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Abstract

The goal of the paper is to show that some types of L�eevy processes such as the hyperbolic

motion and the CGMY are particularly suitable for asset price modelling and option pricing.

We wish to review some fundamental mathematic properties of L�eevy distributions, such as the

one of infinite divisibility, and how they translate observed features of asset price returns. We

explain how these processes are related to Brownian motion, the central process in finance,

through stochastic time changes which can in turn be interpreted as a measure of the economic

activity. Lastly, we focus on two particular classes of pure jump L�eevy processes, the general-

ized hyperbolic model and the CGMY models, and report on the goodness of fit obtained both

on stock prices and option prices.
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1. Introduction

Normality of asset returns has played a central role in financial theory for the last
few decades, starting with the Markowitz frontier and the Capital Asset Pricing
Model and more recently, as a convenient setting for Value at Risk computations.
The normality of distributions has been augmented with the assumption of conti-
nuity of trajectories when Samuelson introduced in 1965 the geometric Brownian
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motion, then used in the seminal papers by Black–Scholes (1973) and Merton (1973).
As documented in a considerable number of papers written by academics and prac-
titioners, both normality and continuity assumptions (which are not identical but re-
lated in a way that we shall make precise later on in the paper) are contradicted by
the data in several pieces of evidence.

Return distributions are more leptokurtic than the normal one as noted by Fama
as early as 1963; this feature is more accentuated when the holding period becomes
shorter and becomes particularly clear on high frequency data. Option prices ex-
hibit the famous volatility smile as well as prices higher than predicted by the Black–
Scholes formula for short-dated options. At the same time, jumps may clearly be
identified in equity data; in fact, the inability to trade continuously implies de facto
jumps in prices. These jumps contribute to (or may be the source of) stochastic vol-
atility while they lead to finite variation trajectories in the absence of a diffusion term,
as observed in practice.

The goal of the paper is to go beyond the Brownian-motion compound Poisson
process introduced by Merton in 1976 (and usually referred to as jump-diffusion)
and analyze as a better alternative two particular classes of pure jump L�eevy processes
on which several authors have focused attention lately. These processes are the gen-
eralized hyperbolic motion and the CGMY process which have been introduced
in the finance literature by Eberlein (1995), Barndorff-Nielsen (1998), on one hand,
Geman et al. (2001), Carr et al. (2002) on the other hand.

We also show how that they are related to Brownian motion, a process which
does exhibit both properties of normality and continuity mentioned. This relation-
ship holds through a stochastic time change which is in fact a measure of the eco-
nomic activity as conjectured in Clark’s (1973) seminal paper, and demonstrated
by Geman and An�ee (1996) and An�ee and Geman (2000).

The remainder of the paper is organized as follows. Section 2 recalls some funda-
mental properties of L�eevy processes and the financial interpretation attached to
them. Section 3 establishes that these processes are necessarily time-changed Brown-
ian motion in a no-arbitrage framework and discusses the properties of the L�eevy
measure in terms of those of the economic clock. Section 4 describes some pure jump
L�eevy processes which have been recently demonstrated as providing a conclusive
goodness of fit of equity markets. The first class is the class of the generalized hyper-
bolic motion, which includes the normal inverse Gaussian process and the hyperbolic
motion; the second one contains the VG and the CGMY models. Section 5 contains
concluding comments.

2. Some fundamentals of Lévy processes

As usual in the finance literature, we represent the uncertainty of the economy by
a filtered probability space, (X, F, Ft, P) where Ft is the filtration of information avail-
able at time t and P is the real probability measure. There will be no change of prob-
ability measure in this section and all definitions and properties of the processes
under analysis will hold with respect to P. The L�eevy processes, which include Poisson
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process and Brownian motion as special cases, were the first class of stochastic pro-
cesses to be studied in the spirit of trajectories, crucial for finance. For notational
simplicity, we are going to consider R-valued processes starting at zero but most
of the results described below hold for Rn-valued processes.

A process X is called a L�eevy process if it has (almost surely) right-continuous
paths and if its increments are independent and time-homogeneous. The first condi-
tion is somewhat technical and ensures that the paths of X cannot explode; the sec-
ond one characterizes L�eevy processes from a modelling standpoint and expresses
that for any time t greater than s, the distribution of the increment (Xt � Xs) depends
only on the length of the interval (t � s) and that (Xt � Xs) is independent of (Xu,
u6 s).

An important consequence is the infinite divisibility of distributions that is derived
from the above property. For simplicity, let us consider X1 (value at the process at
time 1): for any n > 1, we can write

X1 ¼ X1

�
� Xn�1

n

�
þ Xn�1

n

�
� Xn�2

n

�
t þ X2

n

�
� X1

n

�
þ X1

n
: ð1Þ

Hence X1 can be expressed as the sum of n independent identically distributed ran-
dom variables, with common law the law of X1

n
, i.e., the law of X1 is infinitely divisible

(the same holds for all Xt). This is to be compared with the well-cited motivation for
modelling stock returns by the Gaussian distribution, namely that this distribution is
a limiting distribution of sums of n independent random variables (up to a scaling
factor) which may be viewed as representing the effects of various shocks in the
economy.

A second major result, which has direct implications for option pricing, is the ex-
pression of the characteristic function of Xt, known as the L�eevy–Khintchine formula:

E½eiuX1 � ¼ e�t/ðuÞ

where / has the following L�eevy–Khintchine representation:

/ðuÞ ¼ r2

2
u2 � iauþ

Z
jxjP 1

ð1 � eiuxÞkðdxÞ þ
Z
jxj<1

ð1 � eiux þ iuxÞkðdxÞ: ð2Þ

a is called the drift of the L�eevy process, h is the diffusion coefficient and k ðdxÞ is a
measure on R� f0g such thatZ

infð1; x2ÞkðdxÞ < 1

and called the L�eevy measure of the process X.
The L�eevy measure of the process X may also be defined by

kðAÞ ¼ E
X

06 s6 1

1AðDXsÞ
( )

where A is an arbitrary interval bounded away from zero. The L�eevy density has the
same mathematical requirements as a probability density, except that is does not
need to be integrable and must have zero mass at the origin. Integration of the L�eevy
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density over a particular spatial domain provides the arrival rates of jump sizes in
this domain.

Note that in the whole paper, we shall say that the L�eevy process X (which repre-
sents the log of the stock price and will be essentiallly a pure jump process) has in-
finite activity if the integral of the measure k on the real line is infinite. This
expression, also used in turbulence theory, characterizes a ‘‘high’’ rate of arrival of
jumps of different sizes and will adequately allow us to dispense with the need to con-
sider an additional and unrelated diffusion component. At the other end of the spec-
trum, the continuity requirement of diffusion models forces the arrival rates of all
jumps sizes to zero and thus reduces the local variation of uncertainty in the price
dimension to be explained with a single instantaneous volatility parameter.

It is interesting to observe that there is a one-to-one correspondence between L�eevy
processes and characteristic functions represented as in (1). More precisely, starting
with formula (2), we can build three processes X ð1Þ, X ð2Þ, X ð3Þ as follows: Denoting
X ð1Þ

t ¼ �at þ rWt where (Wt) is a standard P-Brownian motion, the characteristic
function of X ð1Þ is straightforward and equal to

/1ðuÞ ¼ iauþ 1
2
r2u2:

Now, consider the process X ð2Þ
t ¼

PNt
j¼1 Yj where N is a Poisson process whose in-

tensity k is defined by

k ¼
Z
jxj>1

kðdxÞ

and Y1; Y2; . . . ; Yn . . . are independent random variables, independent of the process N
and with common distribution

1jxj>1kðdxÞ:

We recognize in X ð2Þ a compound Poisson process whose characteristic function is
e�/2ðuÞ, where

/2ðuÞ ¼ �
Z

ðeiux � 1Þ1jxj>1kðdxÞ:

It may be proved in the same manner that the last term in formula (2) is the char-
acteristic function of a L�eevy process X ð3Þ obtained as a limit of compound Poisson
processes (different from X ð2Þ). Hence

X ¼ X ð1Þ þ X ð2Þ þ X ð3Þ ð3Þ
is the sum of three L�eevy processes independent of one another, hence is a L�eevy
process as well. The same property holds the other way, meaning that any L�eevy
process can be written as above:

X ¼ X ð1Þ þ X ð2Þ þ X ð3Þ:

Let us observe that the decomposition exhibited in (3) illuminates the fact that, in the
same way the instantaneous volatility describes the local uncertainty of a diffusion,
the L�eevy density describes the local uncertainty of a pure jump process.
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Each of X ð1Þ, X ð2Þ, X ð3Þ is a semimartingale, so is X. Hence, any L�eevy process is a
semimartingale. We know that stock prices have to be semimartingales under the
real probability measure P and L�eevy processes appear as a wide natural class of can-
didates for stock prices. The above discussion shows that in order to get continuity
for the trajectories of the process X, the components X ð2Þ and X ð3Þ need to be zero
and the process X to be reduced to

X ð1Þ
t ¼ �at þ rWt :

Hence, the important property:

The only L�eevy process with continuous paths is the Brownian motion (with drift).

From a finance standpoint, this means that if we start with a L�eevy process to de-
scribe the return (or natural log of stock), we obtain normality together with conti-
nuity; expressed differently, it means that it is necessary to introduce discontinuous
L�eevy processes whenever deviations from normality are clearly exhibited by the data.

We have so far gathered the important properties:

(a) L�eevy processes as the representation of stock returns (or price changes) are con-
sistent with the no-arbitrage assumption.

(b) They have the merit of providing infinitely divisible distributions, hence to ex-
press price changes as resulting from a great number of shocks in the economy.

(c) If deviations from normality are clearly exhibited by the data, it becomes neces-
sary to introduce discontinuous L�eevy processes, possibly with a diffusion compo-
nent.

(d) In order to obtain a finite quadratic variation process, the diffusion component
must be zero and the process be a pure jump L�eevy process.

(The quadratic variation of a process (Xt) over a time interval ½a; b� is classically
defined as the limit of

Pn
i¼1½X ðtiþ1Þ � X ðtiÞ�2 when the width of the partition t0 ¼

a < t1 . . . < tnþ1 ¼ b of the interval ½a; b� goes to zero.)
Obviously, a finite variation process is a better representation of real stock prices.

3. Economic activity, time changes and asset price modelling

In order to provide an answer to the deviations of stock returns from normality
already observed at the time, Mandelbrot (1963) proposed the class of stable Pareto
distributions, denoted by SPðaÞ, where a, the characteristic exponent, belongs to the
interval �0; 2�.

In the symmetric case, stable Pareto distributions are defined by the log-character-
istic function

ln /ðtÞ ¼ idt � cjtja

where d denotes the location parameter, c the scale parameter. When the character-
istic exponent a ¼ 2, the stable distribution coincides with the normal distribution;
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for a ¼ 1, it gives the Cauchy distribution. For a < 2, stable distributions are more
peaked around the center than the normal ones and have arbitrarily fat tails since the
variance is infinite. For a6 1, even the first moment does not exist. So far, these
features have led most authors to reject the stable hypothesis for stock price returns.
Since stable processes are L�eevy processes, this shows that some additional properties
must be taken into account to identify suitable ones.

In 1973, Clark offers a strictly different solution to account for the non-normality
of returns since the title of his paper mentions ‘‘a process model with finite variance’’.
Analyzing a database of cotton future price returns, he proposes linking them to
the existence of variations in volume during different trading period and introduces
subordinated processes by writing the return process X ðtÞ as a subordinated process

X ðtÞ ¼ ZðT ðtÞÞ: ð4Þ
According to the definition given by Bochner in 1955, a subordinator T ðtÞ is an
almost surely increasing process with independent and stationary increments; no
specific condition is required on the process Z which is sometimes called in finance
the directing process.

In his seminal paper, Clark conjectured that Z could be chosen as a Brownian mo-
tion, that T ðtÞ be log-normally distributed and have the economic interpretation of
(cumulated) volume traded in the market. Indeed, using historical data on returns
(represented by X) and volume (represented by T), he was able to show that the dis-
tribution of Z did satisfy classical normality tests.

Geman and An�ee (1996) and An�ee and Geman (2000) validate mathematically and
extend Clark’s conjecture by exhibiting two types of results:

(a) A remarkable theorem by Monroe (1978) establishes that any semimartingale
can be written as a time-changed Brownian motion. Since the no-arbitrage as-
sumption implies the existence of a probability measure under which discounted
stock prices are martingales, these stock prices have to be semimartingales under
the real probability measure. Hence the same property holds for the log of the
price and

ln SðtÞ ¼ W ðT ðtÞÞ ð5Þ
where we now know that the directing process W is a Brownian motion.

Comparing formula (5) with formula (4), we observe that the left-hand sides are
similar since the semimartingale property may be written indifferently for S or ln S.
In the right-hand sides however, T ðtÞ is in formula (5) a general time change, only
constrained by the property of being an almost surely increasing process.

(b) Given the considerable amount of empirical literature analyzing the relationship
between volume, price changes, volatility, information arrival, number of trades
(see for instance Karpoff, 1987; Jones et al., 1994), An�ee and Geman (2000) test
the number of trades against volume as the possible representation of the time
change. They conclude through the empirical analysis of high frequency data
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of equity indexes and individual stocks that the (cumulative) number of trades is
a better stochastic clock for generating virtually perfect normality of returns.

Formula (5) illuminates how asset prices respond to the arrival of information. Some
days, very little news, good or bad, is released; trading is typically slow and prices
barely fluctuate. In contrast, when new information arrives and traders adjust their ex-
pectations accordingly, trading becomes brisk and the price evolution accelerates.

Before turning to the discussion of the different processes generated for the stock
price by interesting choices of the time change T, it is worth noticing that the con-
stant volatility in the arithmetic Brownian W is going to give rise to stochastic vola-
tility for the stock price process S when it is ‘‘compounded’’ with a stochastic time T.
Geman and Yor (1993) who introduced general time changes for solving the valua-
tion of an Asian option in the classical Black–Scholes setting also observe how these
time changes appear as a natural tool to handle stochastic volatility. Taking the Hull
and White (1987) model where the squared volatility is supposed to be driven by a
geometric Brownian motion, they use a stochastic time change to solve for the aver-
age ‘‘perfect replication time’’ of put options in portfolio insurance strategies. Fol-
lowing the Geman–Yor representation of time-varying volatility through time
change, itself in turn expressed by the economic clock, An�ee and Geman (1999) pro-
pose an activity-based volatility estimator and show that it performs better than both
historical and implied volatilities as a predictor of future realized volatility.

Coming back to formula (5), we observe that two types of randomness come into
play in the return process: The Brownian motion and the time change. Due to the
self-similarity property of Brownian motion,

W ðc2tÞ ¼ cW ðtÞ for c > 0;

the qualitative features of trajectories do not change if we change the time-scale. In
contrast, real stock price paths change dramatically if we look at them on different
time scales (see for instance Table 1).

Table 1

Comparison of skewness and kurtosis at different time scales

Mean Variance Skewness Kurtosis

Cisco systems 1-min returns

4.2292 E�06 4.9975 E�07 2.2655 E�01 40.852

Cisco systems 10-min returns

4.2287 E�05 3.4759 E�06 3.1943 E�01 17.0438

Intel 5-min returns

�5.2863 E�06 1.0241 E�06 �9.5237 E�02 21.2283

Intel 15-min returns

�1.5839 E�05 70.969 E�07 �1.7460 E�01 12.2681

Moments for Cisco Systems and Intel stock returns are presented in this table. The time period goes from

January 2, 1997 to December 31,1997; the data have been collected from Reuters. The number of ob-

servations for the period of analysis is n ¼ 101, 707 and 10,171 for the Cisco systems series on 1-min and

10-min intervals and n ¼ 20, 352 and 6784 for the Intel series on 5-min and 15-min intervals.
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The stochastic clock in formula (5) will precisely account for the representation of
returns by different classes of distributions for different holding periods as already
recommended by Fama (1965). From a modelling standpoint, it is interesting to ob-
serve that in some way, Mandelbrot and Clark agreed on their correction of normal-
ity of returns since a stable process is also a time-changed Brownian. For a stable
process with index a, where a is between 0 and 2, the L�eevy measure is

kðdxÞ ¼ 1

xaþ1
dx for x > 0:

The characteristic function of a Brownian motion evaluated at an independent in-
creasing stable process T of index a is given by

E½expðiuW ðT ðtÞÞÞ� ¼ E exp
�u2T ðtÞ

2

� 	
 �
¼ exp

h
� t

c
2

� �
juj2a

i
:

Hence the process X ðtÞ ¼ W ðT ðtÞÞ is a stable process of index 2a.
Another property that we can derive from Monroe’s theorem relates to a finding

which has been proposed in finance by several authors as an answer to the observed
lepkokurtosicity of the return distribution as a mixture of normals.

Choosing for simplicity a discrete fT for T, we can write

P ðX ðtÞ 2 dxÞ ¼
X
u

PðX ðtÞ 2 dx=T ðtÞ ¼ uÞfT ðuÞ:

Now, assuming the independence of the processes W and T, we obtain

P ðX ðtÞ 2 dxÞ ¼
X
u

PðW ðuÞ 2 dxÞfT ðuÞ:

Hence, the distribution of Y appears as a mixture of normal distributions, where the
mixing factor is the density of the time change, which itself accounts for the market
activity measured by the volume or number of trades. It is interesting to note that in
one of the most cited papers on the subject, Richardson and Smith (1994) have as a
goal stated in the title the measure of daily flow information through the test of the
mixture of distributions hypothesis.

Lastly, we can observe that the continuity of the process (SðtÞ) is equivalent to the
continuity of the process T ðtÞ. If T ðtÞ is continuous, then it may be written in the fol-
lowing form:

T ðtÞ ¼
Z t

0

aðuÞduþ
Z t

0

bðuÞdZðuÞ:

Because T ðtÞ is increasing, bðuÞ  0 and the time change is locally deterministic. This
is an undesirable property since we believe T ðtÞ is related to locally random market
activity like the arrival of orders or information; hence T cannot be continuous. This
is another argument in favor of the jump processes introduced in the following
section.
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4. Pure jump Lévy processes in finance

The normal inverse Gaussian process, the hyperbolic motion, the variance gamma
and the CGMY model are L�eevy processes which share the property of being pure
jump and infinite activity. Their empirical performance in fitting stock prices and
equity option prices has been recently evidenced by a number of authors. In all four
cases, the tractability of the characteristic function allows to recover option prices
through the fast Fourier transform (see Carr and Madan, 1998). Hence, it suffices
to assume the same structure of the process with possibly different parameters under
the real probability measure P and the risk-neutral probability measure Q to test the
goodness of fit both on stock and option data.

Generalized hyperbolic distributions were proposed by Barndorff-Nielsen (1977)
for modelling the grain size of wind blown sand. They contain as subclasses the hy-
perbolic distribution and the normal inverse Gaussian model, respectively intro-
duced in finance by Eberlein and Keller (1995) and Barndorff-Nielsen (1998).

4.1. The normal inverse Gaussian model

Its characteristic function is defined by three parameters:

/NIGðu; a; b; tdÞ ¼ exp



� td

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðb þ iuÞ2

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q 	�
:

The linearity of the log of the characteristic function with respect to time shows that
it is an infinitely divisible-process with stationary independent increments.

We can also recognize the general property of being a time-changed Brownian
motion is also satisfied by this L�eevy process:

X ðtÞ ¼ W ðT ðtÞÞ

with the interesting feature that the time change T may be chosen as an inverse
Gaussian process independent of the directing Brownian motion W.

For T positive, define T v
t the first time that a Brownian motion with drift v reaches

the positive level t. The density of T v
t is inverse Gaussian and its Laplace transform

has a simple expression of the form

E½expð�kT v
t Þ� ¼ exp

h
� t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ v2

p�
� v
�i

:

If now we consider the Brownian motion with drift h and volatility r computed at
this Gaussian time, we define a new process XNIG by

XNIGðt; r; v; hÞ ¼ hT v
t þ rW ðT v

t Þ:

This normal inverse Gaussian process has a characteristic function which is fairly
simple:
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E½eiuXNIGðtÞ� ¼ E exp iuhT v
t

�

� r2u2

2
T v
t

	�

¼ E exp iuh
�


� r2u2

2

	
T v
t

�

¼ exp
h
� t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 2iuh þ r2u2

p
� v
i

¼ exp

0
@� tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

r2
þ h2

r4
� h

r2
þ iu

� 	2
s

� v
r

1
A:

Denoting for simplication

b ¼ h
r2

a2 ¼ v2

r2 þ h2

r4

d ¼ r

8>>>><
>>>>:

we can write the NIG process as

XNIGðT ; a; b; dÞ ¼ bd2T d
ffiffiffiffiffiffiffiffiffi
a2�b2

p
t þ dW T d

ffiffiffiffiffiffiffiffiffi
a2�b2

p
t

� 	
:

Conditioning on a jump of size u in the time change, the move for the process X is
Gaussian with mean bd2u and variance d2u. As seen earlier, the arrival rate of the
jumps is given by the L�eevy density, which in the case of the inverse Gaussian time T,
has the following expression:

kðuÞ ¼
exp �d2ða2�b2Þ

2
u

h i
u3=2

:

It follows that the L�eevy density for the NIG process is

Z 1

0

1

d
ffiffiffiffiffiffiffiffi
2pu

p exp
�ðx� bd2uÞ2

2d2u

 !
1

u3=2
exp

�d2ða2 � b2Þ
2

u
� 	

du

¼ 1

d

Z 1

0

1ffiffiffiffiffiffi
2p

p t�2 exp
�d2a2

2
t

�
� x2

2d2t

	
dt

¼ ebx

d

Z 1

0

1ffiffiffiffiffiffi
2p

p exp

�
� s� x2a2

4s

	
s�2 d2a2

2
ds:

We introduce the modified Bessel function Ka (see Abramovitz and Stegun, 1972):

KaðxÞ ¼
1

2

x
2

� �a
Z 1

0

exp

�
� t
�

þ x2

4t

		
t�a�1 dt

which allows to extract
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Z 1

0

exp

�
� t
�

þ x2

4t

		
t�a�1 dt ¼ 2KaðxÞ

2

x

� 	a

:

Hence, the NIG L�eevy density above written involves the Bessel function K1 with
index 1 and reduces to

kNIGðX Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

p
da2

r
ebx K1ðjxjÞ

jxj : ð6Þ

We can observe that the integral of kNIG over the real line is infinite; hence, the NIG
process has infinite activity. Venter and de Jongh (2002) confirm the quality of the
fitting obtained with the NIG process on a database of returns of the FT-Actuaries
All-Share Index for the UK from January 1965 to December 1995. Morevover, they
show that when VAR is the risk measure, the NIG based approach is found to be
more robust than the extreme value theory (EVT) method for samples of sizes up to
250 and also in larger samples if the NIG distribution fits well. According to these
authors, the EVT method should only be used in large samples if the NIG distri-
bution does not fit adequately.

4.2. The hyperbolic and generalized hyperbolic distributions

The hyperbolic distribution has a density given by

fða;b;d;lÞðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
2adK1 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q� 	 expð�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� lÞ2

q
þ bðx� lÞÞ

where K1 denotes the modified Bessel function with index 1.
Barndorff-Nielsen and Halgreen (1977) show that the hyperbolic distribution can

be represented as a mixture of normals, where the mixing distribution is a general-
ized inverse Gaussian with density

hðxÞ ¼
ffiffiffiffiffiffiffiffi
x=c

p
2K1

ffiffiffiffiffiffi
xc

p� � exp

�
� 1

2
ðcx�1 þ xxÞ

 
for x > 0:

Let c ¼ d2 and x ¼ a2 � b2 and introduce a normal distribution with mean l þ br2

and variance r2 such that r2 is a random variable with distribution hðxÞ. Then the
mixture is a hyperbolic distribution fa;b;d;l defined above.

We observe that:

• the log-density is a hyperbola, hence the name (as opposed to a parabola for the
log-density of the normal distribution),

• it provides heavier tails,
• it is characterized by four parameters: l 2 R, d > 0 and 06 jbj < a,
• a and b determine the shape (b being responsible for skewness),
• d and l are respectively scale and location parameters.
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The moment generating function of the hyperbolic motion is given by

MðuÞ ¼
elu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
K1 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q� 	 K1 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðb þ uÞ

p 2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðb þ uÞ2

q

where jb þ uj < a.

Proof. It is just a straightforward computation of the integral

MðuÞ ¼
Z

euxfða;b;d;lÞðxÞdx:

Hence all moments of the hyperbolic distribution exist and can be obtained through
the derivatives of M evaluated at t ¼ 0. �

The L�eevy–Khintchine representation of the characteristic function in the symmet-
ric centered case (b ¼ l ¼ 0) has the following expression:

/ðuÞ ¼ exp

Z
ðeiux � 1 � iuxÞgðxÞdx

with

gðxÞ ¼ 1

jxj

Z 1

0

e�
ffiffiffiffiffiffiffiffiffiffiffiffi
2yþa2jxj

p
dy

p2y J 2
1 d

ffiffiffiffiffi
2y

p
ð Þ þ Y 2

1 d
ffiffiffiffiffi
2y

p
ð Þð Þ

"
þ e�ajxj

#

where J1 and Y1 are Bessel functions.
Using the asymptotics of the various Bessel functions, one can deduce that

gðxÞ � 1=x2 for x ! 0; hence every path of the process has infinitely many jumps
in any finite interval. However, the magnitude of the jumps is such that the moment
generating function exists, which is in contrast to the a-stable L�eevy process.

The generalized hyperbolic distribution involves an extra-parameter k and has the
following density:

fGHðx; k; a; b; d; lÞ ¼ aðk; a; b; dÞðd2 þ ðx� lÞ2Þ
k�1

2ð Þ
2

� Kk�1
2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðx� lÞ2

q
expðbðx

�
� lÞÞ

	

where

aðk; a; b; dÞ ¼ ða2 � b2Þk=2

ffiffiffiffiffiffi
2p

p
ak�1

2dkKk d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q� 	

is the normalizing constant. Kv denotes as before the Bessel function with index v.
The extra-parameter k characterizes certain sub-classes and has essentially an impact
on the heaviness of the tails. For k ¼ 1, we recover the sub-class of hyperbolic dis-
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tributions, for k ¼ �1=2 the normal inverse Gaussian. The fact that generalized
hyperbolic distributions are infinitely divisible allows to generate a L�eevy process (Xt)
such that the distribution of X1 has the density fGH defined earlier. This process is
defined by Eberlein (1999) as the generalized hyperbolic L�eevy motion.

Eberlein et al. (1998) show that hyperbolic distributions allow an almost perfect fit
to financial data, both in spot and derivative markets; their empirical analysis inves-
tigated in particular major German stocks such as Deutsche Bank, Thyssen, the
DAX index as well as options on these various underlyings. Fig. 1 shows the distri-
bution of returns for the Schering stock, a pharmaceutical company included in the
DAX index.

4.3. The variance gamma model

Madan et al. (1998) introduce the process defined by an arithmetic Brownian mo-
tion with drift h and volatility r, time-changed by an increasing Gamma process with
unit mean and variance v, resulting in the three parameter process

X ðt; r; v; hÞ ¼ hGðt; vÞ þ rW ðGðt; vÞÞ
where Gðt; vÞ is the Gamma process and W ðtÞ is a standard Brownian motion. The
probability density of the gamma process with mean rate t and variance vt is well
known:

f ðuÞ ¼ u
t
v�1e

�u
v

vt
vC

t
v

� �
where CðxÞ denotes the classical gamma function. Its Laplace transform reduces to

E½expð�kGv
t Þ� ¼ ð1 þ kvÞ�t=v

: ð7Þ
It results that the variance gamma process has a particularly simple characteristic
function,

Fig. 1. Repeal Schering stock distribution fitted by the hyperbolic model.
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/vGðuÞ ¼
1

1 � ihvuþ r2v
2
u2

 !t=v

;

obtained by conditioning on the time change and using (7) for

k ¼ r2u2

2
� ihu:

The moment equations can be uniquely solved for the parameters:

variance ¼ h2vþ r2;

central third moment ¼ 2h3v2 þ 3r2hv;

central fourth moment ¼ 3 variance2 þ 3r4vþ 12r ¼ þh2v2 þ 6h4v3:

Geman et al. (2001) show that the variance gamma process may be expressed as the
differences of two independent gamma processes.

X ðtÞ ¼ GpðtÞ � GnðtÞ

where GpðtÞ may be interpreted as the price change resulting from ‘‘positive’’ shocks
and GnðtÞ the price change resulting from ‘‘negative’’ shocks. It suffices for instance
to write

1

1 � ihvuþ r2v u2

2

¼ 1

1 � iugp

 !
1

1 þ iugn

� 	

where

gp � gn ¼ hv

gpgn ¼ r2v
2

which in turn results into

gp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2v2

4
þ r2v

2

s0
@ � hv

2

1
A

�1

;

gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2v2

4
þ r2v

2

s0
@ þ hv

2

1
A

�1

:

The fact that the VG process X may be written as the difference of the processes
GpðkÞ and GnðkÞ implies that it is a finite variation process. Moreover, the knowledge
of the positive and negative moves allows the determination of the L�eevy density
under the following form:
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kVGðxÞ ¼
C expð�MxÞ

x ; x > 0;

C expð�GjxjÞ
jxj ; x < 0;

8<
:

where

C ¼ 1

v
; G ¼ 1

gn

; M ¼ 1

gp

:

Appearing as a scale factor in the L�eevy measure both for positive and negative
moves, the constant C characterizes the general activity intensity of the process while
the parameters G and M define the speed at which arrival rates decline with the size
of the move. In a parallel interpretation, we may come back to the moment equa-
tions written earlier and observe that the parameter h provides skewness to the
distribution as it enhances the left tail when negative by both decreasing G and si-
multaneously increasing M; the opposite holds for h > 0. The parameter v provides
kurtosis which, in the absence of skew (h ¼ 0), is equal to 3 (1 þ v).

In the spirit of Section 3, it is interesting to note that v is non-zero whenever the
time change Gðt; vÞ is stochastic, which equivalently corresponds to the situation of
excess kurtosis created by stochastic volatility. Lastly, we can observe that the inte-
gral of k on the real line, which is the situation that we described as infinite activity
for the L�eevy measure.

4.4. The CGMY process

As seen in the previous paragraphs, the NIG process has infinite activity and in-
finite variation; the VG process has finite variation and infinite activity. To represent
these various possibilities for different values of the parameter set, Carr et al. (2002)
introduce the following L�eevy density:

kCGMYðxÞ

Ce�Mx

x1þY
; x > 0;

Ce�G xj j

xj j1þY ; x < 0:

8>>><
>>>:

The parameter Y captures the ‘‘fine’’ structure of the process in the following way:
for low values of Y, the L�eevy density integrates to a finite value yielding a process of
finite activity. At the same time, the integral of xj j times the L�eevy density is also finite
and the process has finite variation, as a compound Poisson process. For higher
values of Y (typically between 0 and 1), the process has infinite activity and infinite
variation, like the VG process. For yet higher values of Y (between 1 and 2), the
process has infinite activity and infinite variation like the NIG process.

The CGMY characteristic function is obtained by integration as

log½/CGMYðuÞ� ¼ CtCð�yÞfðM � iuÞY �MY þ ðGþ iuÞY � GY g:
In order to envision the possibility of moves other than jumps, the CGMY process is
extended to CGMYe model by addition of a diffusion component
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XCGMYeðtÞ ¼ XCGMYðtÞ þ gW ðtÞ

where g is a real number.
The CGMYe characteristic function is given by

log½/CGMYeðuÞ� ¼ log½/CGMYðuÞ� � g2u2 t
2
:

The CGMYe stock price process is defined by

SðtÞ ¼ Sð0Þ exp l

��
þ x � g2

2

	
t þ XCGMYeðtÞ

 

where

x ¼ �1

t
log /CGMY Ið Þ½ �

ensures that the mean rate of return is l.
The log characteristic function of the log stock price is

log½/ln sðuÞ� ¼ iu ðln Sð0ÞÞ



þ l

�
þ x � g2

2

	
t
�
þ log½/CGMYeðuÞ�:

The higher moments of the CGMYe process are

E X½ � E Xð Þ�2 ¼ g2 þ
Z þ1

�1
x2k xð Þdx;

E X½ � E Xð Þ�3 ¼
Z þ1

�1
x3k xð Þdx;

E X½ � E Xð Þ�4 ¼ 3ðvarianceÞ þ
Z þ1

�1
x4k xð Þdx:

Carr et al. (2002) report on the goodness of fit obtained with the CGMY model on
US individual stocks and equity indices. Equity indices such as the SPX behave like
processes of infinite activity and finite variation. Quite interestingly, testing the
CGMYe against the CGMY representation shows the absence of a diffusion com-
ponent in equity indices, hence the conjecture that diffusion components possibly
existing in individual stock prices are diversified away in the index whose moves are
pure jumps. This is a message quite different from the assumption of zero market
price of jump risk in jump-diffusion models such as Merton (1976); it is in agreement
with the perception that on any day the whole market moves together, sometimes
because of a sharp price change in a single name, as observed over the recent years.
Fig. 2 shows the excellent fit obtained on a database of the SPX index over the period
January 1, 1994 to December 31, 1998 using the pure jump CGMY without any
diffusion term.

The same mathematical structure may be used for the risk-neutral process where
the mean is set to equal the interest rate and the three other parameters are deter-
mined by matching option prices. More precisely, the stock price process is modelled
under the risk-adjusted probability measure Q by
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SðtÞ ¼ Sð0Þ exp½ðr � qþ xÞt þ XC0G0M0Y0 ðtÞ�

where x ¼ �ð1=tÞ ln½/C0G0M0Y0 ð�iÞ� ensures that the mean rate of return is ðr � qÞ,
denoting the dividend yield.

The Fourier transform of a standard European call price may be expressed in
terms of the log of the strike as

cðuÞ ¼
Z þ1

�1
eiukeakCðkÞdk

where the call has a strike ek and the term eak is meant to ensure the convergence of
the integral.

Call prices are then recovered by inversion,

CðkÞ ¼ ðe�ak=2pÞ
Z þ1

�1
eiukcðuÞdu;

and the parameters under the risk-neutral measure are derived by calibration to
option market prices.

Figs. 3–5 show the quality of the fitting obtained with a pure jump CGMY (prop-
erly risk-neutralized) in the case of the Stoxx50E volatility surface. The calibration is
superior when adjusting separately short maturities on one hand and long maturities
on the other hand. A more complex version of the CGMY model, currently under
completion, will allow to handle all strikes and maturities at once.

Fig. 2. SPX index distribution fitted by the CGMY model.
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Fig. 4.

Fig. 3.
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5. Conclusion

We argue in this paper that pure jump L�eevy processes with finite variation and
infinite activity are better representations of stock price dynamics than the classical
diffusions or jump-diffusion models. Their representation as time-changed Brownian
motion allows to shift the focus of attention to modelling the time change which it-
self reflects the intensity of the economic activity through news arrival and trades.
We provide examples which have lately been evidenced to perform very well in fitting
financial data in US and European equity markets. The existence of explicit ex-
pressions for the characteristic functions of the NIG/hyperbolic motion and CGMY
processes reduces the complexity of the underlying L�eevy measures to a simple repre-
sentation, quite amenable for statistical estimation.

References

Abramovitz, M., Stegun, I., 1972. Handbook of Mathematical Functions. Applied Mathematics Series,

vol. 55. Springer, Berlin.

An�ee, T., Geman, H., 1999. Stochastic volatility and transaction time: An activity-based volatility

estimator. The Journal of Risk 2, 57–69.

An�ee, T., Geman, H., 2000. Order flow, transaction clock and normality of asset returns. Journal of

Finance.

Fig. 5.

H. Geman / Journal of Banking & Finance 26 (2002) 1297–1316 1315



Barndorff-Nielsen, O., Halgreen, O., 1977. Infinite divisibility of the hyperbolic and generalized inverse

Gaussian distributions. Zeitschrift f€uur Wahrscheinlichkeitstheorie und Verwandte Gebiete 38, 309–312.

Barndorff-Nielsen, O., 1998. Processes of normal inverse Gaussian type. Finance and Stochastics 2, 41–68.

Black, F., Scholes, M., 1973. The pricing of option and corporate Liabilities. Journal of Political Economy

81, 637–654.

Carr, P., Geman, H., Madan, D., Yor, M., 2002. The fine structure of asset returns: An empirical

investigation. Journal of Business.

Carr, P., Madan, D., 1998. Option valuation using the fast Fourier transform. Journal of Computational

Finance 2, 61–73.

Clark, P., 1973. A subordinated stochastic process with finite variance for speculative prices. Econometrica

41, 135–155.

Eberlein, E., Keller, U., 1995. Hyperbolic distributions in finance. Bernoulli 1, 281–299.

Eberlein, E., Keller, U., Prause, K., 1998. New insights into smile, mispricing and value at risk: The

hyperbolic model. Journal of Business 71 (3).

Eberlein, E., 1999. Application of generalized hyperbolic L�eevy motions to finance. L�eevy Processes.

Birkha€uuser, Basel.

Fama, E., 1965. The behavior of stock market prices. Journal of Business 38, 34–105.

Geman, H., An�ee, T., 1996. Stochastic Subordination, RISK, September.

Geman, H., Madan, D., Yor, M., 2001. Times changes for L�eevy processes. Mathematical Finance 11, 79–

96.

Geman, H., Yor, M., 1993. Bessel processes, Asian options and perpetuities. Mathematical Finance 2,

349–375.

Hull, J.C., White, A.D., 1987. The pricing of options on assets with stochastic volatilities. Journal of

Finance 42 (2), 281–300.

Jones, C., Kaul, G., Lipson, M., 1994. Transactions, volume and volatility. Review of Financial Studies 7,

631–651.

Karpoff, J., 1987. The relation between price changes and trading volume: A survey. Journal of Financial

and Quantitative Analysis 22, 109–126.

Madan, D., Carr, P., Chang, E., 1998. The variance gamma process and option pricing model. European

Finance Review 2, 79–105.

Mandelbrot, B., 1963. New methods in statistical economics. Journal of Political Economy 61, 421–440.

Merton, R.C., 1973. Theory of rational option pricing. Bell Journal of Economics and Management

Science 4, 141–183.

Merton, R.C., 1976. Option pricing when underlying stocks are discontinuous. Journal of Financial

Economics 3, 125–144.

Monroe, I., 1978. Processes that can be embedded in Brownian motion. The Annals of Probability 6 (1),

42–56.

Richardson, M., Smith, T., 1994. A direct test in the mixture of distributions hypothesis: Measuring the

daily flow of information. Journal of Financial and Quantitative Analysis 29, 101–116.

Venter, J., de Jongh, P., 2002. Risk estimation using the normal inverse Gaussian distribution. The Journal

of Risk 2, 1–25.

1316 H. Geman / Journal of Banking & Finance 26 (2002) 1297–1316


	Pure jump Le&acute;vy processes for asset price modelling
	Introduction
	Some fundamentals of Le&acute;vy processes
	Economic activity, time changes and asset price modelling
	Pure jump Le&acute;vy processes in finance
	The normal inverse Gaussian model
	The hyperbolic and generalized hyperbolic distributions
	The variance gamma model
	The CGMY process

	Conclusion
	References


