

Design for Manufacturing: Jigs & Fixtures in Aircraft Industries

Ryerson University Feb. 19, 2004

Aircraft Design Project AER814

Plan

- Introduction: Airplane Design, Development, Certification and Production
- Design for Manufacturing
- Principles of Producibility Design
- Tools and Manufacturing; Jigs & Fixtures
- Jigs & Fixtures' Advantages in manufacturing
- Jig & Fixture Construction methods and materials
- Jig & Fixture: different types

plan

- Jigs & Fixtures: step by step
- Example of assembly fixtures:
 - Boing 767-400 production line
- Different Jigs & Fixtures; Various examples

Design for Manufacturing

Design for Manufacturing (Cont.)

- Design and manufacturing are successive phases of a single operation, the ultimate objective: *an acceptable final product*.
- In aerospace context, such acceptability has several components:
 - Market viability,
 - Operational efficiency,
 - Capability for further development,
 - Structural integrity.

Design for Manufacturing (Cont.)

Other important facts are:

- Maintainability: Civil airliner, Military aircraft
- Producibility: A structure must not be so complex or difficult in concept that its realization will
 - Create great difficulties or
 - Increase the cost of the manufacturing process;
- Tooling: Low cost production is possible only by accounting for every possible manufacturing advantages.

Principles of Producibility Design

(1) General Configuration

(2) Major breakdowns

(3) Structure and Equipment

Principles of Producibility Design(1) General Configuration:

- Rectangular vs. tapered wing sections, flaps and control surfaces,
- Minimum number of major structures,
- Cylindrical, straight, or conical surfaces vs. compound curvature,
- Extend of fairing and filleting required;

interchangeability is difficult because of tolerance accumulation, should be used only when essential!

Principles of Producibility Design (Cont.)

(2) Major breakdowns

- Adequate access for assembly,
- Ease of handling and transportation,
- Completeness of master breakdown units,
- Assembly joints,
- Effectiveness:

Improved producibility does not necessarily follow an increase in degree of breakdown!

e.g.; Center wing-box assembled as a single part rather than more subsections

Principles of Producibility Design (Cont.)

(3) Structure and Equipment:

- Simplicity: Adequate access for fabrication and subassembly, etc.
- Parts
 - Multiple use and Min. number of different parts
 - Min. total number of parts
 - Min. amount and types of attachments
 - Effective use of standard parts, material shape and sizes

– Detail design:

• Interchangeability, Adjustment, Tolerances, Adequate clearances and fastener edge distances, Machining economy, etc. ...

Tools and Manufacturing

- An aircraft is conceived as a complete structure, but for manufacturing purposes must be divided into
 - Sections, or main components ==> split into
 - Sub-assemblies of decreasing size, resolved into
 - » Individual detail parts.
- To build every single part, special tools are required!

What is a Fixture?

- A Fixture is a *special tool* used for
 - Locating the work,
 - Clamping the work,
 - Supporting the work,
 - Holding all the elements together in a rigid unit
 - during a manufacturing operation.
- The most important considerations are:
 Accuracy and *rigidity*, followed by *ease of use*, and *economy in construction*.

What is a Jig?

A Jig is a type of Fixture with means for positively guiding and supporting tools.

For both Jigs & Fixtures:

- Origin: traced back to Swiss watch and clock industry!
- Objective: to provide *interchangeability*, *reduction of cost*, and *accuracy* of the manufactured Individual detail Parts, Sub-assemblies, Sections, or main components, and finally the complete structure.

Jigs & Fixtures' Advantages

- Ensure the interchangeability and accuracy of parts manufactured,
- Minimize the possibility of human error,
- Permit the use of medium-skilled labor,
- Reduce the manufacturing time,
- Allow the production of repeat orders without retooling.

Jig & Fixture: Construction methods and materials

- Cast in iron,
- Fabricated from steel plates, sections and machined parts by
 - welding,
 - Built-up by bolting etc.
- Materials such as
 - Magnesium,
 - Resin, Wood,

– Plastics and Composite materials, are also used.

Jig & Fixture: different types

- Assembly Fixtures,
- Machining Jigs & Fixtures,
- Drilling Jigs, boring Jigs, etc.
- Welding Fixtures,
- Trim Jigs,
- Control or Master Jig,
- Apply Jig; attaching to a larger jig or an assembly of parts, etc. ...

Jigs & Fixtures: Step by Step

For every part of structure,

- A *mockup* is first designed and is made from material such as wood, plaster, etc.,...
- The mockup is used to design and to build the fixtures ensuring the contours and the external form of the structure,
- The *Master Jig* is then designed in order to complete the fixture providing the important reference points, Jig and pin points, and to provide a Reference for the regular checks of the fixture,
- Thermal expansion of fixtures is important!

Boing 767-400 Assembly line

Floor Beam Tooling

Floor grid

Tail cone

Upper Crown

Ergonomic fuselage turn Fixture

Boing 767-400 Assembly line

Boing 767-400 Assembly line

