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Abstract

Fuzzy equivalents of all the classical capital budgeting (investment choice) methods are generalised or proposed. These
equivalents can be used to evaluate and compare projects in which the cash ows, duration time and required rate of
return (cost of capital) are given imprecisely, in the form of a fuzzy number. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The aim of this paper is to propose a practical tool of incorporating uncertainty into capital budgeting
(investment decisions) in its simplest form – when we want to be able to decide for a single investment
decision whether to reject it or to accept it (or, when there are alternative projects, which one to choose).
There are a variety of methods used in capital budgeting (see e.g. [2, 6, 18]) a survey of which we give in

Section 2. However, the classical forms of these methods do not take into account the uncertainty which may
be inherent in the information used in them. This information (see e.g. [18, 19]) includes: future cash in- and
outows, the required rate of return of the investment or cost of capital, the duration of the project.
There exist several ways of incorporating uncertainty in the capital budgeting decision making (see e.g.

the items referred to above and [7, 15, 16, 20, 21]). Some of them are based on intuitive modi�cation of
the data used in the classical methods (like the “risk adjustment”, which consists in increasing the present
cost of capital by a constant in later stages of projects being analysed), some replace the deterministic
data with their random equivalents. The intuitive methods are widely used in practice, but they have the
disadvantage of depending too much on the intuition of the decision maker. The probabilistic approach does
propose formalised approaches, but, as it is pointed out in [7, 15, 16, 22], there are other problems connected
with it. The probability theory is much less exible than the fuzzy sets theory: it requires the ful�lment
of several assumptions about probabilistic distributions and operations on them, and these assumptions are
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seldom ful�lled for the distributions used in capital budgeting. Moreover, in order to be applied it requires
much more information than is usually available about the investments an enterprise considers to undertake –
and fuzzy sets can be applied even with rather scanty information.
That is why several authors (see e.g. [4, 19, 7, 15, 16]) have used another approach, which we can call the

possibilistic or fuzzy one. In this approach instead of probability distributions possibilistic distributions or
fuzzy numbers are used.
Although Buckley in [4] proposed a fuzzy capital budgeting theory already more than 10 years ago, and

some other authors contributed to it too [7, 8, 17], recent papers discussing how �rms deal with risk/uncertainty
in practice (e.g. [20, 21]) show no trace at all of the possibilistic/fuzzy approach (an exception is [19]). The
question arises why it is so, given the fact that literature contains no explicit criticism of this method either.
In our opinion the reasons might include the following:

• The authors of [4, 17] indicate some formal problems (e.g. in the internal rate of return method), claiming
that certain capital budgeting decision methods cannot be used in the fuzzy approach.

• Buckley in [4] does not take into account some methods which are widely used in practice (e.g. the payback
period method, very popular in practice (see e.g. [7, 13])).

• In the same paper some assumptions are made which do not have to be ful�lled in practice (e.g. that the
cash ows are either positive or negative fuzzy numbers).
The aim of this paper is to invalidate the reasons listed above or at least to weaken their force. In other

words, we will try to complete Buckley’s approach, hoping to make it in this way more apt to be used in
practice.
We start by de�ning the problem and listing the capital investment methods used in practice in their classical

form. Further in the paper all of them will be given a “fuzzi�ed” form.

2. A survey of capital budgeting methods in the classical, crisp case

We consider the following problem:
There is a project or another type of investment which might be interesting for the company to undertake.

We want to get a numerical estimation of this investment which will allow us to say whether to accept it or
not and to compare this project with alternative ones.
The following data for the project must be given (in this section we assume them to be real numbers,

further in the paper they will be fuzzi�ed).
(a) n – the duration of the project in assumed time units (here years), in this section n is integer;
(b) COFi (a non-negative number) – cash outow at the end of the ith year (i = 0; 1; : : : ; n) and CIFi (a

non-negative number) – cash inow at the end of the ith year (i = 1; : : : ; n). Both yearly cash ows
will be often summarised as a single cash ow CFi, occurring at the end of the ith year (i = 0; 1; : : : ; n),
where CF0 = −COF0; CFi = CIFi − COFi (i = 1; : : : ; n).

(c) r (a positive real number) – the required rate of return of the investment or cost of capital (for the
way the r is determined and various assumptions that are made see e.g. [2, 3]).

Although generally we assume that the duration of the project is n years, where n is an integer, additionally
we will consider a situation when the project �nishes before the end of the nth year, after the �-part of the
nth year has elapsed. In this case we take into account only a fraction of the �nal cash ows which would
take place at the end of the year. These fractions would be equal to �COFn; �CIFn; �CFn. We also assume
that the rate of return corresponding to the �-part of an arbitrary year is �r, where r is the rate of return for
the whole year.
This supplement to the normal case of an integer duration may be interesting, per se, but here its main

role is to illustrate the reasoning which we will use in the case of fuzzy duration time and in the de�nitions
of sums in which the upper value of the summation index will be an interval or a fuzzy number.
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Here are several methods used in practice and permitting to evaluate a project given by the data described
above. E will denote the output of each method, i.e. the numerical estimation of the given project according
to this method. Several estimations are possible: E may be the di�erence between all the revenues and all the
expenditures connected with the project (i.e. a kind of pro�t delivered by the project) or the time it is going
to take for the project to pay o� the money which were initially invested in it. E will serve as a basis for
the rejection or acceptance decision.
(1) Revenues per one dollar method:

E =
n∑
i=1

CIFi

/ n∑
i=0

COFi:

Obviously, the bigger E, the better the project.
Alternatively, it is possible to calculate other ratios, like

E =

(
n∑
i=1

CIFi −
n∑
i=0

COFi

)/ n∑
i=0

COFi:

When the project �nishes after the �-part of the nth year has elapsed, the ratios become

E|� =
(
n−1∑
i=1

CIFi + �CIFn

)/(
n−1∑
i=0

COFi + �COFn

)
;

E|� =
[(

n−1∑
i=1

CIFi + �CIFn

)
−
(
n−1∑
i=0

COFi + �COFn

)]/(
n−1∑
i=0

COFi + �COFn

)
:

(2) Payback period method:

E = min
k=1;:::; n

{
k :

k∑
i=0

CFi¿0;∞
}

or E = min
k=1;:::; n

{
k :

k∑
i=0

CFi
(1 + r) i

¿0;∞
}
;

(the division of the cash ow in the ith year by (1+ r)i expresses the value of this cash ow in the monetary
units of the present moment).
In this case, the smaller E, the better the project.
When the project �nishes after the �-part of the nth year has elapsed, the respective evaluations become

E|� = min
k=1;:::; n

{
k:

k∑
i=0

CF ′
i¿0

}
;∞ where CF ′

i = CFi (i = 0; 1; : : : ; n− 1); CF ′
n = �CFn;

E|� = min
k=1;:::; n

{k: Sk¿0;∞}; where Sk =
k∑
i=0

CFi
(1 + r) i

for k = 1; : : : ; n− 1

and

Sn =
n−1∑
i=0

CFi
(1 + r) i

+
�CFn

(1 + r)n−1(1 + �r)
:

(3) Net present value:

E = CF0 +
n∑
i=1

CFi
(1 + r) i

(usually denoted as NPV ):
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E represents the value of the project at the beginning of the year it is started. A bigger E means here that the
project is better. Usually, there is some limit, minimal value of E required for the acceptance of the project
(e.g. 0).
If the project �nishes when the �-part of the nth year has elapsed, the respective evaluation becomes

E|� = NPV |� =
n−1∑
i=0

CFi
(1 + r) i

+
�·CFn

(1 + r)n−1(1 + �·r) :

(4) Net future value: Here we calculate the value of the project at the end of the mth year. The mth year
can be the last year of the project or any following one (i.e. m¿n). Although usually projects are evaluated
on the basis of their present value, also the future value (in a future year common for the projects being
compared) can be used for this purpose (see e.g. [10]).

E(m) =
n∑
i=0

CFi(1 + r)m−i for any integer m¿n:

In case of a project �nishing before the end of the nth year, after the �-part of the nth year, we get

E(m)|� =
n−1∑
i=0

CFi(1 + r)m−i + �·CFn(1 + (1− �) · r)(1 + r)m−n if m¿n:

(5) Method of utility of the net present value:

E = 1− 1
ebU ·NPV

or E|� = 1− 1
ebU ·NPV |�

;

where bU (a positive real number) is the risk aversion constant of the decision maker. The constant bU is
usually equal to a fraction of the equity of the enterprise and expresses the degree to which the decision
maker is ready to take a risk (the bigger the constant, the less cautious the decision maker is).
Like in the previous method, the bigger the C, the better.
(6) The internal rate of return method: E is a solution of the following equation:

CF0 +
n∑
i=1

CFi
(1 + E) i

= 0:

In order for this solution to be unique and for the interpretation of this solution to be reasonable (see e.g.
[3]), we assume that CFi¿0 for i = 1; : : : ; n:
When the project �nishes after the �-part of the nth year has elapsed, E|� is a solution of the following

equation:

CF0 +
n−1∑
i=1

CFi
(1 + E|�)i +

�·CFn
(1 + E|�)n−1(1 + �·E|�) = 0:

(7) The modi�ed internal rate of return method [3]: In this case no additional assumptions about cash
ows CFi are necessary. E is a solution of the following equation:

n∑
i=0

COFi
(1 + r) i

=
∑n

i=0 CIFi(1 + r)
n−i

(1 + E)n
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and E|� of the following one:
n−1∑
i=0

COFi
(1 + r) i

+
�·COFn

(1 + �·r)(1 + r)n−1 =
∑n−1

i=0 CIFi(1 + r)
n−i + �·CIFn(1 + (1− �)r)

(1 + E|�)n−1(1 + �E|�) :

On the left-hand side of the above equations we have the present value of all the outows, and on the right-
hand side the future value of all the inows reported afterwards to the present moment through the unknown
modi�ed internal rate of return.
The evaluations E for all the capital budgeting methods presented here can be easily found using, e.g.

spreadsheets.

3. Notation, interval and fuzzy numbers and operations performed on them

We start our presentation with interval numbers (using [12] as a basis), which will be necessary in de�ning
fuzzy numbers and operations on the latter. The operations on interval numbers can be interesting also per se,
as the whole content of the paper may be easily referred just to the interval numbers as another way of
representing uncertainty in capital budgeting decisions (see e.g. [9]).

3.1. Interval numbers and operations performed on them

Let A = [a1; a2]; B = [b1; b2], etc., denote real, closed intervals, which we will call interval numbers.
Let us start with the following de�nition:

De�nition 3.1. Let s be an arbitrary real number. Then
(a) [a1; a2]¿ s⇔ a1 ¿ s; [a1; a2]¡ s⇔ a2 ¡ s:
(b)

s [a1; a2] =


[sa1; sa2] if s ¿ 0;
[0; 0] if s = 0;
[sa2; sa1] if s ¡ 0:

Moreover, the interval exponential function will be de�ned in the following way:
(c) e[a1 ; a2] = [ea1 ; ea2 ] :

Let us now go over to operations on two interval numbers. The basic idea of these operations is contained
in the following formula, where * denotes an arbitrary operation de�ned for real numbers:

A *B = {a * b s.t. a ∈ A; b ∈ B}:
By the way, it is worth noticing in this place that in some cases, if A = B, the above concept may

lead to unnecessarily wide result intervals (whether this problem occurs, depends on the given situation and
on the interpretation of A and B). For detailed information, see e.g. [1]. However, we assume that in our
decision situations it is really so that the result interval should always contain all the possible results of the
corresponding operation carried out on all the elements of the argument intervals.
The following de�nition is a consequence of the above formula.

De�nition 3.2. (a) [a1; a2] + [b2; b2] = [a1 + b1; a2 + b2]; [a1; a2]− [b1; b2] = [a1 − b2; a2 − b1]:
(b) [a1; a2] · [b2; b2] = [min{a1b1; a1b2; a2b1; a2b2};max{a1b1; a1b2; a2b1; a2b2}]:
(c) Let 0 =∈ [b1; b2]. Then [a1; a2]=[b1; b2] = [a1; a2] · [1=b2; 1=b1]:
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The following lemma is proved in [12].

Lemma 3.1. Let A = [a1; a2]; B = [b1; b2]; C = [c1; c2] be arbitrary intervals such that B · C ¿ 0. Then

A · (B+ C) = A · B+ A · C

holds.

Let us now de�ne the sum of a series of intervals, where the upper limit of the sum is an interval. The
symbol [x] stands for the integer part of a given real number x.
We will need two kinds of sums. The idea behind them is the same as that behind the evaluations E|�

in Section 2. Each time we will obtain an interval containing all possible values of the respective real-
valued sums. Both methods of summation will be used in De�nition 3.10, which in its turn is necessary for
Section 6.

De�nition 3.3. We assume that the following interval numbers are given:

[a1; a2]¿ 0; [b1; i ; b2; i] (i = 0; 1; : : : ; [a2] + 1)

(if a2 is integer, we assume [b1; a2+1; b2; a2+1] = [0; 0]).
Then we de�ne

[a1 ; a2]∑
i=0(1)

[b1; i ; b2; i] = [C1; C2];

where

C1 = min


∑[a1]

i=0(1) b1; i + (a1 − [a1])b1; [a1]+1;
∑k

i=0(1) b1; i (k = [a1] + 1; : : : ; [a2]);∑[a2]
i=0(1) b1; i + (a2 − [a2])b1; [a2]+1

 ;
C2 = max


∑[a1]

i=0(1) b2; i + (a1 − [a1])b2; [a1]+1;
∑k

i=0(1) b2; i (k = [a1] + 1; : : : ; [a2]);∑[a2]
i=0(1) b2; i + (a2 − [a2])b2; [a2]+1

 :
De�nition 3.4. We assume that the following interval numbers are given:

[a1; a2]¿0; [b1; i ; b2; i] (i = 0; 1; : : : ; [a2] + 1); [r1; r2]¿0

(if a2 is integer, we assume [b1; a2+1; b2; a2+1] = [0; 0]):
Apart from that we �x an integer number m¿[a2] and denote

�1 = a1 − [a1]; �2 = a2 − [a2]:

Then we de�ne (the union symbol will be used for this summation, in order to distinguish it from the one
de�ned in the previous de�nition):

[a1 ; a2]⋃
i=0(1)

[b1; i ; b2; i]
(1 + [r1; r2]) i

=
[
Da1; D

a
2

]
;
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where

Da1 = min



[a1]∑
i=0(1)

b1; i
(1 + rx)m−i

+
�1b1; [a1]+1

(1 + �1rx)(1 + rx)[a1]
;

k∑
i=0(1)

b1; i
(1 + rx)i

(k = [a1] + 1; : : : ; [a2]);

[a2]∑
i=0(1)

b1; i
(1 + rx)i

+
�2b1; [a2]+1

(1 + �2rx)(1 + rx)[a2]


;

with

rx =
{
r2 if the numerator of the fraction is non-negative,
r1 if the numerator of the fraction is negative;

Da2 = max



[a1]∑
i=0(1)

b2; i
(1 + rx)m−i

+
�1b2; [a1]+1

(1 + �1rx)(1 + rx)[a1]
;

k∑
i=0(1)

b2; i
(1 + rx)i

(k = [a1] + 1; : : : ; [a2]);

[a2]∑
i=0(1)

b2; i
(1 + rx)i

+
�2b2; [a2]+1

(1 + �2rx)(1 + rx)[a2]


;

where

rx =
{
r1 if the numerator of the fraction is non-negative,
r2 if the numerator of the fraction is negative

and

[a1 ; a2]⋃
i=0(1)

[b1; i ; b2; i](1 + [r1; r2])m−i =
[
Db1; D

b
2

]
;

where

Db1 = min


∑[a1]

i=0(1)b1; i(1 + rx)
m−i + �1b1; [a1]+1(1 + (1− �1)rx)(1 + rx)m−[a1]−1;∑k

i=0(1)b1; i(1 + rx)
m−i (k = [a1] + 1; : : : ; [a2]);∑[a2]

i=0(1)b1; i(1 + rx)
m−i + �2b1; [a2]+1(1 + (1− �2)rx)(1 + rx)m−[a2]−1

 ;
with

rx =
{
r1 if the whole component is non-negative,
r2 if the whole component is negative;

Db2 = max


∑[a1]

i=0b2; i(1 + rx)
m−i + �1b2; [a1]+1(1 + (1− �1)rx)(1 + rx)m−[a1]−1;∑k

i=0b2; i(1 + rx)
m−i (k = [a1] + 1; : : : ; [a2]);∑[a2]

i=0b2; i(1 + rx)
m−i + �2b2; [a2]+1(1 + (1− �2)rx)(1 + rx)m−[a2]−1

 ;
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where

rx =
{
r2 if the whole component is non-negative,
r1 if the whole component is negative.

3.2. Fuzzy numbers and operations performed on them

In this paper we will use a notation similar to that used in [4] and will adopt the following de�nition of
fuzzy number:

De�nition 3.5. A fuzzy number is a sextuplet of the following form:

r̃ = (r1; r2; r3; r4; fr1(�); f
r
2(�))

or shorter,

r̃ = (r1; r2; r3; r4; fr1; f
r
2)

where
• r1; r2; r3; r4 are real numbers s.t. r16r26r36r4:
• fr1 is a continuous non-decreasing real function de�ned on the interval [0, 1], such that fr1(0) = r1;
fr1(1) = r2:
fr2 is a continuous non-increasing real function de�ned on the interval [0, 1], such that f

r
2(1) = r3;

fr2(0) = r4:

Let us recall now the following de�nition:

De�nition 3.6. Let r̃ =
(
r1; r2; r3; r4; fr1; f

r
2

)
be an arbitrary fuzzy number and � an arbitrary number such

that 06�61. The symbol r� stands for the �-level of the fuzzy number r̃, de�ned as

r� =
[
fr1(�); f

r
2(�)

]
:

The symbols
(
r�
)
1 ;
(
r�
)
2 or r

�
1 ; r

�
2 stand for, respectively, the lower and upper end of the interval r

�.

The following well-known lemma is obvious.

Lemma 3.2. A fuzzy number is unequivocally determined by the set of its �-levels (06�61). Thus, we can
write r̃ =

{
r�; 06�61

}
.

Let us now introduce (after [11]) de�nitions analogous to those from Section 3.1. The basic idea of these
de�nitions is that any relation with a fuzzy number or operation on fuzzy numbers is veri�ed or performed
for the corresponding �-levels (06�61), according to the de�nitions from the previous section. The resulting
�-levels (06�61) determine unequivocally the resulting fuzzy number. So, all the following de�nitions are
in fact a consequence of the following one:

De�nition 3.7. (a) An arbitrary fuzzy number r̃ ful�ls a relation R i� for each 06�61 �-level r� ful�ls this
relation.
(b) If * is an arbitrary operation and r̃ and p̃ any two fuzzy numbers, then

r̃ * p̃ =
{
r� * s�; for such � that 06�61 and operation * is de�ned.
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De�nition 3.8. Let s be an arbitrary real number. Then
(a)

(
r1; r2; r3; r4; fr1; f

r
2

)
¿ s⇔ r1 ¿ s;

(
r1; r2; r3; r4; fr1 ; f

r
2

)
¡ s⇔ r4 ¿ s:

(b)

s (r1; r2; r3; r4; fr1; f
r
2) =


(
sr1; sr2; sr3; sr4; sf

r
1; sf

r
2

)
if s ¿ 0;

(0; 0; 0; 0; 0; 0) if s = 0;(
sr4; sr3; sr2; sr1; sf

r
2; sf

r
1

)
if s ¡ 0:

Moreover, the fuzzy exponential function will be de�ned in the following way:
(d) e(r1 ; r2 ; r3 ; r4 ; f

r
1 ; f

r
2) =

(
er1 ; er2 ; er3 ; er4 ; ef

r
1 ; ef

r
2
)

De�nition 3.9. (a)

(r1; r2; r3; r4; fr1; f
r
2) +

(
p1; p2; p3; p4; f

p
1 ; f

p
2

)
=
(
r1 + p1; r2 + p2; r3 + p3; r4 + p4; fr1 + f

p
1 + f

r
2 + f

p
2

)
:

(r1; r2; r3; r4; fr1; f
r
2)−

(
p1; p2; p3; p4; f

p
1 ; f

p
2

)
=
(
r1 − p4; r2 − p3; r3 − p2; r4 − p1; fr1 − fp2 ; fp2 − fp1

)
:

(b)

(r1; r2; r3; r4; fr1; f
r
2) ·
(
p1; p2; p3; p4; f

p
1 ; f

p
2

)
=


min{r1p1; r1p4; r4p1; r4p4};min{r2p2; r2p3; r3p2; r3p3};
max{r2p2; r2p3; r3p2; r3p3};
max{r1p1; r1p4; r4p1; r4p4};
min

{
fr1f

p
1 ; f

r
1f

p
2 ; f

r
2f

p
1 ; f

r
2f

p
2

}
;max

{
fr1f

p
1 ; f

r
1f

p
2 ; f

r
2f

p
1 ; f

r
1f

p
2

}
 :

(c) If 0 =∈ [p1; p4] then
(r1; r2; r3; r4; fr1 ; f

r
2 ) =

(
p1; p2; p3; p4; f

p
1 ; f

p
2

)
= (r1; r2; r3; r4; fr1; f

r
2) ·
(
1=p4; 1=p3; 1=p2; 1=p1; 1=f

p
2 ; 1=f

p
1

)
:

It is easy to show that the results of the operations from De�nitions 3.8 and 3.9 are fuzzy numbers.

The following lemma is a direct consequence of Lemma 3.1 and De�nition 3.7.

Lemma 3.3. Let r̃; p̃; t̃ be arbitrary fuzzy numbers such that p̃ · t̃ ¿ 0. Then

r̃ · (p̃+ t̃) = r̃ · p̃+ r̃ · t̃
holds.

Let us now de�ne the sum of a series of fuzzy numbers, where the upper limit of the sum is a fuzzy
number.

De�nition 3.10. Let us assume that the following fuzzy numbers are given:

s̃ ¿ 0; p̃i (i = 1; 2; : : : [s4] + 1)

(if s4 is integer, we assume p̃s4+1 = (0; 0; 0; 0; 0; 0)); r̃ ¿ 0, as well as an integer m¿[s4] + 1 if s4 is not
integer and m¿s4 if s4 is integer.
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Then we de�ne
(a)

∑s̃
i=0(1) p̃i = {T�: � ∈ [0; 1]}, where T� =∑s�

i=0 p
�
i is de�ned by De�nition 3.3.

(b)

s̃⋃
i=0(1)

p̃i
(1 + r̃) i

= {U�: � ∈ [0; 1]};

where U� =
⋃ s�

i=0(1) p
�
i =(1 + r

�)i is de�ned by De�nition 3.4.

(c)
⋃ s̃
i=0(1) p̃i(1 + r̃)

m−i = {W�: � ∈ [0; 1]}, where W� =
⋃ s�

i=0(1) p
�
i (1 + r

�)m−i is de�ned by De�nition
3.4.

4. General concept of fuzzy capital budgeting

We assume that for a given project the following information is available:
(a) The duration of the project:

– in Section 5: an integer number n,
– in Section 6: a fuzzy number ñ.

The number ñ is a fuzzy number according to De�nition 3.5. This is a di�erence with respect to the approach
presented in [4], where it is assumed that the project must have an integer duration. We assume that it is
possible for the project to break o� at any moment of time within a certain interval. We still assume that the
cash ows occur at the end of each year, except possibly the last cash ow: if the project is broken when
the �-part of the ith year has elapsed (0¡ �¡ 1), we assume that the terminal cash ow, occurring at the
end of the project, is �CFi.
(b) Fuzzy cash ows:

– in case of crisp duration (Section 5):

CÕFi (i = 0; : : : ; n) and CĨFi (i = 1; : : : ; n) or C̃Fi (i = 0; : : : ; n);

where

CÕFi¿0 (i = 0; : : : ; n) and CĨFi¿0 (i = 1; : : : ; n);

C̃F0 = −CÕF0; C̃Fi = CĨFi − CÕFi (i = 1; : : : ; n):
– in case of fuzzy duration (Section 6):

CÕFi (i = 0; : : : ; [n4] + 1) and CĨFi (i = 1; : : : ; [n4] + 1)

or

C̃Fi (i = 0; : : : ; [n4] + 1);

where

CÕFi¿0 (i = 0; : : : ; [n4] + 1) and CĨFi¿0 (i = 1; : : : ; [n4] + 1);

C̃F0 = −CÕF0; C̃Fi = CĨFi − CÕFi (i = 1; : : : ; [n4] + 1);
where [n4] denotes the integer part of the biggest real characteristics of the fuzzy number ñ.
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Generally in the paper we assume that if n4 is integer, then

CÕFn4+1 = CĨFn4+1 = C̃Fn4+1 = 0:

Let us remark that, contrary to Buckley [4], we do not require the fuzzy cash ows C̃Fi (i = 1; : : : ; n) to be
positive or negative. The 0-levels of these fuzzy numbers may contain zero. It seems that frequently we can
encounter a situation when future cash ows will be estimated as being “around zero”, so the limitation of
Buckley’s approach may be signi�cant.
(c) r̃ – a fuzzy required rate of return of the investment or cost of capital, r̃ ¿ 0.
We assume that the fuzzy rate of return corresponding to the �-part of a year is � r̃ (0¡�¡ 1).
One possible interpretation of the fuzzy data may be that the �-levels of these data are estimates given by

di�erent experts with the degree � (�∈[0; 1]) of presumption (see [14]). For example, the expert corresponding
to the 0-level may be the one who is the least certain about the characteristics of the problem and his
estimations are rather wide intervals and that corresponding to the 1-level may be the one who is the most
certain (has most information). Of course, the estimations of various experts do not always form a ready
fuzzy number, so that they may have to be rediscussed or processed in a certain way. We do not address this
problem here.
In Section 2 we presented several capital investment methods, each of them leading to a numerical evaluation

of a given crisp project. For a given method symbolised by the letter M and for a given crisp project, de�ned
as presented in Section 2, let us denote this evaluation by EM (n; CFi; r).
In the next two sections we will present fuzzy equivalents of the methods from Section 2. For a given

crisp method M , let M̃ denote its fuzzy equivalent.
The result of applying an arbitrary, “fuzzi�ed” method to a given fuzzy project will be a formula or a

procedure permitting to determine, for each given � ∈ [0; 1], a possibly small closed interval, denoted by
E∗�
M̃
(n; C̃Fi; r̃) for crisp duration of the project and by E∗�

M̃
(ñ; C̃Fi; r̃) for fuzzy duration, such that

E∗�
M̃

(
n; C̃Fi; r̃

)⊃{EM (n; yi; z) s.t. yi ∈ (CFi)� (i = 0; : : : ; n); z ∈ r�}: (1)

and

E∗�
M̃

(
ñ; C̃Fi; r̃

)⊃{EM (x; yi; z) s.t. x ∈ n�; yi ∈ (CFi)�
(
i = 0; : : : ;

[(
n�
)
2

]
+ 1
)
; z ∈ r�}; (2)

where
[(
n�
)
2

]
is the integer part of the upper end of the interval n�.

In many cases the interval found in the above way will be the smallest one with the above property; in
some cases the inclusion will be an obvious equality. Even in those cases, where for the interval found, we
will not be able to prove that it is the smallest one with the above property, it will still provide a useful
estimation of the set of all possible estimations of the project at a given level �.
The intervals E∗�

M̃
(� ∈ [0; 1]) or their set Ẽ∗

M will form a fuzzy evaluation of the project being considered,
although we will not always be able to show that this set of intervals is a fuzzy number according to De�nition
3.5 (hence we use a star in the symbol), to give an explicit form of the functions fr1(�); f

r
2(�) or even to

determine those intervals for all the parameter values at one time. But it will always be possible to determine
the intervals E∗�

M̃
for selected values of �. These intervals or their set will constitute a basis for investment

decisions (for comparing, rejecting or accepting investment projects). Of course, it would then be necessary to
have a method of evaluating an investment project (i.e. of �nding its absolute worthiness) and of comparing
several investment projects on the basis of their fuzzy evaluation. Numerous methods of ranking fuzzy and
interval numbers can be helpful here. We will not discuss this problem here in detail and recommend e.g. [5]
or [9] to those who are interested.
In the approach proposed in this paper, for no capital budgeting method it is possible to say that it does not

extend to the fuzzy case (what the authors of [4, 17] a�rmed about the internal rate of return method). The
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fuzzy equivalent of any capital budgeting method is simply the possibility for the decision maker to determine
a family (indexed by the parameter � ∈ [0; 1]) of closed intervals, as small as possible, each one of them
containing all possible crisp evaluations (according to the method chosen) of the project when the parameters
of the project take on all the values admitted by the estimations at a given level �. We will not worry about
whether this family of intervals is a fuzzy number according to any formal de�nition, nor about whether the
intervals are “too numerous”, i.e. contain some values which do not belong to the set of all possible crisp
evaluations of the project in question. Sometimes we will not be able yet to present in this paper a method
of determining the whole family at one time (because of the lack of corresponding parametric methods) and
we will have to be content with the possibility of determining the intervals for any individual chosen values
of �, but it seems this may be already su�cient for practical purposes.
Formulae for the fuzzy evaluations Ẽ∗

M , proposed in the following two sections, are obtained simply by
determining, for a given �, a lower and an upper bound for the values of the corresponding crisp evaluations.
We will start by “fuzzifying” the methods from Section 2 for integer n, i.e. we assume at the beginning

that the duration of the project is �xed and integer. In the following we will drop the lower index M from
the symbols E∗�

M̃
and, Ẽ∗

M , as it will not cause any misunderstanding.

5. Capital budgeting in the case of fuzzy cash ows and fuzzy rate of return and a crisp,
�xed project duration

For each of the methods listed in Section 2, we will give a formula or a procedure permitting to calculate
the fuzzy evaluation Ẽ∗ or E∗� (�∈ [0; 1]) of the given project, according to the concept presented in Section
4. We assume that the project to be evaluated is described by the data speci�ed also in Section 4.
(1) Revenues per one dollar method:

Ẽ∗ =
n∑
i=1

CĨFi

/ n∑
i=0

CÕFi or Ẽ∗ =

(
n∑
i=1

CĨFi −
n∑
i=0

CÕFi

)/ n∑
i=0

CÕFi;

where Ẽ∗ is a fuzzy number and an exact formula for calculating it is given by De�nition 3.9.
In both cases we obtain the smallest interval ful�lling relation (1)
Let us illustrate the method with the following example:

Example 1.

CÕF0 = (900; 1000; 1000; 1100; 100�+ 900; −100�+ 1100);
CĨF1 = (90; 100; 100; 110; 10�+ 90; −10�+ 110);
CĨF2 = (180; 200; 200; 220; 20�+ 180; −20�+ 220);
CĨF3 = (1800; 2000; 2000; 2200; 200�+ 1800; −200�+ 2200);
n = 3; r̃ = (0:09; 0:1; 0:1; 0:11; 0:01�+ 0:09;−0:01�+ 0:11):

According to the �rst formula we obtain (in this method the information about the fuzzy rate of return is not
needed):

Ẽ∗ =
(
1:88; 2:3; 2:3; 2:81;

230�+ 2070
−100�+ 1100 ;

−230�+ 2530
100�+ 900

)
:

The calculations according to the second formula are analogous.
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(2) Payback period method: For each �∈ [0; 1]; E∗� will be calculated according to the following formula:

E∗� =

[
min
k=1;:::; n

{
k:

k∑
i=0

(
CF�i

)
2¿0;∞

}
; min
k=1;:::; n

{
k:

k∑
i=0

(
CF�i

)
1¿0;∞

}]
or

E∗� =

[
min
k=1;:::; n

{
k:

k∑
i=0

(
CF�i

)
2(

1 + r�x
)i¿0;∞

}
; min
k=1;:::; n

{
k:

k∑
i=0

(
CF�i

)
1(

1 + r�y
)i¿0;∞

}]
where

rx =
{
r1 if the numerator of the fraction is non-negative,
r2 if the numerator of the fraction is negative,

ry =
{
r2 if the numerator of the fraction is non-negative,
r1 if the numerator of the fraction is negative.

We will use the following example to illustrate this method.

Example 2.

CÕF0 = (1500; 1500; 1500; 1500; 1500; 1500);

CĨF1 = CĨF2 = CĨF3 = (500; 1000; 1000; 1500; 500�+ 500;−500�+ 1500);
n = 3; r̃ = (0:1; 0:1; 0:1; 0:1; 0:1; 0:1):

Given below are the results for some values of � according to the �rst formula:

E∗0 = [1; 3]; E∗0:25 = [2; 3]; E∗0:5 = [2; 2]; E∗1 = [2; 2]:

In order to obtain the respective values for the second formula we used, like in further examples, the
spreadsheet EXCEL:

E∗0 = [2; 4]; E∗0:25 = [2; 3]; E∗0:75 = [2; 3]; E∗1 = [2; 2]:

Before we present a fuzzy version of the following methods from Section 2, let us make the following
remark: In the fuzzy version of most of these methods it is necessary to ensure that the future value of a
fuzzy amount Ã in n periods, which is – according to the normal understanding of how this future value is
created in the case when the interests are calculated at the end of each year and added to the capital – equal
to Ã+ Ã · r̃ + (Ã+ Ã · r̃) · r̃ + · · ·+ (∑n

i=1 Ã · r̃ i−1
) · r̃, can also be expressed by the more convenient formula

Ã · (1 + r̃)n. This equality, obvious in the crisp case, has been justi�ed in the fuzzy case by Buckley [4], but
only for Ã¿0. Let us just remark that by repeating the same reasoning and using Lemma 3.3, the equality
can be justi�ed for any Ã. That is why we can simply extend the corresponding formulae for the evaluations
E from the crisp case to the fuzzy one:
(3) Net present value:

Ẽ∗ = NP̃V =
n∑
i=0

C̃Fi
(1 + r̃)i

;

where Ẽ∗ is a fuzzy number determined by De�nition 3.9 (a natural power of a fuzzy number is obviously
de�ned as a repeated multiplication).
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Example 3. Here we use the project from Example 1. The fuzzy net present value of the project is as follows:

NP̃V =


443; 759; 759; 1085;

100�− 1100 + 10�+ 90
−0:01�+ 1:11 +

20�+ 180
(−0:01�+ 1:11)2 +

200�+ 1800
(−0:01�+ 1:11)3 ;

−100�− 900 + −10�+ 110
0:01�+ 1:09

+
−20�+ 220
(0:01�+ 1:09)2

+
−200�+ 2200
(0:01�+ 1:09)3

 :

(4) Net future value:

Ẽ∗(m) =
n∑
i=0

C̃Fi(1 + r̃)m−i for any integer m¿n,

where Ẽ∗(m) is a fuzzy number determined by De�nition 3.9.

Example 4. Here again we use the project from Example 1 and assume m = n = 3:

Ẽ∗(3) =



599; 1010; 1010; 1414

(100�− 1100)(−0:01�+ 1:11)3 + (10�+ 90)(0:01�+ 1:09)2

+(20�+ 180)(0:01�+ 1:09) + 200�+ 1800;

(−100�− 900)(−0:01�+ 1:09)3 + (−10�+ 110)(0:01�+ 1:11)2

+(−20�+ 220)(0:01�+ 1:11)− 200�+ 2200


(5) Method of utility of the net present value:

Ẽ∗ = 1− 1

eb̃U ·NP̃V
;

where b̃U
(
b̃U ¿ 0

)
is the risk aversion constant of the decision maker and NP̃V is calculated as indicated

in point 3 of this section. Ẽ∗ is a fuzzy number de�ned by De�nitions 3.8(d) and 3.9.
(6) The internal rate of return method: Analogously to the crisp case, we assume that C̃Fi¿0 for i =

1; : : : ; n. For each � ∈ [0; 1]; E∗� will be calculated according to the following formula:

E∗� =
[(
E∗�)

1 ;
(
E∗�)

2

]
;

where
(
E∗�)

1 ;
(
E∗�)

2 are, respectively, solutions of the following equations
((
CF�i

)
1 and

(
CF�i

)
1 denote the

lower and the upper end of the interval CF�i
)
:

(
CF�0

)
1 +

n∑
i=1

(
CF�i

)
1(

1 +
(
E∗�)

1

)i = 0; (
CF�0

)
2 +

n∑
i=1

(
CF�i

)
2(

1 +
(
E∗�)

2

)i = 0:
We obtain here the smallest interval ful�lling relation (1).

Example 5. For the project from Example 1 we obtain the following intervals for three selected values of �:

E∗0 = [25%; 45%]; E∗0:5 = [30%; 40%]; E∗1 = [35%; 35%]:
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(7) The modi�ed internal rate of return method: Analogous to the previous case (but with no additional
assumptions about the ows C̃Fi), for each � ∈ [0; 1] we de�ne

E∗� =
[(
E∗�)

1 ;
(
E∗�)

2

]
;

where
(
E∗�)

1;
(
E∗�)

2 are, respectively, solutions of the following equations:

n∑
i=0

(
COF�i

)
2(

1 + r�1
)i =

∑n
i=0

(
CIF�i

)
1

(
1 + r�1

)n−i(
1 +

(
E∗�)

1

)n ;
n∑
i=0

(
COF�i

)
1(

1 + r�2
)i =

∑n
i=0

(
CIF�i

)
2

(
1 + r�2

)n−i(
1 +

(
E∗�)

2

)n :

We obtain here the smallest interval ful�lling relation (1).

Example 6. In this example we use again the project from Example 1:

E∗0 = [24%; 42%]; E∗0:5 = [28%; 37%]; E∗1 = [33%; 33%]:

6. Capital budgeting in the case of fuzzy cash ows, fuzzy rate of return and fuzzy project duration times

In this section we additionally assume that the duration of the project is a fuzzy number ñ. Like in the
previous section, for each method from Section 2 we will present its fuzzy equivalent.
(1) Revenues per one dollar method:

Ẽ∗ =
ñ∑
i=1

CĨFi

/ ñ∑
i=0

CÕFi or Ẽ∗ =

(
ñ∑
i=1

CĨFi −
ñ∑
i=0

CÕFi

)/ ñ∑
i=0

CÕFi;

where the sums in the above formulae are calculated according to De�nition 3.10(a), and the division according
to De�nition 3.7(b). In both cases we obtain the smallest interval ful�lling relation (2).
Let us illustrate the method with the following example.

Example 7. Let us consider the same project as in Example 1 with a fuzzy duration time

ñ = (2; 2:5; 2:5; 3; 0:5�+ 2;−0:5�+ 3):
According to the �rst formula, we obtain for three selected values of �:

E∗0 = [0:245; 2:8]; E∗0:5 = [0:317; 1:99]; E∗1 = [1:3; 1:3]:

The calculations according to the second formula are analogous.
(2) Payback period method: In the case of a fuzzy duration, the calculations will be carried out in the

following way:

E∗� = [C1(�); C2(�)];

where

C1(�) = min
k=1;2;:::; [(n�)2]+1

{
k:

k∑
i=0

(
CF�i

)′
2¿0;∞

}
;

where(
CF�i

)′
2 =

(
CF�i

)
2 for k = 0; 1; : : : ;

[(
n�
)
2

]
;
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and (
CF�[(n�)2]+1

)′
2
=
((
n�
)
2 −

[(
n�
)
2

]) (
CF�[(n�)2]+1

)
2
;

C2(�) =


∞ if

∑[(n�)1]
i=0

(
CF�i

)
1 +

((
n�
)
1 −

[(
n�
)
1

]) (
CF�[(n�)1]+1

)
1
¡ 0;

min(k=1;:::; [(n�)1]+1)
{
k:
∑k

1=0

(
CF�i

)
1¿0;∞

}
elsewhere

or

C1(�) = min
k=1;2;:::; [(n�)2]+1

{k: Sk¿0;∞};

where

Sk =
k∑
i=0

(
CF�i

)
2(

1 + rx�
)i for k = 1; : : : ;

[(
n�
)
2

]
;

S[(n�)2]+1 =
[(n�)2]∑
i=0

(
CF�i

)
2(

1 + r�x
)i +

((
n�
)
2 −

[(
n�
)
2

]) (
CF�[(n�)2]+1

)
2(

1 + r�x
)[(n�)2] (

1 +
((
n�
)
2 −

[(
n�
)
2

])
r�x
)

and

r�x =

{
r�1 if the numerator of the fraction is non-negative,

r�2 elsewhere;

C2(�) =


∞ if

[(n�)1]∑
i=0

(
CF�i

)
1(

1 + rx�
)i +

((
n�
)
1 −

[(
n�
)
1

]) (
CF�[(n�)1]+1

)
1(

1 + rx�
)[(n�)1] (1 + ((n�)1 − [(n�)1]) rx�)i ¡ 0

min
(k=1;:::; [(n�)1]+1)

{
k:

k∑
i=0

(
CF�i

)
1(

1 + rx�
)i¿0;∞

}
elsewhere

where

r�x =

{
r�1 if the numerator of the fraction is non-negative,

r�2 elsewhere:

We will illustrate the method with the following example:

Example 8.

CÕF0 = (1000; 1000; 1000; 1000; 1000; 1000);

CĨF1 = CĨF2 = CĨF3 = (500; 1000; 1000; 1500; 500�+ 500;−500�+ 1500);
n = (1; 2; 2; 3; �+ 1;−�+ 3); r̃ = (0:1; 0:1; 0:1; 0:1; 0:1; 0:1):

Here are the results for some values of � according to the �rst fuzzy payback period method:

E∗0 = [1; ∞]; E∗0:5 = [1; 2]; E∗1 = [1; 1]:
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For the second fuzzy payback period method and the same example the results are as follows:

E∗0 = [1; ∞]; E∗0:5 = [1; 2]; E∗1 = [2; 2]:

Let us pass on to the next method:
(3) Net present value:

Ẽ∗ = NP̃V =
ñ⋃
i=0

C̃Fi
(1 + r̃) i

;

where Ẽ∗ is determined by De�nition 3.10(b).

Example 9. Here we use the project from Example 7. The �-levels of the fuzzy present value for some values
of � are as follows:

E∗0 = [−834:44; 1084:89]; E∗0:5 = [−429:35; 547:23]; E∗1 = [43:29; 43:29]:

(4) Net future value:

Ẽ∗(m) =
ñ⋃
i=0

C̃Fi(1 + r̃)m−i

for any integer m such that, where m¿n4 if n4 is integer and m¿[n4]+1 otherwise, where Ẽ∗(m) is determined
by De�nition 3.10(c).

Example 10. Here again we use the project from Example 7 and assume m = 3. The �-levels of the fuzzy
future value for some values of � are as follows:

E∗0 = [−1160; 1414:2]; E∗0:5 = [−581:9; 729:31]; E∗1 = [60; 60]:

(5) Method of utility of the net present value:

E∗� = 1− 1

eb
�
U ·NPV∗� (� ∈ [0; 1]);

where b�U
(
b�U ¿ 0

)
are the �-levels of the risk aversion constant of the decision maker and NPV ∗� is calculated

as indicated in point 3. E∗� is calculated according to De�nition 3.1(c).
(6) The internal rate of return method: We assume that C̃Fi¿0 for i = 1; : : : ; n. For each � ∈ [0; 1] we

de�ne the internal rate of return as the following interval:

E∗� =
[(
E∗�)

1 ;
(
E∗�)

2

]
;

where
(
E∗�)

1 ;
(
E∗�)

2 are, respectively, the solutions of the following equations:

(
CF�0

)
1 +

[(n�)1]∑
i=1

(
CF�i

)
1(

1 +
(
E∗�)

1

)i +
((
n�
)
1 −

[(
n�
)
1

]) (
CF�[(n�)1]

)
1(

1 +
(
E∗�)

1

)[(n�)1] (1 + ((n�)1 − [(n�)1]) (E∗�)
1

) = 0;

(
CF�0

)
2 +

[(n�)2]∑
i=1

(
CF�i

)
2(

1 +
(
E∗�)

2

)i +
((
n�
)
2 −

[(
n�
)
2

]) (
CF�[(n�)2]

)
2(

1 +
(
E∗�)

2

)[(n�)2] (1 + ((n�)2 − [(n�)2]) (E∗�)
2

) = 0:
We obtain in this way the smallest interval ful�lling relation (2).
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Example 11. For the project from Example 7 we obtain the following intervals for three selected values of �:

E∗0 = [−55%; 45%]; E∗0:5 = [−15%; 30%]; E∗1 = [12%; 12%]:

A negative internal rate of return means that it is possible in the given project to lose money.

(7) The modi�ed internal rate of return method: Here we do not need the assumption C̃Fi¿0 for i =
1; : : : ; n: the cash ows can also be negative. For each �∈ [0; 1], we de�ne the modi�ed internal rate of return
as the following interval:

E∗� =
[(
E∗�)

1 ;
(
E∗�)

2

]
;

where
(
E∗�)

1 ;
(
E∗�)

2 are, respectively, solutions of the following equations:

[(n�)2]∑
i=0

(
COF�i

)
2(

1 + r�1
)i +

((
n�
)
2 −

[(
n�
)
2

]) (
COF�[(n�)1]+1

)
2(

1 + r�1
)[(n�)2] (1 + ((n�)2 − [(n�)2]) r�1)

=

{
[(n�)1]∑
i=0

(
CIF�i

)
1

(
1 + r�1

)[(n�)1]−i} · (1 + ((n�)1 − [(n�)1]) r�1)+ ((n�)1 − [(n�)1]) (CIF�[(n�)1]+1)1(
1 +

(
E∗�)

1

)[(n�)2] (1 + ((n�)2 − [(n�)2]) (E∗�)
1

) ;

[(n�)1]∑
i=0

(
COF�i

)
1(

1 + r�2
)i +

((
n�
)
1 −

[(
n�
)
1

]) (
COF�[(n�)1]+1

)
1(

1 + r�2
)[(n�)1] (1 + ((n�)1 − [(n�)1]) r�2)

=

{
[(n�)2]∑
i=0

(
CIF�i

)
2

(
1 + r�2

)[(n�)2]−i} · (1 + ((n�)2 − [(n�)2]) r�2)+ ((n�)2 − [(n�)2]) (CIF�[(n�)2]+1)2(
1 +

(
E∗�)

2

)[(n�)1] (1 + ((n�)1 − [(n�)1]) (E∗�)
2

) :

Example 12. In this example we use again the project from Example 7. We proceed in the same way as in
Example 11 and obtain the following values:

E∗0 = [−32%; 69%]; E∗0:5 = [−11%; 36%]; E∗1 = [11%; 11%]:

7. Conclusions

In this paper we have proposed or generalised fuzzy equivalents for all the methods of evaluating and
comparing investment projects which are usually presented in the literature and used in practice (in case
where there is no capital rationing). These fuzzy equivalents allow to evaluate projects whose cash ows and/or
duration are not known precisely, but given in the form of fuzzy numbers. All the computations can be carried
out by means of a �nancial calculator, spreadsheet or any other software with standard �nancial/mathematical
functions. For each project we obtain then a set of closed intervals, constituting its fuzzy evaluation. Each of
these intervals may correspond for example to the estimation of the parameters of the project given by one
speci�c expert.
In an actual comparison between various projects, methods of comparing fuzzy numbers or intervals would

have to be used. These methods are widely discussed in the literature and are not treated in this paper.
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