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Abstract

In this article, a dynamic ®nite element formulation for the free vibration analysis of axially loaded bending-torsion

coupled beams is presented. Based on the Euler±Bernoulli and St. Venant beam theories, the exact solutions of the

di�erential equations governing the uncoupled vibrations of an axially loaded uniform beam are found. Then, em-

ploying these solutions as basis functions, the analytical expressions for uncoupled bending and torsional dynamic

shape functions are derived. Exploiting the principle of virtual work, together with the variable approximations based

on the resulting shape functions, leads to a single frequency dependent element matrix which has both mass and sti�ness

properties. The application of the theory is demonstrated by an illustrative example of a bending-torsion coupled beam

with cantilever end conditions, for which the in¯uence of axial force on the natural frequencies is studied. The cor-

rectness of the theory is con®rmed by the published results and numerical checks. Ó 2000 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Helicopter, propeller and also compressor and turbine blades of a high aspect ratio, all qualify (at least for their ®rst

few vibration modes) as axially loaded beams which usually have non-coincident elastic and inertial axes [1]. Appli-

cations of such elements also include the aeroelastic calculations for which coupled bending-torsional frequencies and

modes are essential requirements [2±4]. Moreover, some complete plane and space frames can be represented with a

reasonable accuracy as assemblages of axially loaded coupled beams connected together (some beam cross-sections

representing bending-torsional coupling are shown in Fig. 1). Naturally, it is very important to take into account the

coupling e�ects in vibration and response calculations of this type of structures. The e�ect of an important parameter,

namely the axial force, which is usually negligible or non-existent for some structures such as aircraft wings (but not so

for helicopter, turbine or propeller blades), have also to be taken into account.

The derivation of the equations of motion for the coupled bending-torsion vibrations of axially loaded beams, are

studied by di�erent authors (see e.g., Refs. [5,6]) and numerous approaches for calculating the free vibration natural

frequencies and mode shapes have been proposed. The classical ®nite element method (FEM) [7], where beam element

matrices are evaluated from the assumed ®xed shape functions (such as polynomials), has been used by some inves-

tigators. A generalized linear eigenvalue problem then results. The dynamic sti�ness matrix (DSM) method [8] o�ers a

better alternative, particularly when higher frequencies and better accuracies of results are required. The sti�ness
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matrix, in this method, is obtained by directly solving the governing di�erential equation and hence all assumptions,

being within the limits of the di�erential equations only, are less severe. This is the reason why results obtained using a

DSM are often justi®ably called ``exact'' [8]. But, the DSM formulation implies mathematical procedures which are

sometimes di�cult to deal with, and/or are often limited to special cases.

Here, a new dynamic ®nite element (DFE) is developed, which produces accurate solutions for coupled bending-

torsional vibration of axially loaded beams and assemblies composed of such beams. The DFE approach extends the

existing `exact' DSM method, and can be advantageously elaborated to handle more complex cases for which the exact

DSM does not exist. In other words, this method can be presented as an intermediate approach between the general

`weighted residual method' (i.e., the basis of the classical FEM) and the very interesting features of the frequency-

Fig. 1. Sample of beam cross-sections with non-coincident shear centre, and mass centre: Es shear centre, Gs mass centre.

Nomenclature

Df denominator in the expressions of N1f ;N2f ;N3f and N4f (¯exural shape functions)

Dt denominator in the expressions of N1t and N2t (torsional shape functions)

D � Df � Dt denominator in �KDS�k
Hf � EI Flexural rigidity

Ht � GJ Torsional rigidity

�KDS� overall dynamic sti�ness matrix

�KD
DS� upper triangular matrix obtained from KDS

�KDS�k DFE element sti�ness matrix

�KDS�kuncoupl ®rst part of �KDS�k corresponding to the uniform beam element k
�KDS�kcoupl the coupling part of �KDS�k
�KC�kij components of �KDS�kcoupl; i � 1; 2; j � 1; 2; 3; 4
L total length of the beam

NE total number of elements

P axial force (constant per element)

W total virtual work

WINT internal virtual work

WEXT external virtual work

Wk discretized virtual work due to kth element

Wk
f the bending part of W k

Wk
t the torsion part of W k

lk the length of element k
m � qA mass per unit length

w ¯exural displacement

W amplitude of the ¯exural displacement

dW test function due to the bending

w torsional rotation

W amplitude of the torsional rotation �W � Psi�
dW test function due to the torsion

xa distance between the mass and the elastic axes

n � s=lk element local coordinate, 0 6 n 6 1

x rotary frequency �x � omega�
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dependent exact DSM formulation. Similarly to the DSM method, the method is an e�cient tool for handling the

periodical structures, or systems composed of several identical substructures, having the same dynamic sti�ness com-

ponents and frequency characteristics. In addition, the resulting eigenvalue problem is also a non-linear one. Appli-

cation of the developed methodology includes coupled bending-torsional frequency and mode calculations of rotating

beam-like structures such as helicopter, propeller, turbine and compressor blades, etc. In this case, the sti�ening e�ect

due to the axial centrifugal force, cause some considerable modi®cations in the natural frequencies and modes, which

have to be accounted for in the dynamic analysis of rotating structures. In the real blade designs, the three degrees of

freedom of the rotating blades, namely ¯ap, lag and torsion, are usually treated together in what is termed coupled

mode methods [9]. Here, we investigate the coupled out-of-plane (¯apping) bending-torsion free vibrations of a uniform

beam element of symmetric cross-section, in the presence of a constant axial load. However, the e�ects of variable

centrifugal force, geometrical parameters and mechanical properties, could also be introduced in the formulation by

similar manners as presented in the previous works of the authors dealing with the vibrational analysis of non-uniform

beams [10], the rotating of uniform and tapered beams [11±13], and the free vibration of bending-torsion coupled beams

[14,15].

The di�erential equations, governing the uncoupled bending and torsional vibrations of an axially loaded uniform

beam element, are solved in an exact sense. Then, the resulting solutions are used as basis functions and lead to the

dynamic shape functions, which are exploited to derive the corresponding sti�ness matrix. The method of incorporating

the derived sti�ness expressions in a computer program for the vibration analysis of axially loaded beams, having a non-

coincident shear centre and mass centre, is discussed with some reference to an established algorithm [16,17]. The

application of the theory, in the absence of the axial force, is demonstrated by an illustrative example of cantilever

beam, wherein a substantial amount of coupling between the bending and torsion are highlighted. Thereafter, the

in¯uence of the axial force on the coupled bending-torsional frequencies is investigated.

2. Mathematical model

Consider a uniform beam element of length L with the mass axis and the elastic axis (which are respectively the loci

of the mass centre and the shear centre of the cross-sections) being separated by a distance xa. In the right-handed

coordinate system of Fig. 2, the elastic axis which is assumed to be coincident with the y axis is a permitted ¯exural

translation w�y; t� in the z direction and a torsional rotation w�y; t� about y axis, where y and t denote the distance from

the origin and time, respectively. A constant axial load P is assumed to act through the centroid (mass centre) of the

cross-section. P is considered to be positive when in traction.

Using the coupled Bernoulli±St. Venant bending-torsion beam theory (i.e., neglecting shear deformation, rotary

inertia and warping of the cross-section), the governing partial di�erential equations of motion of the beam shown in

Fig. 2, are given by [18]

Fig. 2. Coordinate system and notations for coupled bending-torsional vibration of a uniform beam element: Es shear centre, Gs mass

centre.
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Hf w
0000 ÿ Pw00 � m�w� �Pxaw

00 ÿ mxa
�w� � 0; �1�

�Ht � P �Ia=m��w00 ÿ Ia
�wÿ �Pxaw00 ÿ mxa �w� � 0 �2�

with appropriate boundary conditions imposed at y � 0; L. For example,

clamped: y � 0; w � w0 � w � 0,

free: y � L; w00 � w000 � w0 � 0, etc.

Hf and Ht are, respectively, the bending and torsional rigidity of the beam; m is the mass per unit length; Ia is the polar

mass moment of inertia per unit length about the y axis (i.e. an axis through the shear centre) and t is the time and

primes and dots denote di�erentiation with respect to the position y and time t, respectively.

For a free vibration problem, one supposes:

w�y; t� � W �y� sin�xt�;
w�y; t� � W�y� sin�xt�; �3�

where W �y� and W�y� are the amplitudes of the sinusoidally varying vertical displacement and torsional rotation,

respectively.

Substituting Eq. (3) into Eqs. (1) and (2) gives

Hf W
0000 ÿ Pw00 ÿ mx2W � �PxaW

00 � mxax
2W� � 0; �4�

�Ht � P �Ia=m��W00 � Iax
2Wÿ �PxaW 00 � mxax

2W � � 0: �5�
The integral form associated with Eqs. (1) and (2) can be written asZ L

0

dW fHf W
0000 ÿ Pw00 ÿ mx2W � �PxaW

00 � mxax
2W�gdy � 0; �6�

Z L

0

dWf�Ht � P �Ia=m��W00 � Iax
2Wÿ �PxaW 00 � mxax

2W �gdy � 0: �7�

Here, W and W are the solution functions and dW and dW are test functions. Then, applying an appropriate number

of integrations by parts allows us to diminish the derivatives order and the Galerkin type weak form associated with

Eqs. (6) and (7) is obtained as

Wf �
Z L

0

HfdW 00W 00� � PdW 0W 0 ÿ �mx2� � dWW ÿ �Pxa�dW 0W� �mxax
2�dW W

	
dy

� Hf�dWW 000
h

ÿ dW 0W 00� ÿ PdW �W 0 ÿ xaW
0�
iL

0
; �8�

Wt �
Z L

0

fÿ�Ht � P�Ia=m��dW0W0 � �Iax
2� � dWW� �Pxa�dW0W ÿ �mxax

2� � dWW gdy

� dWHtW
0

h
� PdW��Ia=m�W0 ÿ xaW 0�

iL

0
; �9�

where both solution and test functions are de®ned in the same approximation space. For clamped±free boundary

conditions, for example, it is assumed that

dW � dW 0 � dW � 0 at y � 0;

and force terms are zero at y � L. Consequently, the boundary terms in the above expressions will disappear. However,

it can be veri®ed that also for any other boundary conditions, similar results can be obtained, when the proper con-

straints are applied regarding test functions.

Expressions (8) and (9) also satisfy the principle of virtual work (PVW):

W �WINT ÿWEXT � 0; �10�
where, for the free vibration analysis,

WEXT � 0;
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and therefore,

WINT �Wf �Wt:

If the domain is discretized by a number of 2-node beam elements [19], we have (Fig. 3)

W �WINT �
XNE

k�1

Wk � 0; �11�

where

Wk �Wk
f �Wk

t ; �12�
and

Wk
f �

Z yj�1

yj

HfdW 00W 00
n

� PdW 0W 0 ÿ mx2
ÿ � � dWW ÿ �Pxa�dW 0W0 � mxax

2
ÿ �

dW W
o

dy; �13�

Wk
t �

Z yj�1

yj

n
ÿ �Ht � P �Ia=m��dW0W0 � Iax2

ÿ � � dWW� �Pxa�dW0W 0 ÿ mxax
2

ÿ �
dWW

o
dy: �14�

Each element is de®ned by nodes j, j� 1 with corresponding coordinates.

The components of Wk may also be written in an equivalent form obtained after integration by parts on each

element:

Wk
f �

Z yj�1

yj

W f�Hf�dW
0000 ÿ �P�dW 00 ÿ �mx2�dW gdy

� �Hf�dW 00W 0 ÿ dW 000W � � �P �dW 0W �yj�1

yj
�
Z yj�1

yj

�ÿPxa�dW 0W0 � �mxax
2�dW Wdy; �15�

Wk
t �

Z yj�1

yj

ÿWf�Ht � P �Ia=m�dW00 � �Iax
2�dWgdy

� ��Ht � P �Ia=m��dW0W�yj�1

yj
�
Z yj�1

yj

��ÿPxa�dW0W 0 � �mxax
2�dW�W dy: �16�

The admissibility condition for the ®nite element (FE) approximation is controlled by Eqs. (8) and (9). The ap-

proximation for W , dW is of C1-type, assuring continuity of W and W ;x at each node, and the approximation for W, dW
is of C0-type. Eqs. (15) and (16) simply present another way of evaluating Eqs. (8) and (9) at the element level.

2.1. The classical ®nite element method

The classical FE model is found by using the Hermite type polynomial approximation such as

W �x� � N1�x�W1 � N2�x�W 0
1 � N3�x�W2 � N4�x�W 0

2 ; �17�
where W1 and W2 are nodal values at nodes j, j� 1, corresponding to out-of-plane (¯apping) ¯exural displacements. For

torsional displacement W�x�, in this case, one uses the linear approximation. Identical approximation is chosen for dW
and dW, respectively. The discretized representation of Eq. (10) is then obtained as

W �
XNE

k�1

Wk � ��K� ÿ k�M ��fwng � 0: �18�

This is a classical linear eigenvalue problem which is solved using an inverse iteration procedure, subspace or Lanczos

method [20].

Fig. 3. Domain discretized by a number of 2-node elements.
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2.2. The dynamic ®nite element formulation

In this study, we propose an intermediate approach in which, the classical FEM is combined to the DSM approach,

to obtain a better FE model. The approximation space is de®ned by the frequency dependent hyperbolic functions and

the appropriate interpolation functions are obtained with averaged value parameters over each element. The solutions

of the uncoupled form of the governing di�erential equations of motion are utilized, as expansion terms, to ®nd the

shape functions. Then, these shape functions, all being frequency dependent, can be used to obtain the corresponding

sti�ness matrix. In this article, the dynamic ®nite element (DFE) method is developed and demonstrated for the case of

a uniform coupled beam with constant axial loads, where the coe�cients Hf , Ht, m�x�, P , etc. are constant over the

element. Under these circumstances, it would be also possible to write down a general solution for W and W, which

leads to an exact DSM [26]. But, it implies complex mathematical procedures and it will be limited to special cases. The

advantage of the proposed DFE methodology, comparing with the DSM approach, is that it can be extended to more

complex cases as coupled beams with variable geometry and properties. To this end, the interesting features of the DFE

methodology presented in the earlier works of the authors, can be exploited (see e.g. Ref. [13]).

To obtain the DFE method formulation, Eqs. (15) and (16) are rearranged in the following equivalent form (see

Fig. 4):

Wk
f �

Z 1

0

W
Hf

l3
k

� �
dW

0000 ÿ P
lk

� �
dW 00 ÿ �mlkx

2�dW
� �
|����������������������������������������{z����������������������������������������}

�

dn� Hf

l3
k

� �
dW 00W 0��

ÿ dW 000W
	� P

lk

� �
dW 0W

�1

0

�
Z 1

0

ÿPxa

lk

� �
dW 0W0

�
� �mlkxax

2�dW W

�
dn; �19�

Wk
t �

Z 1

0

ÿW
Ht � P�Ia=m�

lk

� �
dW00 � �Ialkx

2�dW
� �
|������������������������������������{z������������������������������������}

��

dn� Ht � P�Ia=m�
lk

� �
dW0W

� �1

0

�
Z 1

0

ÿPxa

lk

� �
dW0W 0

�
� �mlkxax

2�dWW
�

dn; �20�

where n � y=lk .

Eqs. (19) and (20) simply present a di�erent way of evaluating Eqs. (13) and (14) at the element level. One can then

choose the interpolation functions, which are solutions of the integral terms (*) and (**) in Eqs. (19) and (20) and they

respect nodal properties. To this end, using generalized parameters, the non-nodal approximation of the solution

function W ;W, and the test function dW ; dW, can be written as

dW � hP�n�if � fdag; W � hP�n�if � fag;
dW � hP�n�it � fdbg; W � hP �n�it � fbg; �21�

where the basis functions (i.e., expansion terms) of the approximation are

hP �n�if � cos�an� sin�an�
a

cosh�bn� ÿ cos�an�
a2 � b2

sinh�bn� ÿ sin�an�
a3 � b3

� �
; �22�

hP �n�it � hcos�sn� sin�sn�=si; �23�

which are solutions of the integral terms (i.e., (*) and (**)). In addition, they are chosen in such a manner that when a; b
and s! 0, they lead to classical basis functions of the standard beam element, based on the cubic ``Hermite'' type

interpolation polynomials (for the bending), and the linear ones (for the torsion), respectively. Here,

Fig. 4. The 2-node reference element of six degrees of freedom.

716 S.M. Hashemi, M.J. Richard / Computers and Structures 77 (2000) 711±724



a; b � 1

�2 � A�1=2
fÿB� �B2 ÿ 4A � C�1=2g1=2;

s �
����������������
Iax2=Ht

p
;

A � Hf=l3
k ; B � ÿ�P=lk�; C � ÿ�mlkx

2�:

�24�

Note that the generalized parameters of the approximation have, in general, no direct physical meaning. Thus, hdai,
hai and hdbi, hbi are more conveniently replaced by the nodal variables; hdW1 dW 0

1 dW2 dW 0
2 i, hW1 W 0

1 W2 W 0
2 i and

hdW1 dW2i, hW1 W2i, respectively. To this end, one can write (regarding Eq. (21))

fWng � �Pn�f � fag; fdWng � �Pn�f � fdag; �25�

fWng � �Pn�t � fbg; fdWng � �Pn�t � fdbg; �26�

where

�Pn�f �

1 0 0 0
0 1 0 �bÿa�

�a3�b3�
cos�a� sin�a�

a
�cosh�b�ÿcos�a��
�a2�b2�

�sinh�b�ÿsin�a��
�a3�b3�

ÿa sin�a� cos�a� �b sinh�b��a sin�a��
�a2�b2�

�b cosh�b�ÿa cos�a��
�a3�b3�

266664
377775; �27�

�Pn�t �
1 0

cos�s� sin�s�=s
24 35: �28�

Then, from Eqs. (27), (28) and (21), the W �n� and W�n� approximations can be rewritten as

W �n� � hP �n�if �Pn�ÿ1
f fWng � hN�n�iffWng;

W�n� � hP �n�it�Pn�ÿ1
t fWng � hN�n�itfWng;

�29�

which represent a nodal approximation of the variables. Similar expressions are also written for the test functions.

Eq. (29) can then be rearranged as

W �n�
W�n�

� �
� �N � � fwng; �30�

where; fwng � hW1 W 0
1 W1 W2 W 0

2 W2iT; N� � � N1�x�f N2�x�f 0 N3�x�f N4�x�f 0
0 0 N1�x�t 0 0 N2�x�t

� �
: �31�

Eq. (31) represents the dynamic shape functions, in matrix form. The analytical expressions of Ni are given in

Appendix A. Then, by using Eqs. (19) and (20), the element matrix is obtained as

Wk � hdwni ��KDS�kuncoupl � �KDS�kcoupl�|���������������������{z���������������������}
�KDS �k

fwng; �32�

where

�KDS�kuncoupl � cffN 000f g; cffÿN 00f g; ctfÿN 0tg|�����������������������{z�����������������������}
n�0

; cffÿN 000f g; cffN 00f g; ctfN 0tg|���������������������{z���������������������}
n�1

264
375; �33�
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�KDS�kcoupling �

0 0 �KC�11 0 0 �KC�21

0 �KC�12 0 0 �KC�22

0 �KC�13 �KC�14 0
0 0 �KC�23

Sym: 0 �KC�24

0

26666664

37777775; �34�

where

�KC�ij �
Z 1

0

Cp � N 0itN
0
jf � Cxa � NitNjf dn; for i � 1; 2; j � 1; 2; 3; 4: �35�

and

cf � Hf

l3
k

; ct � Ht

lk
; Cp � mxalkx

2; Cxa �
ÿPxa

lk
:

It can be readily veri®ed from Eqs. (32)±(35) that if the axial force ``P '' is assumed to be zero, the resultant sti�ness

matrix is found to be that representing the coupled bending-torsion vibration of uniform beam elements. One can also

realize that the second term in Eq. (32), representing the coupling between ¯exural and torsional vibrations of the beam

element, reduces to zero, when xa � 0 (xa � 0 can be substituted in the derived expressions without causing any over¯ow

or under¯ow). Thus, the sti�ness matrix, in this case, reduces to the sti�ness matrix representing the uncoupled ¯exural

and torsional vibrations of an axially loaded Euler±Bernoulli beam element [11]. Furthermore, if both of the axial force

P and xa are assumed to be equal zero, the degenerated sti�ness matrix of Eq. (32) becomes the sti�ness matrix rep-

resenting the uncoupled ¯exural and torsional vibrations of an Euler±Bernoulli beam element [17,21]. It can be also

veri®ed that when x! 0, the functions of Eqs. (22) and (23) become h1xx2 x3i and h1xi, respectively. The former,

represents the expansion terms in the formulation of the ``Hermite'' beam element, in conventional FEM, when ¯exural

degrees of freedom are considered. The latter, corresponds to the expansion terms, in a linear element formulation in

conventional FEM, when the torsion of a beam element is studied. In this case, the shape functions of Eq. (30) become

the corresponding shape functions actually used in static conventional FEM. Therefore, the DSM of Eq. (32) changes

to a static sti�ness matrix of a ``Hermite'' beam element, when the torsion is also included by using a linear approx-

imation [19].

The DFE developed here, covers the coupled bending-torsion vibrations of uniform beams of symmetric cross-

section, in the presence of a constant axial load. When designing real blades, the three DOF, namely ¯ap, lag and

torsion, have to be usually treated together [9]. However, as mentioned before, the e�ects of variable centrifugal force,

geometrical parameters and mechanical properties, etc., could also be introduced in the formulation by using similar

techniques as presented in previous works of the authors [10±15]. We also note that the DFE method can be used for the

vibrational analysis of beam assemblages with attached rigid members [22]. Thus, it provides also a basis for analysis of

a beam model of helicopter blades with tip mass, balancing masses, etc.

3. Application of the theory

Elementary matrices, �KDS�k , derived in the previous section, will have to be assembled in the usual way to form the

overall DSM �KDS� of the ®nal structure. The eigenvalue problem resulting from this method, for free vibrations, is then

found to be as

�KDS� � fWng � f0g; �36�

which is non-linear. The natural frequencies is then obtained by using Eq. (36) and the well-known Wittrick±Williams

algorithm described on several occasions in the literature (e.g. see Refs. [16,17,22,23]). Basically, the algorithm relies on

the sti�ness matrix of the individual members (DFEs) in the structure and also it requires the knowledge of clamped±

clamped frequencies of all such members. The consideration of clamped±clamped frequencies of individual members in

a structure is fundamental to the application of the algorithm to ensure that, when ®nding natural frequencies, none is

missed [8]. The procedure is brie¯y summarized as follows:

Suppose that x denotes the circular frequency of the beam. Then, it is known that j, the number of eigenvalues

passed as x is increased from zero to x�, is given by

j � j0 � sfKDSg; �37�
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where �KDS� is the overall DSM (which is x dependent) of the structure, evaluated at x � x�; sfKDSg is the number of

negative elements on the leading diagonal of KD
DS, KD

DS is the upper triangular matrix obtained by applying the usual

form of Gauss elimination to KDS and j0 is the number of natural frequencies of the beam still lying between x � 0 and

x � x�, when the displacement components to which KDS corresponds are all zero (the beam can still have natural

frequencies, when all its nodes are clamped, because the presented formulation allows each individual element to have

an in®nite number of degrees of freedom between nodes). Thus,

j0 �
XEN

m�1

jm �38�

where jm is the number of natural frequencies between x � 0 and x � x� for an element with its ends clamped, whereas

the summation extends over all elements.

For the element sti�ness matrix developed in this article, the clamped±clamped frequencies of an individual element

occurs, when one or more of the components of the matrices of Eqs. (32)±(34) become in®nite (i.e. Df � 0 or Dt � 0,

where Df and Dt are, respectively, the denominators in ¯exural and torsional dynamic shape functions, given in ex-

pressions (30)).

Df � 0, represents the natural frequencies of ¯exural vibrations of an axially loaded clamped±clamped uniform beam

element. To ®nd jf (the number of natural frequencies between x � 0 and x � x�), one can use an indirect method [24]

by considering

jf � jc ÿ sfBg; �39�

where jc is the number of natural frequencies of the simply supported beam exceeded by x�,

jc � the highest integer <
a
p

�40�

and sfBg is the number of negative elements on the leading diagonal of BD, BD is the upper triangular matrix obtained

by applying the usual form of Gauss elimination to B.

Dt � 0, represents the natural frequencies of torsional vibrations of a uniform clamped±clamped beam, and the

number of these natural frequencies exceeded by any trial x is given by

jt � the highest integer <
s
p
: �41�

Hence

jm � jf � jt �42�

and j0 follows from Eq. (38).

Thus, with the knowledge of Eqs. (37)±(42), it is possible to converge on any required natural frequency. Then, the

mode shapes are calculated using Eq. (36). This procedure is implemented in an existing conventional FE program

called RE-FLEXRE-FLEX [25] to obtain the results given in Section 4.

4. Numerical tests

Numerical checks are performed to con®rm the predictability and accuracy of the theory. The coupled bending-

torsional natural frequencies for a variety of open and closed section unloaded beams were studied by substituting

P � 0 in the data and a very good agreement was found with published results [15,26±28]. Further, it was also veri®ed

that assuming both P � 0 and xa � 0, the exact natural frequencies of free bending and torsional vibrations of beams

can be obtained [17].

In what follows, an illustrative example of a bending-torsion coupled beam with monosymmetric semi-circular cross-

section, presented by Friberg [18] is investigated.

First, the clamped±free natural frequencies of this example are studied, when the axial force P is simply assumed to

be zero. Then, the e�ect of a constant axial force on the natural frequencies and mode shapes, is studied. The following

cross-sectional properties were used in the calculation (see Fig. 5 for details) [18]:
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(i) radius �r� � 24:5 mm,

(ii) thickness �t� � 4:0 mm,

(iii) the distance between the shear centre and centroid �xa� � 15:5 mm,

(iv) mass per unit length �m� � 0:835 kg/m,

(v) polar mass moment of inertia per unit length �Ia� � 501� 10ÿ6 kgm,

(vi) cross-sectional area �A� � 308� 10ÿ6 m2,

(vii) second moment of inertia about x axis �IXX � � 92:6� 10ÿ9 m4,

(xiii) E � 68:9 GPa,

(ix) G � 26:5 GPa,

(x) length of the beam (L) was assumed to be 0.82 m.

The natural frequencies obtained by the DFE method, together with the exact results and those found by the

classical FEM are given in Table 1. The exact results are found by employing the DSM presented in Ref. [26] (which is

the same as the DSM presented in Ref. [8] when P � 0). The classical FEMs results are calculated from the FE pre-

sented in Ref. [1]. The static sti�ness and mass matrices, in that case, were found using a cubic ``Hermite'' type and

linear approximations for ¯exural and torsional displacements, respectively. They were calculated, when the beam was

discretized by 200 elements of equal length and an `inverse iteration' solution method was used. In this case, it

was observed that the FEM leads to the natural frequencies which are slightly di�erent from the exact values (the error

was about 0.2%). This fact can be attributed to the iterative nature of the adopted solution method. However, similar

tests for the DFE showed excellent convergencies (the corresponding results of Table 1 are found, when only ®ve DFEs

are used).

Fig. 6 represents the DFE convergency tests corresponding to the ®rst three clamped-free natural frequencies of the

beam. As can be seen for the ®rst natural frequency, the error is found to be approximately zero (e 6 0:1%), even when

Table 1

Bending-torsional natural frequencies of coupled beam based on the present theorya, exact DSM methodb and classical FEc (P � 0)

i Frequency fi (Hz)

DFEa Exact DSMb jError1±2j �%� Classical FEMc jError2±3j �%�
1 62.5 62.5 0.0 62.6 0.2

2 130.5 130.0 0.4 130.2 0.2

3 261.8 261.0 0.3 261.2 0.1

a The results found by using only ®ve DFEs.
b The results obtained using the exact DSM method [26,8].
c The results obtained using 200 classical FEs [1].

Fig. 5. Cross-sectional details of the analyzed bending-torsional coupled beam.
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only four elements are used. For the second and third natural frequencies, the results are converging with approxi-

mately 0:1% percent error, when eight elements are used.

In the second part of this example, the e�ect of a compressive axial force is studied. The ®rst three coupled bending-

torsional natural frequencies �xi� of the beam, with cantilever end conditions and the axial load P � ÿ1790 N, are

calculated using the DFE method. The comparison was made between these results and those available in the literature

[18,8]. The natural frequencies, obtained using only six DFEs, are given in Table 2 alongside the published results

obtained using the exact DSM method [8] and Vlasov's theory [18]. The maximum disagreement between the calculated

results, obtained using six DFEs, and the exact results found from DSM [8] is about 0.2%. When comparing these

results, obtained using six DFEs, to those obtained from Vlasov's theory [18], the maximum disagreement is found to be

about 6%. The di�erence can be attributed to the fact that no allowance has been made in the present theory for sti�ness

associated with warping of the beam cross-section. However, the errors incurred are expected to be signi®cantly less for

closed and solid sections as applicable to helicopter and turbine blades [6], for which the warping term plays a relatively

minor role.

It can be seen from Tables 1 and 2 that the frequency of the beam is reduced because of compressive axial loads. A

similar test was repeated for a tensile axial load (P � �1790 N) and the ®rst three natural frequencies were found as

f1 � 64:7 Hz, f2 � 132:3 Hz and f3 � 264:9 Hz, respectively. As can be observed, the frequency increases with tensile

loads, although not as fast as it reduces with compressive loads. These results are in accord with an earlier work of

Banerjee and Fisher [8].

The mode shapes corresponding to the ®rst three clamped±free natural frequencies, for P � 0 N, P � ÿ1790 N and

P � �1790 N, are given in Fig. 7. As can be seen, the axial force has not a pronounce e�ect on the torsional dis-

placements. Regarding the ¯exural displacement, the in¯uence of axial forces on the ®rst mode is visible, whereas the

other modes are much less a�ected (i.e., A compressive axial force renders the beam less sti�, whereas a tensile one has a

sti�ening e�ect). The natural frequencies are well separated, but the generated modes show substantial coupling

between ¯exural and torsional rotations.

Table 2

Natural frequencies of axially loaded bending-torsion coupled beam using the DFE theorya, exact DSM methodb and Vlasov theoryc

i Frequency fi (Hz)

DFEa Exact DSMb jError1±2j �%� Vlasov theoryc jError1±3j �%�
1 60.11 60.23 0.20 61.28 1.91

2 128.6 128.4 0.16 136.0 5.44

3 258.4 258.0 0.16 274.9 6.00

a The presented results are found by using only six DFEs.
b The published results obtained using the exact DSM method [8].
c The published results obtained using Vlasov's theory [18].

Fig. 6. Convergency test for the ®rst three natural frequencies of the clamped±free bending-torsion coupled beam (with P � 0). ±±±,

x1; ±± � ±±, x2; ±±� ±±, x3.
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5. Conclusion

A DFE for the natural frequencies and mode calculation of coupled bending-torsion vibration of axially loaded

beams is presented. Based on the closed form solutions of the Euler±Bernoulli and St. Venant beam theories, respec-

tively, the trigonometric shape functions corresponding to the uncoupled bending and torsional vibrations were found.

The symbolic computing package MATHEMATICAMATHEMATICA was used in deriving and simplifying these expressions. Then, they

were used to derive the DFE sti�ness matrix. A root counting technique for isolating the clamped±clamped bending

natural frequencies of the beam was also given to enable an established algorithm to be used to guarantee convergence

on all required natural frequencies of free vibration of such beams. The results obtained from the present theory were

found to be in good agreement with the published results. The DFE approach can also be advantageously extended to

cover more complex problems such as coupled biaxial bending-torsion vibration of rotating (centrifugally sti�ened)

beams with uniform or non-uniform geometries.
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Fig. 7. The coupled bending-torsional natural frequencies and modes of semi-circular beam: (±±), ¯exural displacement (W) for P � 0;

(- - -), ¯exural displacement (W) for P < 0; (±± ±± ±±), ¯exural displacement (W) for P > 0; (±±j±±), torsional displacement (W � xa) for

P � 0; (±±ÿ�±±ÿ), torsional displacement for P < 0; (. . .), torsional displacement for P > 0.
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Appendix A. Flexural and torsional dynamic shape functions

N1�x�f OO � �ab�
Df

� f ÿ cos�an� � cos�a�1ÿ n�� � cosh�b� � cos�a� � cosh�b�1ÿ n�� ÿ cosh�bn�

ÿ b
a
� sin�a�1ÿ n�� � sinh�b� � a

b
� sin�a� � sinh�b�1ÿ n��g; �A:1�

N2�x�f �
1

Df

� fb � �cosh�b�1ÿ n�� � sin�a� ÿ cosh�b� � sin�a�1ÿ n�� ÿ sin�an��
� a � �cos�a�1ÿ n�� � sinh�b� ÿ cos�a� � sinh�b�1ÿ n�� ÿ sinh�bn��g; �A:2�

N3�x�f �
�ab�
Df

�
�
ÿ cos�a�1ÿ n�� � cos�an� � cosh�b� ÿ cosh�b�1ÿ n�� � cos�a� � cosh�bn�

ÿ b
a
� sin�an� � sinh�b� � a

b
� sin�a� � sinh�bn�

�
; �A:3�

N4�x�f �
1

Df

� b � �f ÿ cosh�bn� � sin�a� � sin�a�1ÿ n�� � cosh�b� � sin�an��
ÿ a � �cos�an� � sinh�b� � sinh�b�1ÿ n�� � cos�a� � sinh�bn��g: �A:4�

The torsional dynamic shape functions are found to be as

N1�x�t � cos�sn� ÿ cos�s� � sin�sn�
Dt

�A:5�

N2�x�t �
sin�sn�

Dt

; �A:6�

where

Df � �ab� �
�
ÿ 2 � �1ÿ cos�a� � cosh�b�� � a2 ÿ b2

ab

� �
� sin�a� � sinh�b�

�
; �A:7�

Dt � sin�s�: �A:8�
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