

In fact, the most straightforward method for evaluating M/ is not by its integral
definition, but rather by the estimator M ðNÞ/ on a sample of N i.i.d. realizations
X1; . . . ;XN of the portfolio profit–loss X.

To define it we need to introduce the ordered statistics Xi:N given by the ordered
values of the N-tuple X1; . . . ;XN . In other words: fX1:N ; . . . ;XN :Ng ¼ fX1; . . . ;XNg and
X1:N 6X2:N . . . 6XN :N .

Definition 5.1. Let X1; . . . ;XN be N realizations of a r.v. X. For any given N-tuple of
weights /i¼1;...;N 2 R we define the statistics

M ðNÞ/ ðX Þ ¼ �
XN
i¼1

Xi:N/i: ð24Þ

We will call M ðNÞ/ the spectral risk measure generated by /i.

The discrete version of ‘‘admissible risk spectrum’’ sounds

Definition 5.2. An N-tuple /i¼1;...;N 2 R is said to be an ‘‘admissible’’ risk spectrum if

(1) /i P 0 (/i is positive),
(2) /i P /j if i < j (/i is decreasing),
(3)

P
i /i ¼ 1.
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We can now prove the discrete version of Theorem 4.1.

Theorem 5.3. The spectral risk measure M ðNÞ/ of Definition 5:1 is a risk measure for
any fixed N 2 N if and only if /i is an admissible risk spectrum.

Proof. This is in fact a special case of Theorem 4.1. To see why, we notice that given
N independent realizations Xi¼1;...;N of a r.v. X, the equation M ðNÞ/ ðX Þ ¼ M/ðX Þ holds
provided that in computing M/ðX Þ we adopt for X the ‘‘empirical’’ probability
distribution function

F ðNÞX ðxÞ ¼
1

N

XN
i¼1

1fxPXig ð25Þ

and the risk spectrum / : ½0; 1� ! Rþ

/ðpÞ ¼ N
XN
i¼1

/i1fNp2ði�1;i�g ð26Þ

which is admissible if and only if /i¼1;...;N is admissible. Both sufficiency and necessity
therefore follow immediately. �

Theorem 5.3 has a wide range of applicability, since it provides a risk measure for
a sample of N realizations of a random variable X. The coherency of the measure is
not related to some law of large numbers, because the theorem holds for any finite
N 2 N. This result is immediately applicable in any scenario-based risk management
system (parametric Monte Carlo scenarios, historical scenario simulation and so
on. . .).

In practice, an investor should choose her own risk averse function /ðpÞ to assess
her risks independently of the number of scenarios available for the estimation of
M/. Here, for sake of concreteness, we can consider /ðpÞ as a positive decreasing
normalized function rather than an abstract element of L1ð½0; 1�Þ:

Given /ðpÞ and fixed a number N of scenarios, the most natural choice for an
admissible sequence /i is given by

/i ¼
/ði=NÞPN
k¼1 /ðk=NÞ

; i ¼ 1; . . . ;N : ð27Þ

This expression in particular satisfies
P

i /i ¼ 1 for any finite N. The investor can
then use the spectral risk measure M ðNÞ/ generated by this sequence as a risk measure,
since Theorem 5.3 ensures its coherence for any finite N.

However, we can prove that in fact M ðNÞ/ is also a consistent estimator which con-
verges to M/ with probability 1 for N !1. To prove this result we need some in-
tegrability conditions on F X and on /. For our purposes it will be sufficient to
impose that the expectations E½Xþ� and E½X�� are finite and that the function /ðpÞ
is bounded. These conditions, from a practical point of view are always satisfied
in a risk management application. The theorem can be proved also under weaker
conditions (see van Zwet, 1980).
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Theorem 5.4. Let X be a r.v. with E½Xþ� <1 and E½X�� <1 and let M/ be the
spectral risk measure generated by some admissible risk spectrum / 2L1ð½0; 1�Þ of
which /ðpÞ is a representative positive decreasing function such that supp2½0;1� /ðpÞ <
1. Then, if M ðNÞ/ is the risk measure generated by the sequence

/i ¼
/ði=NÞPN
k¼1 /ðk=NÞ

; i ¼ 1; . . . ;N : ð28Þ

M ðNÞ/ ðX Þ converges to M/ðX Þ for N !1 with probability 1.

Proof. This theorem is a special case of Theorem 3.1 of van Zwet (1980) with t0 ¼ 0,
t1 ¼ 1, p1 ¼ 1, JðtÞ ¼ /ðtÞ, gðtÞ ¼ F X ðtÞ and JN ðtÞ ¼ N/i for ði� 1Þ=N <
t6 i=N . �

We have then shown that M ðNÞ/ provides not only a coherent measure for any fixed
N, but also a consistent way for estimating, for large number of scenarios the risk
measure M/. In a scenario-based risk management system this gives the possibil-
ity of estimating any spectral risk measure M/ in a straightforward and effortless
fashion.

6. Some considerations on capital adequacy

It is beyond the scope of this paper to discuss whether and how spectral measures
could be used for assessing the adequacy of a bank’s capital reserves. We want how-
ever to make some preliminary observations on a subject that certainly deserves a
further and deeper separate investigation.

Just a couple of years ago the lack of subadditivity of VaR was perceived by most
banks as a purely academical question, with no practical consequences. Today a
growing number of banks take this problem as a serious one and demand for a co-
herent alternative to VaR: the lack of subadditivity is just an iceberg’s peak. VaR
figures are always a distorted assessment of a portfolio risks, also when subadditivity
is not manifestly violated simply because VaR is not a measure of risk (Acerbi and
Tasche, 2001).

The class of spectral measures of risk provides infinitely many coherent measures
of risk. A financial institution ‘‘X’’ which has a VaR-based capital adequacy risk
management system, could in principle define its own risk aversion function /X

and adopt the related spectral measure M/X
for replacing VaR. The existence of sce-

nario-based estimators makes it straightforward to adapt a VaR engine to compute
any spectral measure.

Even supposing that regulators in the future will allow banks to use spectral mea-
sures, a first important question naturally arises: Should banks use a single measure
selected by the regulator (say ES5% on a time horizon of 7 days) or would it be better
to allow every financial institution to design its own measure of risk? In the second
case, regulators should of course define case by case how the risk measure has finally
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to be related to the capital reserves amount, while in the first case this relation would
be simply a fixed coefficient for all banks.

Despite the fact that choosing a standard risk measure for all banks sounds clearly
much more feasible, at least two important aspects could motivate to look with great
interest at tailor-made spectral measures.

(i) The risks of differently shaped portfolio p&l distributions are best detected by
different spectral measures of risk. For instance, an insurance-type portfolio
which sells protection only with respect to catastrophic events of very low prob-
ability will be best analyzed if a very steep / is chosen which weights only the left
tail, while portfolios exposed to losses of comparable size with a much higher
probability are best measured by a / which weights also less extreme confidence
levels. Also a different time horizon could be preferable for different portfolios,
depending for instance on the typical frequency of transactions of the portfolio
itself. In other words, there is no standard risk measure which proves optimal for
all kind of portfolios and allowing for tailor-made risk measures could improve
describing the risks of different portfolios.

(ii) The very existence of a unique benchmark risk measure for all the players of a
market, has been often criticized as a potential source of systemic risks itself.
The very fact that different investors take their decisions adopting the same risk
measure could lead to collective reactions to market events. This in turn would
produce resonance effects which amplify market crises. It is difficult to say if
these criticisms are realistic. However, it is nevertheless true that if banks could
use different risk measures any doubt on a possible relationship between risk
management standards and systemic risk would disappear.

7. Conclusions

In this paper we have defined a complete space of coherent measures of risk (the
‘‘spectral risk measures’’) depending on the probability measure P and we have pro-
vided for each of these measures a spectral representation in terms of its risk aversion
function / (Theorem 4.1). This representation is not only a constructive recipe for
obtaining all the measures of this space, but provides us with an intuitive insight
of the concept of coherency. The space of coherent measures M/ is in fact in one-
to-one correspondence with those elements / 2L1ð½0; 1�Þ which are identified as
the set of admissible risk spectra / (Definition 2.4).

We also obtain analogous results for risk measures M ðNÞ/ defined as functions of N
realizations of a r.v. X. We show in fact that for any fixed N, these measures are co-
herent and the space of these measures is completely spanned by the set of all discrete
admissible risk spectra /i (Definition 5.2 and Theorem 5.3). Furthermore, we show
that M ðNÞ/ is not only a risk measure itself, but also a consistent estimator, for N !1
of M/ if the risk spectrum /i¼1;...;N is chosen as the natural discretization of / (The-
orem 5.4).
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We have therefore provided a scheme where the subjective risk aversion of an in-
vestor can be encoded in a function /ðpÞ defined on all the possible confidence levels
p 2 ½0; 1�. This function in turn generates a spectral risk measure which gives a coher-
ent assessment of risks. From a purely financial point of view we do not see any nat-
ural choice in the space of admissible risk aversion functions /, nor any reason to
reject any subset of the space of risk measures they span. Every risk measure in this
space appears to be a legitimate candidate for a risk measure. It is on a subjective
ground that the choice among the measures of this space has to be made. The actual
shape of the portfolio profit-and-loss distribution and the subjective risk aversion of
the investor may help to select out some optimal choice in a specific case.

Any of the measures of risk defined in this paper can be implemented in a risk
management system in an elementary way, with no computational effort, following
in particular the approach of Section 5.
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