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Abstract

The conditions under which the classical measures of risk like the mean, the linear corre-
lation coefficient and VaR can be used are discussed. The definition of risk measure and the
main recently proposed risk measures are presented. The problems connected with co-depen-
dence are outlined.
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1. Origins of risk measures

In the pre-Markowitz era financial risk was considered as a correcting factor of
expected return, and risk-adjusted returns were defined on an ad-hoc basis. These
primitive measures had the advantage of allowing an immediate preferential order
of all investments.

Markowitz ! proposed to measure the risk associated to the return of each invest-
ment by means of the deviation from the mean of the return distribution, the vari-
ance, and in the case of a combination (portfolio) of assets, to gauge the risk level
via the covariance between all pairs of investments, i.e.:

Cov[X,Y] = E[X, Y] — E[X]E[Y],

where X and Y are random returns. The main innovation introduced by Markowitz
is to measure the risk of a portfolio via the joint (multivariate) distribution of returns
of all assets. Multivariate distributions are characterized by the statistical (marginal)
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properties of all component random variables and by their dependence structure.
Markowitz described the former by the first two moments of the univariate distri-
butions — the asset returns — and the latter via the linear (Pearson) correlation co-
efficient between each pair of random returns, i.e.:

p(X,Y) = Cov[X,Y]/(s}07)"

where oy and oy denote the standard deviations of the univariate random variables
X and Y, respectively. Note that a measure of dispersion can be adopted as a
measure of risk only if the relevant distribution is symmetric.

The correlation coefficient, while allows to fully describe a multivariate distribu-
tion by taking into account the dependence structure among all pairs of components
only, is strictly related to the slope parameter of a linear regression of the random
variable Y on the random variable X, and it measures only the co-dependence be-
tween the linear components of X and Y.  Indeed,

p(X,Y) = &} — min E[(Y — (aX +b))’)/a3,

that is the relative variation of o3 by linear regression on X.
It can be proved that for all vectors z and random vectors X, the variance of the
linear combination z".X, satisfies the relationship

d*(z'X) = z"Cov(X)z

which is essential in Markowitz portfolio theory. Linear correlation co-dependence
measure is indeed very intuitive and appealing in its simplicity.

We must recall that Markowitz model goes hand in hand with appropriate utility
functions, which allows a subjective preference ordering of assets and their combina-
tions. In the case of non-normal, albeit symmetric, distributions the utility functions
must be quadratic. In practice this limitation restricts the use of this model to port-
folios characterized by normal joint return distribution, i.e. to the case in which the
returns of all assets as well as their dependence structure is normal.

Recently the class of random variables for which linear correlation can be used as
an dependence measure has been fully identified. * This is the class of elliptic * dis-
tributions characterized by the property that their equi-density surfaces are ellip-
soids. Thus Markowitz model is suited only to the case of elliptic distributions,
like normal or #-distributions with finite variances. Note that symmetric distributions
are not necessarily elliptic.

The linear correlation coefficient, if used in the case of non-elliptic distributions,
may lead to incorrect results. > The concept of “incorrect” must however be speci-
fied, since it requires an agreement on a “correct” dependence measure.

2 See, for instance, Alexander (2001, pp. 7-19).

? See Cambanis et al. (1981).

4 See Joe (1997).

5 See, for instance, Embrechts et al. (1999), that compare bivariate normal distributions and Gumbel
distributions with the same linear correlation coefficient.
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Fig. 1. A. Leptokurtic distribution related to the value of a loan portfolio. B. The distribution of the mar-
ket value of the credit of an emerging country: Columbia, showing an important occurrence of extreme
events.

In absence of such measure (see Section 6) one can compare numerical results
achieved via simulations. ¢ This comparison is not trivial. Indeed these results have
shown that in comparing two different distributions (one normal and one Gumbel)
with the same linear correlation coefficient, in the vast majority of cases the two re-
sults agree. However most of the points of disagreement ’ lay in the upper right cor-
ner of the distribution, corresponding to extreme losses. We can say that if one uses a
variance—covariance model for non-elliptic distributions one can severely underesti-
mate extreme events that cause the most severe losses.

In the 1960s the concept of f (volatility) was introduced. This development was
motivated by computational reasons. The complexity of the mean—variance ap-
proach was considered too high. After almost 40 years, and the gigantic progress
in computers, this is no longer the case. The second motivation for the introduction
of the f-based portfolio methods was the insufficient data to compute the variance—
covariance matrix (the number of data should be at least twice the number of assets).
Now bootstrapping techniques allow to circumvent this problem and fs are almost
abandoned in portfolio management in favor of complete variance—covariance mod-
els.

The measure of the linear dependence between the return of each security and that
of the market, f3, led to the development of the main pricing models, CAPM, and
APT. These models, while extendible to heavy-tailed distributions, 8 have been de-
veloped in a “normal world” and lead to misleading results, when applied to every
day life situations ? like the ones shown in Fig. 1.

For instance, the cumulative distribution of not marketed loans is totally asym-
metric, and in particular leptokurtic (Fig. 1A), and the distribution of returns of
some traded debts of developing countries may contain extreme values (Fig. 1B).

It is unfortunate that the precisely formulated Markowitz model has become a
“solution in search of a problem” and incorrectly applied to many cases in which

® This is the technique used by Embrechts et al. (1999).

7 In the simulations performed by Embrechts et al. (1999), 0.8% of the cases.

8 See, for instance Huschens and Kim (2000), Silvapulle and Granger (2001).

° Both Mandelbrot as well as Fama stipulated that the return of most assets can be well approximated
by a t-distribution with infinite variance.
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risk cannot be described by variance, dependence cannot be measured by linear cor-
relation coefficient, and utility function does not even dream to be quadratic. '°

2. New research development

Multivariate normal distribution-based models are very appealing, because the as-
sociation between any two random variables can be fully described by their marginal
distributions and the linear correlation coefficient. It is evident that these models are
only a very initial step towards more realistic ones, better tuned to grasp real life sit-
uations, i.e. the case in which investment return cumulative distributions of individ-
ual assets are skewed, leptokurtic and/or heavy tailed. The introduction of these
model have been hampered by the lack of a suitable theoretical framework.

Probabilistic models for univariate returns have been investigated and extended to
the multivariate case under the assumption that all the combined returns and their
dependence structure have the same probabilistic structure. This severe drawback
can be overcome with the use of copula functions (see Section 7) suitable to the anal-
ysis multivariate distributions with almost arbitrary univariate components and de-
pendence structure. Only recently '! the problem of the study of extreme events, i.e.
of the tails of the distribution has received due attention. Most of the research on
new risk measures has been stimulated by “dependent extreme events”. '

In the last five years, namely from 1997 '3 there has been a great momentum in
research on this subject, which has touched five different, but interconnected aspects:

definition of risk measure;

construction of (coherent) risk measures;

rationality of insurance premia;

“good deals™;

generalized hyperbolic Lévy processes;

copulas for the study of dependence in multivariate distributions.

The first line of research was started by an international group of scholars: Phi-
lippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. '* Their results
will be presented in the next section of this paper.

197 could quote a large number such examples, but.. . I have already a sufficient number of enemies!

1 See Embrechts et al. (1997), Reiss and Thomas (2001). See also the following sections.

12 Essentially catastrophic events unexpectedly connected. The most typical example has been the
increase of spread among sovereigns of countries due to join the EURO in January 1999, following the
Russian crisis of August 1998.

13 Year in which the first results by Artzner, Delbaen, Eber, and Heath, on coherent risk measures were
published. In the same year Wang, Young, and Panjer published their work on the axiomatic charac-
terization of insurance prices.

' The results on coherent risk measures were first published by Philippe Artzner, Freddy Delbaen,
Jean-Marc Eber, and David Heath, in 1996 with the title 4 Characterization of Measures of Risk, as
Preprint 1996/14 of the Department of Mathematics, ULP Strasbourg, followed by a short paper entitled
Thinking coherently, published in Risk, in 1997. See also Artzner et al. (2000, 2001). The definitive version
was published in Mathematical Finance in 1999. A complete presentation of the state of the art of this
theory is contained in the paper by Frittelli and Rosazza Gianin (2002).
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Independently, practically at the same time, Shuan Wang, Virginia Young, and
Harry Panjer, '° presented similar conclusions on a closed related subject related
to insurance premia.

Again, independently from the other groups, but practically at the same time,
Stewart Hodges developed the theory of “good deals”. '

The hyperbolic distributions were introduced in finance by Eberlein and Keller in
1995. They provide a very precise fit to distributions of daily prices of equities. This
research is related to that on generalized Lévy motions. !

The last line of research is centered on the application of a concept developed in
the middle 1970s in the study of multivariate distributions, '® the copula, to the in-
vestigation of dependent tail events, i.e. of the possibility of simultaneous occurrence
of different uncommon events. In this case the level of the possible losses could be
very large. Neither linear correlation nor other more recent dependence measures '
can fully describe these events. For this reason, many researchers 2° have applied the
theory of copulas to the analysis of the general dependence structure among random
variables. We shall present some results in Section 7 of this paper.

The recent research on new risk measures has been possibly enhanced by the new
trends in regulation of financial institutions that require the use of very sophisticated
risk control models and by the reaction of the academic community to the attempt of
regulators to impose incorrect and misleading risk measures. 2!

In 1994 the concept of Value at Risk, VaR, was introduced with drums and cym-
bals ?? with the precise task of answering to the following very relevant and precise
question: how much one can expect to lose in one day, week, year, ... with a given
probability? What is the percentage of the value of the investment that is at risk?

For a given time horizon and a probability level k£, 0 < £ < 1, VaRy, is simply the
loss that is exceeded over this specified period with probability 1 — k, i.e. VaR; is the
maximum loss in a specified period with probability level k& (Fig. 2).

15 The results on the Axiomatic characterization of insurance prices were published by Wang et al. (1997)
in Insurance: Mathematics and Economics. The most recent results in this line of research are due to
Landsman and Sherris (2001) in Insurance: Mathematics and Economics.

16 These are (net) trades X with no cash flows at time 0 and a random flow at time 1, which are
acceptable, i.e. such that p(X) <0, where p is a weakly coherent risk measure and in addition Ep(X) =0
hold for all valuations (probability measures) P. This definition is based on the concept of weakly coherent
risk measures that will be presented in the next section. The first results on good deals are contained in
Hodges (1998). See also Cerny and Hodges (2000). A recent contribution on the same wavelength due to
Carr et al. (2001) seems to be uninformed about the work of Hodges.

17 See Geman (2002). See also Eberlein (2001a,b) and Eberlein and Keller (1995).

18 See Sklar (1973). See also Joe and Hu (1996), Joe (1997) and Lee (1993).

19 1 ike, for instance, the Kendall tau and the Spearman rho, see Nelsen (1999).

20 See, for instance, Frey and McNeil (2001, 2002), where additional references can be found.

2! This is the case of VaR for which Danielsson et al. (2001) expressed the view that “VaR can
destabilize an economy and induce crashes when they would not otherwise occur”.

22 JP Morgan (1994, 1997), see also Phelan (1997), Crouhy et al. (2000, 2001), Cumperayot et al. (2001),
Caouette et al. (1998), Jorion (2000) and Manganelli and Engle (2001).
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Fig. 2. VaR and CVaR.

The exact definition of the VaR, of a random variable X is based on the k-quan-

tile, taken with a negative sign of the distribution function Fy, i.e.
VaRk = —Fx_l(k)
F;' denotes the inverse of the distribution function Fy. **

While VaR sounds like a great idea, when the distribution is multimodal, for some
values of k, VaR, is not even defined. Indeed in this case the inverse of Fy (k) does not
exist and the inverse image of Fy (k) is not even connected. ** In order to overcome
this difficulty, VaR is defined *° as the lowest number belonging to the set ' (k), or
as the k-quantile of the generalized inverse of Fy, i.e.

VaR; = inf{-F;'(k)}.
Taking this caveat in mind, VaR could be used, albeit only in the case of the original
question. Unfortunately, just like Markowitz approach, with the explicit encour-
agement of regulators, VaR has become another “‘solution in search of a problem”
and was wrongly adopted as a risk measure. In particular the major inspiring
principles of the 2001 proposal of the Basel Banking Supervisory Committee are: 2

e VaR is assumed as risk measure;

e the risk of each loan must be portfolio invariant, i.e. must be measured by its own
characteristic only, not taking into account those of portfolio in which the loan is
held;

2 In case in which there does not exist a unique inverse a slightly modified concept can be used. See
Embrechts et al. (1997).

2 In Fig. 1B there exist a range of values for which this inverse image is composed by three points.

25 See Rockafellar and Uryasev (2002).

26 See Gordy (2000a,b, 2002). See Basel Committee on Banking Supervision (1999, 2001). See also
Danielsson (2002), Danielsson et al. (2002), Danielsson and de Vries (1998), Danielsson et al. (1998a,b)
and Jones (2000).
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o the regulatory capital for a loan must be correlated to its marginal contribution to
VaR.

3. How to measure risk

To measure risk is equivalent to establishing a correspondence p between the
space X of random variables (for instance the returns of a given set of investments)
and a non-negative real number, i.e. p : X — R. Scalar measures of risk allow to
order and to compare investments according to their respective risk value. These cor-
respondences cannot be without restrictions (in this case they would not have any
property) that can take the form of binding conditions. >’ Any risk measure lacking
such properties may lead to inconsistencies.

In order to better understand the role of proper conditions that need to be satis-
fied by a scalar risk measure, we recall the three conditions that any functional
p : X — R, defining the distance between two points in the space X must satisfy:

the distance between a point and itself is zero;

the distance does not change by inverting the two points;

given three points, the distance between any pair cannot be larger than the sum of
the distances between the other two pairs.

Any functional that satisfy these conditions is a measure of distance. Note these
restrictions do not define a precise measure, but only the class of possible measures.

In the case of risk measures, analogous conditions have been proposed by various
scholars. *® In our presentation we shall follow these advanced by Artzner, Delbaen,
Ebner, and Heath, ° in their more precise formalization due to Frittelli and Rosazza
Gianin. *

Any acceptable risk measure p : X — R must satisfy the following properties:

(a) Positive homogeneity: p(Ax) = Ap(x) for all random variables x and all positive
real numbers /.

(b) Subadditivity: p(x + y) < p(x) + p(») for all random variables x and y;
It can be proved that any positively homogeneous functional p, is convex if and
only it is subadditive.

If, in addition, the following two properties are satisfied:

27 Readers must be reminded that in many circumstances it is necessary to impose restrictions in order
to obtain meaningful definitions, like in the case of the definition of a distance between two points or of a
dynamical system!

28 Albanese (1997), Frittelli (2000), Artzner et al. (1997, 1999), Carr et al. (2001). A parallel line of
research has been developed in order to solve the problem of risk pricing in insurance. See Landsman and
Sherris (2001).

2% Artzner et al. (1997, 1999).

30 Frittelli and Rosazza Gianin (2002).
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(c) Monotonicity: x <y implies p(x) < p(y) for all random variables x and y;
(d) Transitional invariance: p(x 4 ary) = p(x) — a for all random variables x and
real numbers «, and all riskless rates ry,

then p is a (coherent) risk measure. Indeed the word coherent is redundant: Any
measure of risk must satisfy these conditions!

Let us make some comments on the economic significance of these conditions.

Subadditivity, if p would not be subadditive, then p(x) + p(y) < p(x + ), this
would imply, for instance, that in order to decrease risk, it could be convenient to
split up a company into different distinct divisions. From the regulatory point of
view this would allow to reduce capital requirements. Note that covariance is subad-
ditive, and this property turned out to be essential in Markowitz portfolio theory:
Indeed no new investment increases risk.

Note that the subadditivity requirement implies that p(ly) < Ap(x), thus positive
homogeneity implies that p(4y) = 4p(x), which combined with the previous inequal-
ity leads to the equality sign. The latter inequality can be justified by liquidity con-
siderations *': an investment (/x) could be less liquid, and therefore more risky, that
the total Ax of 1 smaller investments x.

Transitional invariance implies that by adding a sure return ory to a random re-
turn x the risk p(x) decreases by a.

Finally note that monotonicity rules out any semi-variance type of risk measure.

Some authors have replaced the first two conditions of coherence with the condi-
tion that p be convex, i.e. that

p(AX +(1=2Y)<Ap(X)+ (1 = )p(Y), 0<ALI.
Note that since convexity does not necessarily imply positive homogeneity, a risk

measure that is only transitionally invariant, monotonous and convex has weaker
properties than coherent measures and it can be called weakly coherent. **

4. VaR does not measure risk

VaR in general turns out to be not even weakly coherent and in particular not su-
badditive. To try to measure risk without this property is like measuring the distance
between two points using a rubber band instead of a ruler! Only in the special case in
which the joint distribution of return is elliptic ** VaR is subadditive, i.e.:

VaRk (P] + Pz) < VaRk (Pl) + VaRk (Pz),

where P, and P, denote the returns of two portfolios.
Note, however, that in this case a VaR-minimizing portfolio coincides with the
Markowitz variance-minimizing portfolio. * Thus VaR, that was introduced in

31 Artzner et al. (1997, 1999).

32 This concept has been presented in the paper by Carr et al. (2001), and further developed by Frittelli
and Rosazza Gianin (2002).

3 Embrechts et al. (1999, p. 72).

3 Embrechts et al. (1999, p. 72).



G. Szego | Journal of Banking & Finance 26 (2002) 1253-1272 1261

the attempt of measuring risk for weird distributions, can be used only when the
computationally simpler variance can also be used!

Indeed VaR, if applied to most (not elliptical) return distributions is not an ac-
ceptable risk measure:

it does not measure losses exceeding VaR;

a reduction of VaR may lead to stretch the tail exceeding VaR;

it may provide conflicting results at different confidence levels;
non-sub-additivity implies that portfolio diversification may lead to an increase of
risk and prevents to add up the VaR of different risk sources;

non-convexity make it impossible to use VaR in optimization problems;

e VaR has many local extremes leading to unstable VaR ranking. *

Thus VaR is an inadequate risk measure, and as shown in the following Fig. 3, the
lack of convexity makes it unsuitable to measure risk in a real life portfolio.

If regulatory agencies will insist on its use, some very damaging consequences will
follow. Indeed, as pointed out by Danielsson et al., *® “VaR can destabilize an econ-
omy and induce crashes when they would not otherwise occur™.

Various simple numerical proofs of the total inadequacy of VaR as a measure of
risk have been proposed in the literature. 3’

The computational difficulties connected with the estimation of VaR,, that can
be essentially performed through three different methods: analytical, historical or
Monte Carlo, are also not irrelevant. In spite of these problems, this measure spon-
sored by a leading bank, *® has met the favor of regulatory agencies, and has become
part of financial regulations for the following reasons:

e it is a compact representation of risk level;
e it measures downside risk.

Thus, the consultative document issued by the Basel Committee in January
2001 * falls short of its goals by not encouraging diversification.
The major inspiring principles of the new proposal are: *°

e VaR is assumed as risk measure;

o the risk of each loan must be portfolio invariant i.e. must be measured by its own
characteristic only, not taking into account those of portfolio in which the loan is
held;

35 See Rockafellar and Uryasev (2002).

36 Danielsson et al. (2001) as well as Szegd (1993, 1997, 1999, 2000, 2001a,b) and Szegd and Varetto
(1999).

37 Acerbi and Tasche (2002), Frey and McNeil (2001, 2002).

38 JP Morgan in its Riskmetric approach has been one of the main prophets of VaR.

3 Basel Committee on Banking Supervision (2001).

40 See Gordy (2000a,b, 2002).
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Fig. 3. The mean—VaRy, efficient frontier shows the existence of multiple maxima.

e the regulatory capital for a loan must be correlated to its marginal contribution to
VaR.

5. Some correct measures of risk

The risk measures that have so far been presented (variance, linear correlation,
VaR) in the case of non-elliptic (but possibly symmetric) joint probability distribu-
tions

e are not convex and lead to absurd results;
e do not allow to measure the degree of co-dependence (positive or negative) be-
tween these random variables.

The first problem has well illustrated in Fig. 1, in particular by the non-symmet-
ric fat-tailed distribution describing the market value of an emerging country debt.
The second has become quite relevant with the increasing frequency of occurrence
of “dependent defaults”, i.e. of unexpectedly connected tail events of different ran-
dom variables, that happened to be “tail dependent”. The present section will be
devoted to the first problem. The dependence measures will be discussed in the next
one.

In order to investigate tail events in 1997 Embrechts, Kiippelberg and Mikosch
introduced the concept of k-expected shortfall or k-tail mean. This contribution
was followed in 2000 by the presentation of a similar measure, conditional value
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at risk (CVaR) due to Uryasev. As we shall see, *' the main contribution of Uryasev,
has been to propose a simple linear programming algorithm.

In the sequel, I shall consider the following measures, that satisfy the conditions
presented in Section 4, ** and can therefore be used to measure risk:

expected regret (ER),

CVaR,

expected shortfall (ES),

tail conditional expectation (TCE) and tail mean (TM),
worst conditional expectation (WCE),

spectral risk measures.

Spectral risk measures are a generalization of the previous risk measures, in which
the distribution function is pre-multiplied with a admissible risk aversion function
which allow to introduce a subjective risk weight.

5.1. Expected regret

ER, that is a risk measure closely related to CVaR, ** is defined as the expected
value of the (loss) distribution beyond a threshold o, i.e.

Golw) = [ [£0) = by

with [u]" = max{0, u}.
ER can be computed via a linear programming model based on a scenario ap-
proach.

minp'[y — of"
X
under the conditions:

y' = xTL > ae”, where e denotes the unit vector,

x'qg =y, where y = e'q,

xT(r — m)q" = 0T, where 0 denotes the zero column vector,
x'r=m,

[ <x<u,

where the variables are defined in the following Table 1.
Few comments are due.
We consider i = 1,...,n (assets) and j = 1,...,m (scenarios).

41 Rockafellar and Uryasev (2002). See also Andersson et al. (2000).

42 The most direct proof of this fact is presented in this issue in the paper by Acerbi and Tasche.
Spectral risk measures are due to Acerbi (2002).

43 See Testuri and Uryasev (2000). See also Embrechts (2000), Embrechts et al. (2001) and Franke et al.
(2000).
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Table 1
Variables definitions
Definition Dimen-
sion
X Portfolio weights nxl1
y Portfolio losses exceeding o for each scenario j m X 1
q Market value of assets nxl1
b Future value of each asset with fixed risk level nx1
D Future value of each asset for each scenario and possible changes in risk level nxm
/ Lower trading limit nx1
u Upper trading limit nxl1
p Probability associated at each scenario mx 1
L Losses due to increase of risk for each asset and each scenario nxm
R Expected assets returns without any change in risk level nxl1
4 Minimal acceptable expected portfolio return 1x1
p'ly — o] is the objective function. It represents the mean with respect to all pos-

sible scenarios of the portfolio losses higher than the threshold o. It is the weighted
average weighted with the probability of each scenario of the portfolio regrets.

L is the n x m loss matrix, loss due to a variation in the value of any of the n assets
for all possible scenario. Thus /;; = b; — d;;. The portfolio loss that must be mini-
mized for all scenarios j (j = 1,...,m) is given by yT = xTL > ae'.

Equality xTq = y where y = eTq, e being the unit vector, provides the budget con-
straint.

Inequality xT(» — n)¢"T = 0T imposes a constraint on portfolio return.

Inequalities / < x < u and/or x > 0 sets position limits.

5.2. Conditional value at risk

5.2.1. Definition of CVaR
For continuous random variables, CVaR is the expected value of the losses ex-
ceeding VaR,, i.e.

CVaR, =gy = (1-0) " [ fnptdy
S(xy) = o (x)
that can also be defined as

CVaR; = VaR; + E[f (x,y) — VaR,|f (x,y) > VaRy].

This definition does not provide any hint of how to compute this measure, without
knowing VaR. Thus we replace CVaR with an auxiliary simpler function F.

5.2.2. An equivalent simpler problem
Define F, as

Fxo) =a+ (1=K~ [ [f(xy) —o p()dy

YER™M
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where [u]" = u if u > 0; and [u]" = 0 if u<0.
It can be proved that ** F;(x, «) is convex and differentiable and that k&-CVaR can
then be computed as follows:

¢/(('x) = ITIEIIIQF;((X, O().

In addition

e
TP ) = IR P )

5.2.3. Computing CVaR via linear programming

In the case in which the analytical representation of the density function is not
available but we can consider m different scenarios, the function Fj(x, o) can be ap-
proximated.

Since F;(x, «) and ¢,(x) (k-CVaR) are both convex, if the admissible set X is con-
vex, then the previous minimization problem can be formulated as the following LP
problem:

mino + (1 — k) "' p[y — o
under the conditions:

y! = xTL > ae”, where e denotes the unit vector,

x'q =y, where y = > |q;,

xT(r — n)g" = 0T, where 0 denotes the zero column vector,
X'r=m,
I<x<u.

It has been pointed out *° that CVaR can be related to ER as follows:
Fi(x,0) = a+ (1 — k) 'G,(x).
5.3. Expected shortfall

In the case of continuous random variables, but only in that case *® the definition
of ES coincides with that of CVaR.

6. Scalar measures of dependence

We are left with the task of defining the concept of dependence among random
variables when their joint distribution is not elliptic. As already mentioned, in this

4 Rockafellar and Uryasev (2002).
45 Testuri and Uryasev (2000).
46 See the papers by Acerbi and by Acerbi and Tasche in this issue.
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case linear correlation cannot be used. We must therefore define the concept of de-
pendence in a general form. Let us start from the definition of concordance (or pos-
itive dependence).

Two distinct observations (¥, y') and (x”, y") of a vector (X, Y) of continuous ran-
dom variables are said to be concordant (or positively dependent) if

X' =x"0 =" >0, ie.
if X >x", theny’ > "

and discordant (or negatively dependent) if
X' =x"0 =" <0, ie.
if X' > X", then y' <y".

Note that dependence is a property of observations of a pair of random variables.
This feature is in sharp contrast with the simple linear correlation measure.

We shall next introduce a classic measure of concordance, called Kendall t.

Consider for that a random sample of n pairs of observations (x!,y')
(x2,3%) ... (x",y") from a vector (X, Y) of continuous random variables. In this sam-
ple there are (;) distinct pairs of observations, each of which can either be concor-
dant or discordant according to the previous definition. If we designate with ¢ the
number of concordant and with d the number of discordant pairs, respectively, Ken-
dall’s 7 is defined as

T:(c—d)/(c—&-d):(c—d)/(g).

Thus Kendall’s 7 is equal to the probability of concordance minus that of discor-
dance for pairs of distinct observations randomly chosen from the sample of n ob-
servations. Like the linear correlation c