Multiple Chamber Aligned in Parallel Cavity Resonator (MCAP-CR)

Basic Concepts

Advanced Loudspeaker Enclosure

By Shigeru Suzuki March 23, 2008

Revised in November 8,2008* * MCAPSS was renamed as MCAP-CR

Traditional Approaches Bass-Reflex Architecture

Single Bass Reflex system has just ONE Characteristic Frequency

Bass-reflex architecture is an application of Helmholtz's cavity resonator

Traditional Approaches Double-Bass-Reflex Architecture

Double Bass Reflex system has TWO Characteristic Frequencies.

$$f_D = \frac{1}{2\pi} \sqrt{\frac{k_{11}m_2 + k_{22}m_1 \pm \sqrt{(k_{11}m_2 + k_{22}m_1)^2 - 4m_1m_2(k_{11}k_{22} - k_{12}k_{21})}{2m_1m_2}}$$

See Appendix-A of "Equations to calculate characteristic frequencies of Multiple Chamber Aligned Cavity Resonator (MCAP-CR)" by Shigeru Suzuki.

Technical Target of MCAP-CR

- Improve frequency response over low range (below *fo* of speaker unit)
- Let this architecture suitable not only for woofer drivers but also for full-range speaker drivers.
- Make Speaker Enclosure size smaller as much as possible compared with existing equivalent systems.
- Develop calculation method so that everyone could design one's own.

Advantages of MCAP-CR

- MCAP-CR architecture has multiple characteristic frequency. The number of characteristic frequencies is theoretically unlimited.
- MCAP-CR architecture generates lower frequency than *fo* at considerably high sound pressure level.
- MCAP-CR architecture requires smaller enclosure than existing equivalent systems.
- MCAP-CR is not only suitable for woofer drivers but also full-range drivers . Full-range drivers are free from electrical network circuits so that they are advantageous.

Frequency Response MCAP-CR vs. Traditional Approaches

MCAP-CR has 4 or more characteristic frequencies (depends on number of chambers and ducts), while double-bass-reflex has 2 and single-bass-reflex has one. Multiple characteristic frequency realizes improved response in low frequently region. *Note: This is just conceptual figure to explain difference among different systems.*

Technical Feature of MCAP-CR

- MCAP-CR stands for <u>Multiple-Chamber</u> <u>Aligned in Parallel Cavity Resonator</u>.
- MCAP-CR is designed to boost multiplecharacteristic frequency.
- MCAP-CR consists of main chamber where speaker driver is installed, sub-chambers, and ducts.
- Each sub-chamber is connected to main chamber through inter-chamber duct.
- Some of (typically, all) sub-chambers have open-air duct.

How MCAP-CR works Schematic: Number of Sub chambers=4

0: Main chamber 1-4 : Sub-chamber

m1 - m8: mass of air that is involved in each duct ko : reference spring constant for speaker cone k1 -k4 : equivalent spring constant for each duct x1 - x8 : displacement of mass of air

Note: Number of sub-chambers is theoretically unlimited. If number of sub-chambers is one, it is identical to traditional doublebass-reflex architecture.

Equations of Motion of MCAP-CR

Equations of Motion : Free Vibration

$$m_{j}\ddot{x}_{j} + k_{N}r_{j}\sum_{i=1}^{N}r_{i}x_{i} + k_{j}r_{j}(r_{j}x_{j} - r_{j+N}x_{j+N}) = 4$$
$$m_{j+N}\ddot{x}_{j+N} + k_{j}r_{j}(r_{j+N}x_{j+N} - r_{j}x_{j}) = 4$$

mj: mass of air involved in each duct

N: number of sub-chambers

ko: reference spring constant of base chamber

k1-kN : spring constant of each sub chamber for reference cross-sectional area

rj : ratio of cross sectional area divided by reference area

xj : displacement of air mass in each duct

Equation of Motion: Matrix Form

Equation of motion of free vibration can be expressed in matrix form.

$\mathbf{M}\ddot{\mathbf{X}} + \mathbf{K}\mathbf{X} = \mathbf{0}$

- M: Mass Matrix
- K: Stiffness Matrix
- X: Displacement Vector

Eigen Value Problem

$|\mathbf{K} - \lambda \mathbf{M}| = \mathbf{0}$

 λ : Eigen Value

Solving Equations of MCAP-CR Refer to another document

- 1. Determine number of sub-chambers
- 2.Determine principal dimensions (size of chambers, ducts)
- **3**.Develop equations of motion of your model
- 4.Calculate mass-matrix and stiffness-matrix

5.Solve Eigen Value Problem using a computer program (described in another document). Document Number : MCAP002E

Solving Equations of MCAP-CR Calculation Window (Example)

💌 Micro	soft Ex	cel – I	Direct-	-deter	minant-c	alcula	tion_01.08.xl	s																		
📳 Eile	<u>E</u> dit	⊻iew	Insert	F <u>o</u> rm	nat <u>T</u> ools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp				_										Ту	pe a que	stion for h	elp 🔹 .	-8×
1 🗋 💕			a 🗳	ABC	🗱 💥 (b 🔁	+ 🛷 🗐	- (21 -	Σ-	15%	-	📜 i Ms	SPゴシック	,	• 11	• B	ΙŪ			ē 🛒	%,	.00. ♦ 00.	.8 🚛		+ 🦄 +	<u>A</u> - 💂
1 🛄 💼	22	- 🔁 👌	9 3	3	🔰 🐁 Ó	🖻 🕬	Reply with <u>⊂</u> h	anges	E <u>n</u> d Revi	ew 💂																
F8 v % 100 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AA																										
1 A	В	C	D	E f_min	F 1	G	н	J	<u>к</u> 21	L 42	M 67	N 91	0	P	Q	R	S	т	U	V	W	×	Y	Z	AA	A ▲
2 N		2		f_max	1 00				22	43	68	92														2
4	litre		om2		mm		ks		matri× K																	4
5 VO 6 V1	11.9 10.5	6 AO 2 A1	140 25	LI	80	1	0.00024	1	113.12	2 33.88	-21.67	4	5	6	7	8	9	10	11	12	2 1	3 1	4	5 10	1	Е Е
7 V2	15.8	4 A2	16	L2	110	m2	0.0002112	2	33.88	38.055	0	-9.209														7
9 V4		A4	9	L3 L4	260	m4	0.0002808	4	-21.07	-9.209	0	5.1801														¢ ¢
10 V5 11 V6		A5 A6		L5 L6		m5 m6		6																		1
12 V7		A7		L7		m7		7																		1
14		A9		L9		m9		9																		1
15		A1 0 A1 1		L10		m10 m11		10	0																	1
17		A1 2		L12		m12		12																		1
19		A1 4		L14		m1 4		14	6																	1
20		A1 5 A1 6		L15 L16		m15 m16		15																		2
22		_																								2
24	m3		ND		N/m			_	Matri× M	к			A=M^(-1)	∗к												2
25 VO 26 V1	0.0119	6 2 r1	0.179	k0 k1	1660.1 1887.338		m=1	1.50	E+00													1	4	5 10	1	2
27 V2	0.0158	4 r2	0.114	k2	1253.46																					2
29 V4		r4	0.064	k4				1.00	E+00																	2
30 V5 31 V6		r5 r6		k5 k6				5.00	E-01					and the second	*****	×				<u> </u>						3
32 V7		r7		k7									- Andrew			<u> </u>										3
34		r9						0.00	E+00 20	*****	0.	40	5	 0	60	Ì	70	80		90	100					3
35		r10 r11						-5.00	E-01								<u>}</u>			+						3
37		r12						1									1									3
39		r14						-1.00	E+00								t			1						3
40		r15						-1.50	E+00								-			 						4
42								1									1									4
44								2.00										ł						_		4
45 46								-2.50	E+00									+	/							4
47								-3.00										1	t							4
49								1 3.00										- F	F							4
50								-3.50	E+00																	5
52								-4.00																		5
54								1,00																		5
HAF	• ∖ <u>4DOF</u>	6.5 (6	5DOF_8	∕6DOF	4.5_desig	n (6DO	F_4_actual /8	DOF_3_	original / S	heet2 / Sl	neet3 /		_			•										
Draw 🕶	🗟 Au	toShape	s • 🔪	×			4 🛟 🚨 🛛	🎿 🆄	- 🚄 -	<u>A</u> - =		🛱 🔲 🛙	J 📮													

Expected Q & A (1) General ANSWERS

• Do I like MCAP-CR sound?

• Is designing MCAP-CR difficult for me?

• Do you have examples of MCAP-CR?

- Is MCAP-CR good for high fidelity system?
- Is it difficult to assemble MCAP-CR?

- It is recommended for those who like full-range system's sounds, but not recommended for those who prefer multiple-way systems rather than full-range systems.
- It may be difficult if you are not good at mathematics. Knowledge level of MS in Engineering may be required.
- Yes. I have already made six models. Some of them will be uploaded to this web page.
- I believe YES. One advantage of MCAP-CR is it is good for full-range drivers.
- It may be difficult for beginners.

Expected Q & A (2) General ANSWERS

• I have difficulty to calculate and design MCAP-CR. May I ask you for more details?

• Where can I buy MCAP-CR?

• Where can I hear sound of MCAP-CR?

• Do I need to pay for the patent.

- Yes, I would try to help you as much as possible. Please do not hesitate to contact me.
- Any MCAP-CR is not sold right now. There is no manufacturer. I wish I could, but I have no fund to found a company.
- There is nowhere you can hear sound of MCAP-CR except my home. You may write to me if you really want to hear them. My home is located in Tokyo, Japan.
- Patent application was submitted in 2007, but it has not yet become a right. Even though patented, it does not affect non-commercial personal use.

Expected Q & A (3) Technical ANSWERS

- What is the recommended number of sub-chambers?
- What characteristic frequency should be targeted?

• How can I determine size of ducts and volume of each chamber?

- It must be at least 2. N=2, 3, or 4 will be suitable for practical reasons.
- From my experience, lowest characteristic frequency should be 50Hz for 3" drivers, 40Hz for 4" drivers, and 20Hz – 30Hz for 6.5" and bigger drivers. Highest characteristic frequency may be determined based on driver's response curve.
- You may begin with defining volume of chambers. Chamber's size depends on practical constraint. I suggest that summation of cross sectional area of each inter-chamber duct does not exceed 1/2 of driver's effective area (ao). Cross sectional area of open-air duct should be equal or even smaller than of interchamber duct. Then calculate characteristic frequencies. Parameter should be lengths of ducts.

Expected Q & A (4) Technical ANSWERS

• Response in low frequency region seems not enough. What can I do?

- Which drivers should be suitable for MCAP-CR?
- MCAP-CR generates lowest characteristic frequency, so you may boost low frequency using tone control. Bass-reflex system cannot boost lower than fD; it is true to MCASPS, but MCAP-CR has lower fD, thus using tone control is very effective.
- Considerably powerful full-range drives are recommended. I suggest 3" drivers of Tangband: W3-316 is most recommended. If you like Fostex, I suggest FE126E, FE166E, FE206E, FF125K, FF165K, and FF225K; however, any driver can be used as you prefer.

Expected Q & A (5) Technical ANSWERS

- May I think that MCAP-CR is compete technology?
- How can you complete MCAP-CR technology?
- MCAP-CR is proven technology, yet it is not complete. Any technology is NOT perfect. We have to improve applications everyday.
- I will try to design, assemble and test as many models as possible, but cannot make enough. I would be the most happy, if you want to work with me to help developing MCAP-CR. One purpose of publishing this document is to find a partner. My contact email address is shown in the web page.

Summary

- MCAP-CR is an application of cavity resonator Cavity Resonator with multiple characteristic frequency.
- Equations and solution were proposed.
- MCAP-CR is suitable not only for woofer drivers but also full-range drivers.
- I would be the most happy if you become interested in MCAP-CR. Thank you.