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I. Introduction. 
 
  Lors de la découverte d�un nouvel astre � comète, planète, astéroïde � il est important de 
pouvoir établir rapidement les caractéristiques de sa trajectoire afin de pouvoir le localiser 
pour de nouvelles observations. C�est surtout le cas de comètes ou astéroïdes, pour lesquelles 
la magnitude peut décroître dans les semaines qui suivent sa découverte, le rendant ainsi 
introuvable. Les calculs de trajectoire permettent également d�identifier le retour périodique 
d�une comète, ou de localiser les planètes pour les astronomes en quête d�observations. Bref, 
il s�agit d�un élément essentiel de l�astronomie observationnelle. 
  Nous allons présenter ici l�une des principales méthodes de détermination des éléments 
d�une orbite elliptique, méthode que l�on doit au mathématicien allemand Gauss. A l�origine, 
cette méthode se fondait essentiellement sur des approximations successives et des calculs 
numériques simples, faute d�outils puissants. Nous verrons que le développement de 
l�informatique permet aujourd�hui de s�affranchir  de ses approximations, en utilisant des 
logiciels de résolution performants. Nous appliquerons alors cette méthode à la détermination 
des éléments de Jupiter. Munis de ces résultats, nous présenterons � et appliquerons - la 
méthode qui permet de calculer les éphémérides de la planète. 
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II. Les systèmes de coordonnées en astronomie de 
position. 

 
 
  Il existe en astronomie de position un certain nombre de systèmes de repérages, plus ou 
moins adapté à l�observation ou au calcul d�éphémérides. Nous allons présenter ici les quatre 
principaux, en les introduisant dans un ordre « naturel » pour un observateur. 

1)Système de coordonnées azimutales . 
 
 Il s�agit du système de repérage le plus immédiat.  Il utilise le plan horizontal pour un 
observateur au centre de la sphère céleste, ainsi que la verticale en ce point. On définit alors : 
- l�horizon comme le cercle intersection du plan horizontal avec la sphère céleste ; 
- le zénith comme le point intersection de la verticale avec la sphère céleste, et situé au-

dessus de l�observateur (le point diamétralement opposé est appelé le nadir) ; 
- le plan méridien du lieu d�observation comme le plan passant par le zénith � et le nadir � 

contenant la direction nord-sud. 
 
  On repère alors un point M de la sphère céleste �étoiles, planètes ou tout autre corps �  au 
moyen de deux coordonnées angulaires : sa hauteur apparente h au-dessus de l�horizon et 
l�angle que fait par rapport à la direction du sud, la droite joignant le centre de la sphère 
céleste à la projection de M sur le plan horizontal. Ce dernier angle est appelé l�azimut a du 
point M ; il varie de 0° à 360°, et est compté positivement vers l�ouest. h, lui varie de �90° à 
90° , et est compté positivement vers le nord. 
  Ce système de repérage, bien que très naturel pour un observateur, est finalement très peu 
utilisé pour la raison suivante : a et h sont des fonctions (parfois compliquées !) du temps, et 
dépendent en plus du lieu d�observation. Il est donc très malaisé d�employer ces coordonnées 
dans les tables d�éphémérides. On va donc essayer , par étapes, d�introduire des coordonnées 
qui ne sont plus fonctions du temps � ie indépendantes de la rotation de la Terre.  
   
 
 
 
 
 
 
 
 



 4

 

2) Système de coordonnées horaires. 
 
 
Ce système privilégie l�axe de rotation de la Terre sur elle-même. On définit alors : 
- l�équateur céleste comme le cercle intersection du plan perpendiculaire à cet axe avec la 

sphère céleste ; 
- les pôles nord et sud comme les points intersection de l�axe de rotation de la Terre avec la 

sphère céleste ; 
- le méridien du lieu comme le demi-cercle passant par les pôles et par le zénith. 
 
On repère alors un point M de la sphère  par sa hauteur apparente  par rapport à l�équateur 
céleste, ainsi que par l�angle, mesuré dans l�équateur céleste, entre le méridien et la projection 
de M sur cet équateur. Ces angles sont appelés respectivement déclinaison et angle horaire. La 
déclinaison varie entre �90° et 90°, et est comptée positivement vers le pôle nord. L�angle 
horaire varie de 0 à 24h � l�équateur étant alors gradué de 0 à 24h - , et est comptée 
positivement vers l�ouest.  
  On voit tout de suite que la déclinaison de M reste invariable pour une étoile fixe, 
puisqu�elle décrit un petit cercle parallèle à l�équateur céleste. Il n�en va pas de même pour 
l�angle horaire qui, comme l�azimut, est une fonction du temps. D�où l�introduction des 
coordonnées équatoriales, sur lesquelles la rotation de la Terre ne joue cette fois plus aucun 
rôle. 

3) Système de coordonnées équatoriales. 
 
On garde ici les mêmes éléments que dans le paragraphe précédent, mais on introduit en plus 
un point appartenant à l�équateur céleste, immobile dans la sphère des fixes, et appelé point 
vernal. C�est en fait le point où se trouve le Soleil à l�équinoxe de Printemps. Un point M est 
alors repéré par sa déclinaison � c�est le même angle que précédemment � et par l�angle, 
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toujours mesuré dans l�équateur céleste, entre la projection de M et le point vernal. Cet angle 
est appelé l�ascension droite de M ; il varie entre 0 et 24h, et est compté positivement vers 
l�est. 
  Ce dernier système répond aux exigences que nous nous étions fixées sur l�invariance dans 
le temps des coordonnées du point M, ou plus exactement sur l�indépendance de ces 
coordonnées avec la rotation de la Terre . 
A ce stade, on pourrait penser que l�on a terminé de décrire les principaux systèmes de 
repérages. Il se trouve qu�en pratique, on utilise parfois un quatrième système de repérage, lié 
non plus à la rotation de la Terre sur elle-même, mais à la rotation de la Terre autour du 
Soleil. 
 

   

4)Système de coordonnées écliptiques. 
 
On privilégie dans ce système le plan contenant le Soleil et la trajectoire de la Terre, plan que 
l�on appelle plan de l�écliptique. Son intersection avec la sphère céleste est un cercle � appelé 
écliptique � qui coupe l�équateur céleste en deux points diamétralement opposés, dont l�un est 
précisément le point vernal ( l�autre correspondant à l�équinoxe d�automne). On repère alors 
un point M par sa latitude et sa longitude écliptiques, dont les définitions sont analogues à la 
déclinaison et l�ascension droite , mais pris cette fois par rapport au plan de l�écliptique. 
 
On peut bien sûr établir des formules de passage d�un système de coordonnées à un autre. 
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III. Eléments de mécanique céleste. 
Eléments de l�orbite d�une planète. 
 
 
 
Lors de la découverte d�une planète ou d�une comète, il est essentiel à partir des observations 
de déterminer l�ensemble des caractéristiques nécessaires au suivi de l�objet découvert, et à 
l�établissement d�éphémérides. Le choix de ces éléments n�est pas unique1, mais en pratique, 
on utilise essentiellement les 7 éléments qui vont être définis ci-dessous. 
Considérons tout d�abord l�orbite (que nous supposerons elliptique, ce qui est le cas de 
planètes, astéroïdes et de nombreuses comètes) de l�astre étudié, ainsi que le plan de cette 
orbite. Le plan de référence sera celui de l�écliptique, ie celui contenant la trajectoire de la 
Terre autour du Soleil (cf figure ci-dessous). On définit alors : 
-      la ligne des n�uds comme la droite intersection de ces deux plans orbitaux ; cette droite 
coupe la trajectoire de l�astre étudié en deux points N et N�, appelés respectivement n�ud 
ascendant et descendant ; 
- la longitude du n�ud ascendant qui est l�angle (Sγ,SN) = ω ; 
- l�argument du périastre (le périastre P désignant le point de la trajectoire le plus proche du 

Soleil S) qui est l�angle (SN,SP) = Ω ; 
- l�inclinaison de l�orbite i comme l�angle que font entre eux les deux plans orbitaux, i étant 

compté de 0° à 180° ; 
- l�instant de passage au périastre, τ, qui permet de préciser la position de l�astre sur son 

orbite. 
- Le moyen mouvement n, égal à 2π/T où T désigne la période de révolution sidérale. 
 
 
On choisit alors généralement les 6 paramètres suivants qui, une fois connus, permettent de 
déterminer entièrement le mouvement d�un astre : a, e, i, Ω, ω, τ, ou bien encore a, e, i, 
Ω, ω et n � ceux que nous allons calculer dans la suite. 
 
 
 
 
 
 
 
 
 

 
 

                                                        
1 La résolution de l�équation du mouvement, qui est du second ordre, introduira six constantes du mouvement � 
par exemple les vecteurs positions et vitesses initiales. Ces quantités sont généralement d�un emploi malaisé, ne 
serait-ce que par la difficulté de les connaître par l�observation. On utilise alors des relations de passage avec un 
jeu de six autres constantes, plus accessibles et plus commodes dans les calculs, relations qui permettent de 
redéfinir les conditions initiales à l�aide de ces nouvelles constantes. 
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Détermination d�une orbite planétaire - méthode de Gauss. 
 
La méthode de Gauss permet de déterminer les éléments d'une orbite elliptique à partir de 
trois observations - pas trop éloignées dans le temps - de l'astre étudié. Historiquement, c�est 
l�une des premières méthodes du genre, elle a donc l�avantage de pouvoir être mise en �uvre 
très facilement, sans outils puissants de calculs. Avant de présenter le principe de cette 
méthode, fondée dans sa forme originelle sur des approximations successives, nous allons tout 
d�abord démontrer un certain nombre de relations générales qui nous seront utiles pour établir 
le système d �équations qu�il nous faudra résoudre. 
 
Considérons tout d�abord la trajectoire � elliptique- d�une planète autour du Soleil S. Notons a 
et b les demi-axes de l�ellipse, et e son excentricité. On appellera O le centre de l�ellipse, et on 
rapporte le plan à un repère (Oxy), (Ox) étant l�axe joignant O à S.On appellera C le cercle de 
centre O et de rayon a, M la position de la planète sur son orbite, M � le point de C qui a la 
même abscisse x que M.On pose enfin r = SM, (OS,OM�) = u et (OS,SM) = v, ces angles 
étant respectivement l�anomalie excentrique et l�anomalie moyenne. Les coordonnées 
rectilignes de M, rapportées au repère choisi, s�expriment comme suit2 : 
                                                        
2 On utilisera ici certaines propriétés, que nous ne démontrerons pas, des ellipses, à savoir : b = a ²1 e− , 

a
b

y
y

M

M =
'

 et OS = ae. 
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x = a cos u       (1) 
y = a 21 e− sin u          (2) 
 
On peut également écrire des relations portant sur le rayon vecteur r : 
 
r cos v = x � ae = a (cos u � e)  (3) 
r sin v = y = a 21 e− sin u   (4) 
r = a (1 - e cos u)    (5) 
 
Par ailleurs, nous pouvons écrire grâce à la seconde loi de Kepler sur la constance de la 
vitesse aréolaire que : 
 

)sin(
2
1 ueuab

T
tab −=−τπ    (6)  

 
relation dans laquelle t - τ désigne le temps écoulé depuis le passage de la planète au 
périhélie, et T est sa période de révolution sidérale. 
Nous tirons de cette dernière relation l�équation dire de Kepler : 
 

u � e sin u = )(2 τπ −t
T

   (7) 

Le terme de droite est généralement noté M et appelé l�anomalie moyenne. 
 
Signalons encore un dernier type de relation exprimant v en fonction de u : en effectuant la 
somme (resp la différence) des relations (3) et (5), on obtient en effet : 
 

2
cos)1(

2
cos ueavr −=    (8) 

2
sin)1(

2
sin ueavr +=    (9) 

 
 
 
 

Considérons à présent le Soleil S ainsi que les trois positions observées de la planète Pi (i = 
1,2,3), de coordonnées  héliocentriques xi, yi, zi, aux dates ti. On posera : θ1=t2 � t1, θ2 = t3 � t2, 
θ3 = t3 � t1. Notons S1 (resp S2,S3) l'aire du triangle SP1P2 (resp SP2P3, SP1P3). La première 
remarque que l'on peut faire est que le plan P1 P2 P3 passe par l'origine S du repère 
(héliocentrique). On en déduit que la matrice des coordonnées des Pi a un déterminant nul: 
 

      Det
















333

222

111

zyx
zyx
zyx

 =0 
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En développant ce déterminant, on trouve que : 
x1 (y2 z3 - y3 z2) - x2 (y1 z3 - y3 z1) +x3 (y1 z2 - y2 z1) = 0               (10) 
 
Par ailleurs, l'aire de S1 (par exemple) est donnée par le module de .5* SP1 SP2 ;la projection 
de S1 sur le plan Syz est donc précisément la quantité (y1 z2 - y2 z1). Les triangles considérés 
étant tous coplanaires, le rapport de l'aire projetée sur l'aire initiale est le même, ce qui nous 
permet d'écrire: 
 

3

1

1331

1221

S
S  

z y - z y
 z y - z y =    (11) 

 
Ainsi qu'une  formule similaire pour S2/S3. En reportant ces égalités dans (10), on peut alors 
écrire: 
 

x1 
3

2

S
S  - x2 + x3 

3

1

S
S  = 0  (12a) 

 
Des relations semblables peuvent de même être établies en développant le déterminant par 
rapport aux autres colonnes: 
 

y1
3

2

S
S  - y2 + y3 

3

1

S
S  = 0  (12b) 

z1 
3

2

S
S  - z2 + z3 

3

1

S
S  = 0  (12c) 

 
Ces formules donnent des relations entre les coordonnées de l�astre, en faisant intervenir les 
rapports des aires. 
Ces rapports étant a priori inconnus, il est nécessaire d�en trouver une expression, expression 
que nous nous proposons d�établir maintenant. 
Notons Σ3 l�aire du secteur curviligne limitée par les rayons vecteurs r1 et r3 et l�arc d�orbite 
P1 P3. Posons en outre : 

γ3 = 
3

3

S
Σ

 

On a alors: 
 

3

3

2

2

3

2

Σ
Σ=

γ
γS

S  

 
 
Nous allons introduire à présent la constante des aires C, définie comme le double de la 
vitesse aréolaire : 
 

C=r²
dt
dv  

 



 10

C est relié de manière simple à Σ, puisque l�on a en effet : 
 
Σ3 = 2Cθ3 
 
On en déduit alors l�expression des rapports des aires : 
 

3

2

2

3

3

2

θ
θ

γ
γ

=
S
S     (13) 

avec une formule analogue pour le rapport 
3

1

S
S . 

 
Bien sûr, nous n�avons fait que déplacer le problème, car γ est inconnu. Nous devons donc à 
présent établir une équation permettant de calculer γ. 
  
Connaissant l�aire de l�ellipse et la période de révolution sidérale, on peut tout d�abord mettre 
C sous la forme plus utilisable suivante : 
 

C = ²1²2 ea
T

−π  

On posera n = 
T
π2  (moyen mouvement, déjà introduit plus haut). 

On écrit alors Σ3 sous la forme suivante : 
 
2 Σ3 = n a² θ3 ²1 e− = a² (M3 � M1) ²1 e−   
 
En utilisant alors l�équation (7), on trouve : 
 
2 Σ3 = a² ²1 e− ( 2 (u3 � u1) � e (sin u3 � sin u1))  (14) 
 
L�expression de S3 est, elle, obtenue à partir des relations (3) et (4) écrites à la fois pour les 
positions 1 et 3 : 
 
2 S3 = r1 r3 sin (v3 � v1) = a² ²1 e− (sin (2(v3 � v1)) � e (sin u3 � sin u1))  (15) 
 
 
Nous pouvons donner une autre expression de S3 : pour cela, , on utilise les relations 
(5),(7),(8) et (9), écrites à la fois pour la position 1 et la position 3 : 
 
 

2
cos)1(

2
cos 11

1
u

ea
v

r −=  
2

cos)1(
2

cos 33
3

u
ea

v
r −=  

2
sin)1(

2
sin 11

1
u

ea
v

r +=  
2

sin)1(
2

sin 33
3

u
ea

v
r +=  

 

⇒  )
2

cos(cos
2

cos 1313
31

uu
ega

vv
rr

+
−=

−
      (16) 
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 ainsi que: gea
vv

rr sin²1
2

sin 13
31 −=

−
  (17) 

Notons que le terme de gauche de la relation (16) vaut également 
2

31313131 zzyyxxrr +++
, 

quantité que nous appellerons χ3 par la suite. 
 
r1 = a (1 - e cos u1)  r3 = a (1 - e cos u3)  
 
 

⇒  )
2

cos
2

cos1(
2

131331 uuuu
ea

rr +−
−=

+
  (18) 

 
La multiplication des relations (16) et (17) fait alors apparaître l�aire S3 : 
 
 

S3 = gea sin
2

²1
3

−χ   (19) 

En élevant au carré cette expression, et en remarquant que a² (1 � e²) = p = 
²
²

4²

3

3

θkk
C Σ

= , on 

aboutit à la relation : 
 

γ3² = 
)

2
²(sin²2

²
13

3

3

uu
a

k
−χ

θ
 (20) 

 
 
Soustrayons alors les équations (14) et (15) : 
 

Σ3 � S3 = )sin((²1
2
²

1313 uuuuea −−−−   (21) 

Divisons maintenant par (13), ce qui élimine l�inconnue e et fait introduire γ : 
 

γ3 - 1 = 
)

2
sin(

)sin(
2 13

1313

3
uu

uuuua
−

−−−
χ

  (22) 

 
On multiplie enfin (20) par (22), ce qui élimine cette fois l�inconnue a : 
 

γ3
3 - γ3² = 

313

1313
3

3

3

))
2

(sin(

)sin(
22

²
uu

uuuuk
−

−−−
χ

θ
 (23) 

 
Nous obtenons ainsi une équation dans laquelle n�interviennent que deux inconnues, à savoir 
γ3 et (u3 � u1). 
Nous devons donc établir une autre relation portant sur ces deux inconnues. Pour cela, nous 
allons réutiliser la relation (16), couplée cette fois avec (18) qui ne nous a pas encore servi. 
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Ces deux relations faisant intervenir e, nous pouvons éliminer cette inconnue, ce qui permet 
d�obtenir : 
 

e cos )
2

( 13 uu +
=cos )

2
( 13 uu −

- 
2

3

a
χ

 = 
)

2
cos(

2
1

13

31

uu
a
rr

−

+
−

 

 
D�où : 
 

a sin² (
2

13 uu −
) = )

2
cos(

22
13331 uurr −

−
+ χ

  (24) 

 
Ceci permet de réécrire l�équation (20) sous la forme : 
 

γ3² =
)

2
cos(

22

1
²2
²

133313

3

uurr
k

−
−

+ χχ
θ

   (25) 

 
Ceci fournit une deuxième relation entre γ3 et (u3 � u1). 
Les relations que nous venons d�écrire sont bien sûr valables pour les autres positions de la 
planète, et nous sommes donc en mesure de calculer les éléments de l�orbite à partir de trois 
observations de la planète. 
 
 
Notons δi et αi les coordonnées équatoriales de la planète, relevées aux dates ti. Rappelons 
que nous avons noté les coordonnées héliocentriques de la planète (xi, yi, zi). Les coordonnées 
héliocentriques de la Terre aux dates ti seront notées (Xi, Yi, Zi). Nous avons donc : 
 
xi = ∆i cos δi cos αi -Xi = λ i ∆i -Xi 
yi =∆i cos δi  sin α i - Yi  = µi ∆i - Yi 
zi =∆i sin δi �Zi = νi ∆i - Zi 
 
En remplaçant ces expressions dans les relations (12) établies plus haut, on trouve les trois 
premières équations de notre système : 
 

λ1∆1 
23

32

γθ
γθ

 - λ2∆2 + λ3∆3 
13

31

γθ
γθ  = 

23

32

γθ
γθ

X1 � X2 + 
13

31

γθ
γθ X3 

µ1∆1
23

32

γθ
γθ

 - µ2∆2 + µ3∆3
13

31

γθ
γθ

 = 
23

32

γθ
γθ

Y1 � Y2 + 
13

31

γθ
γθ Y3 

ν1∆1
23

32

γθ
γθ

 - ν2∆2 + ν3∆3
13

31

γθ
γθ

 =  
23

32

γθ
γθ

Z1 � Z2 + 
13

31

γθ
γθ Z3 

 
Ces équations font intervenir 6 inconnues, à savoir les ∆i et les γi. Mais nous avons établi des 
relations portant sur ces mêmes γi. Ces dernières faisaient intervenir un autre type 
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d�inconnues, à savoir les quantités du type :
2

13 uu −
. Ceci fait un total de 9 inconnues, pour les 

9 équations qui constituent le système suivant : 

λ1∆1 
23

32

γθ
γθ

 - λ2∆2 + λ3∆3 
13

31

γθ
γθ  = 

23

32

γθ
γθ

X1 � X2 + 
13

31

γθ
γθ X3 

µ1∆1
23

32

γθ
γθ

 - µ2∆2 + µ3∆3
13

31

γθ
γθ

 = 
23

32

γθ
γθ

Y1 � Y2 + 
13

31

γθ
γθ Y3 

ν1∆1
23

32

γθ
γθ

 - ν2∆2 + ν3∆3
13

31

γθ
γθ

 =  
23

32

γθ
γθ

Z1 � Z2 + 
13

31

γθ
γθ Z3 

γ1
3 - γ1² = 

312

1212
3

1

1

))
2

(sin(

)sin(
22

²
uu

uuuuk
−

−−−
χ

θ  

γ1
3 - γ1² = 

312

1212
3

1

1

))
2

(sin(

)sin(
22

²
uu

uuuuk
−

−−−
χ

θ  

γ2
3 - γ2² = 

323

2323
3

2

2

))
2

(sin(

)sin(
22

²
uu

uuuuk
−

−−−
χ

θ  

γ3
3 - γ3² = 

313

1313
3

3

3

))
2

(sin(

)sin(
22

²
uu

uuuuk
−

−−−
χ

θ
 

γ1² =
)

2
cos(

22

1
²2
²

121211

1

uurr
k

−
−

+ χχ
θ

 

γ2² =
)

2
cos(

22

1
²2
²

232322

2

uurr
k

−
−

+ χχ
θ

 

γ3² =
)

2
cos(

22

1
²2
²

133313

3

uurr
k

−
−

+ χχ
θ

 

 
La résolution de ce système permet de déterminer les ∆i, et donc les rayons vecteurs. On peut 
également déterminer a, à partir de l�équation (20) par exemple ; dès lors, le calcul de e 
devient très aisé. Quant à l�inclinaison et la longitude du périhélie, elles s�obtiennent grâce 
aux calculs des projections des aires Si, obtenues à l�aide des coordonnées xi, yi, zi de la 
planète. Nous terminons la détermination avec ω, obtenu grâce à des relations entre rayons 
vecteurs et coordonnées écliptiques héliocentriques, puis n, établie via la loi de Kepler.  
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IV. Application : calcul des éléments de l�orbite de 
Jupiter. 

Calcul des éléments de l�orbite. 
 
Nous avons utilisé les trois observations suivantes pour le calcul des éléments de l�orbite de 
Jupiter, observations espacées chacune de 10 jours : 
 
01/01/2000 : ascension droite : 1h35m24.47892s ; déclinaison :+8°35�10.5123�� 
11/01/2000 : ascension droite : 1h37m26.00387s ; déclinaison :+8°50�9.7596�� 
21/01/2000 : ascension droite : 1h40m39.31252s ; déclinaison :+9°11�47.2238�� 
 
A partir de ces observations, ainsi que des positions héliocentriques de la Terre à ces mêmes 
dates, nous calculons tout d�abord les coefficients λ i, µi, et νi déjà introduits : 
 
 01/01/2000 11/01/2000 21/01/2000 
λI 0.9043425 0.9001721 0.8934619 
µI 0.3998433 0.4075474 0.419742 
νI  0.1492981 0.1536075 0.15982 
 
Nous sommes alors en mesure de faire résoudre le système précédent par un logiciel de 
résolution numérique. Nous avons utilisé Maple et Mathematica, et nous avons obtenu les 
résultats suivants : 
 
∆1 = 4.613910830 γ1 = 1.000040259 g1 = - 0.007583625130 
∆2 = 4.771563042 γ2 = 1.000040228 g2 = - 0.007581653186 
∆3 = 4.931807155 γ3 = 1.000160988 g3 = - 0.01516528094 
 
Nous calculons alors les coordonnées équatoriales héliocentriques de Jupiter : 
 
 01/01/2000 11/01/2000 21/01/2000 
xi 4.0041102258 3.95792727689 3.91078870354 
yi 2.73372588115 2.79222691426 2.85005369857 
zi 1.07424163241 1.10044337792 1.12637911694 
 
Ainsi que les coordonnées écliptiques héliocentriques, qui s�obtiennent grâce à l�angle ε que 
font le plan de l�écliptique et le plan de l�équateur céleste: 
 
x�i = xi 
y�i = yi cosε + zi sinε 
z�i = -yi sinε + zi cosε 
 
 
 01/01/2000 11/01/2000 21/01/2000 
x�i 4.0041102258 3.95792727689 3.91078870354 
y�i 2.93545197995 2.99954809377 3.06291978539 
z�i -0.101852596764 -0.101084132859 -0.100291515403 
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Nous sommes maintenant en mesure de calculer l�inclinaison de l�orbite et la longitude du 
périhélie en calculant les projections d�aires : 
 
2 S3 cos i = x�1y�3 � x�3y�1 = 0.784335990512 
2 S3 sin i sinΩ = y�1z�3 � y�3z�1 = 0.01756540636 
2 S3 sin i cosΩ = x�1z�3 � x�3z�1 = - 0.003254297535 
 
De tout ceci nous déduisons: 
 
S3 = 0.392269703127 
i = 1°18� 
Ω = 100°29� 
 
Nous pouvons aussi calculer les rayons vecteurs, ainsi que χ3 et donc a par (20) : 
χ3 = 49.2935424629 
a = 5.21910 
 
D�où aussi e : 
e = 0.05771 
 
Le moyen mouvement (introduit plus haut)est obtenue grâce à la loi de Képler qui exprime 
que le rapport a3/T² reste constant. Connaissant ce rapport pour la Terre, ainsi que le demi 
grand axe de Jupiter, on peut donc en déduire son moyen mouvement n : 
 
n = 0.98560767 a�3/2 
D�où n = 305.4535�� par jour. 
 
Pour calculer ω, on utilise les relations entre les rayons vecteurs et les coordonnées 
écliptiques héliocentriques. On a en effet par projection : 
 
z�1 = r1 sin i sin (v1+ω) 
 
L�autre inconnue de cette relation est v1, qui peut être déterminée grâce à la formule suivante, 
valable pour toute trajectoire elliptique : 
 

e cos v1 = 
1r
p  � 1 , avec p = C²/k et C = 2S1γ1/θ1 

Munis de ces relations, nous trouvons finalement : 
 
ω = -95.99° 
 
Voici donc les éléments de l�orbite de Jupiter que nous trouvons à l�issue de nos calculs : 
 
a = 5.219010 
e = 0.05771 
i = 1°18�30�� 
n = 305.4535��  
ω = - 95.99° 
Ω = 100°29� 
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Ces valeurs sont à comparer avec celles communément admises. Notons que l�inclinaison 
trouvée ne s�écarte que de quelques secondes de la valeur « exacte ».Pour a et Ω, l�erreur est 
inférieure à 1%.Elle est de 2% pour n, mais atteint  10% pour ω et 16% pour e : 
 
Tableau récapitulatif Valeur trouvée  Valeur « exacte » Ecart relatif 
a 5.21910 5.2026 0.3% 
e 0.05771 0.0483 16% 
i 1°18�28� 1°18�30� 0.05% 
ω -95°99� -86°44� 9.8% 
Ω 100°29� 99°27� 1% 
n 305.45335� 299.13� 2% 

Nous sommes maintenant en mesure de calculer les éphémérides de la planète Jupiter, à partir 
des éléments que nous avons calculés. Avant cela, il est important de préciser quelques 
notions sur la prise en compte des perturbations 
 

Perturbations. 
 
  La méthode que nous avons employée précédemment considère la trajectoire elliptique 
comme non perturbée, ie la planète n�est soumise qu�à une force centrale. En réalité, la 
situation est bien plus complexe, car les planètes interagissent entre elles et modifient ainsi les 
éléments de leurs orbites. Les masses des planètes étant faibles devant celles du Soleil, les 
effets sont bien sûr très faibles, mais un calcul précis d�éphéméride doit en tenir compte, car 
ces perturbations peuvent, dans certains cas et au bout d�un certain temps, écarter la planète 
de sa trajectoire non perturbée de plusieurs dizaines de secondes d�arc. 
  Dans le cas de Jupiter, la principale source de perturbation est la planète Saturne, qui est 
d�ailleurs elle-même grandement influencée par Jupiter. Le calcul exact de la variation des 
éléments n�est en général pas réalisable, aussi va-t-on procéder par approximations 
successives en calculant les termes correctifs les uns après les autres, pour chaque élément. 
Nous allons prendre pour exemple le cas de a. Donnons-nous d�abord les relations3 exprimant 
les variations de cet élément dans le temps, en fonction des composantes normale et 
tangentielle de la force, notées respectivement P et S : 
 

)sin(
²)1(

2 vSe
r
pP

endt
da +

−
=  

 
Il est également possible d�exprimer cette variation en fonction de la fonction de force 
perturbatrice R, et de ses dérivées par rapport aux éléments de l�orbite : 

ε∂
∂= R

nadt
da 2 , dans laquelle dε représente la quantité dM+dϖ. 

 
Au premier ordre, on écrira donc : 
 
a = a0 + δ1a, avec : 
 
                                                        
3 Nous ne démontrerons pas ces relations, mais le lecteur intéressé pourra se reporter aux ouvrages spécialisés, 
dont certains se trouvent dans la bibliographie. 
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δ1a = ∫ ∂
∂t

dtR
an 0

0
00

)(2
ε

 

 
On peut monter qu�en première approximation, on a : 
 
R0 = Σ F0 cos D0        , avec: D0 = j (n0t + ε) + j� (n0�t + ε�) + kϖ0 + k�ϖ�0 + lΩ0 + l�Ω�0 

 
j, k, l, j�, k�, l� désignant des entiers relatifs. Quant à F0, il ne dépend que de a, e et i. 
 
On a alors par intégration : 
 

δ1a = 
00

0
0

00 ''
cos2

njjn
D

jF
an +

Σ  

 
D�où l�expression du premier terme correctif. On notera que cette expression ne fait intervenir 
que des fonctions sinusoïdales du temps ;on parle alors de termes correctifs périodiques. Le 
seul terme dépendant linéairement du temps est celui pour lequel j = j� = 0, mais ce terme est 
nul en raison de la présence du j en facteur de l�ensemble. 
Signalons pour finir que le terme jn0 + j�n�0 peut induire des phénomènes de résonance s�il 
existe j et j� tels que ce terme devienne très petit, ie si les périodes des deux planètes 
considérées sont dans un rapport quasi-rationnel. Or, on constate que : 
 
n = 299.1283�� 
n� = 120.4547��, 
d�où n/n� = 2.4833 ≈ 2.5. 
Plus précisément, 5n� � 2n = 1467.1��= 0.4075° par an, d�où une période ce cette perturbation 
de 360/0.4075 = 883 ans. On observe alors des variations de Ω pouvant aller jusqu�à 20� pour 
Jupiter et 50� pour Saturne. 
 

V. Calculs des éphémérides 
 Introduction 

 
Pour prédire la position future d�une planète par rapport à la Terre (ou au Soleil) il ne 

suffit pas, en général, résoudre le problème des deux corps.  Dans les situations réelles on 
serait amené à prendre en compte la masse des corps célestes, qui se trouvent dans 
l�environnement de ladite planète, les potentiels gravitationnels, qui ne sont pas 
rigoureusement sphériques, des forces d�origine non-gravitationelles issues de la pression de 
radiation du Soleil, du frottement sur les poussières du milieu interplanétaire et des forces 
électromagnétiques. Il en résulte un mouvement dit perturbé par rapport au mouvement 
théorique du problème des deux corps.  
 Il n�est pas donc suffisant de définir qu�une seule orbite keplérienne pour un tel 
mouvement mais un ensemble d�orbites keplériennes, dites instantanées, de définition 
suivante:  à l�instant t0, l�astre A occupe une position A0 et possède un vecteur vitesse V0 dans 
son mouvement relatif au corps central S.  Si à cet instant t0 on supprimait toutes les actions 
perturbatrices, l�astre décrirait alors une orbite keplérienne de foyer S. Cette orbite 
« théorique » est appelé orbite osculatrice à l�instant t0, qui est l�époque d�osculation. Il est à 
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noter qu�elle est tangente en A0. A chaque instant, l�astre A se trouve donc sur une orbite 
osculatrice et l�ensemble de ces orbites admet pour enveloppe l�orbite perturbée que décrit 
l�astre. Les points de contacts entre ces orbites sont évidemment les positions correspondantes 
de A à chaque instant. 
 L�orbite réelle n�est pas nécessairement plane. Pour connaître la position de l�astre A à 
chaque instant t, il faut connaître la position de A sur l�orbite keplérienne osculatrice 
correspondante, à t. 
 Il est donc nécessaire de repérer les orbites osculatrices à chaque instant, ou des orbites 
« voisines » comme c�est le cas pour les planètes (à ne pas oublier que certaines astres 
peuvent être fortement perturbés par un passage approché au voisinage des planètes géantes). 
  
 Des méthodes de calcul plus précises prennent en compte ces perturbations; elles 
furent mises en ouvre dès le 18ème siècle avec Euler et Clairaut notamment. Ces méthodes 
sont de deux types: l�une de caractère analytique constitue la théorie des Perturbations 
générales, l�autre, numérique, forme la théorie des Perturbations spéciales. 
 
 En utilisant la théorie des perturbations générales, on considère le système différentiel 
de six équations de premier ordre dénommées équations planétaires de Lagrange. Les seconds 
membres de ces équations contiennent, outre la fonction perturbatrice, les fonctions inconnues 
qui, sont les éléments osculateurs considérés comme les fonctions du temps. Les inconnues 
s�expriment (de façon approchée) par des développements de la forme: 

Q=Q0+Q1T+Q2T²+...+∑ ∑
= =

+
n

i

k

j
jijii LTBA

1 1

)sin()( α , où Q représente une des inconnues. 

(______________)      (___________________) 
 J            P 

Q0 correspond à la partie non-perturbée de Q, donc la valeur qu�aurait le paramètre Q si le 
mouvement était keplérien. T correspond à la date d�observation exprimée en siècle julienne 

(ou en millénaire julien): 
36525
2451545−= NT  (origine 2000) avec N étant le jour julien de la 

date. Q1T: constitue une approximation linéaire (du premier ordre par rapport au temps) et est 
appelée: inégalité séculaire (ou terme séculaire)4.   
 Les termes P contiennent des termes périodiques formés de sinus dont l�argument (la 
variable) est une combinaison linéaire des variables angulaires Lj, des astres concernés, ainsi 
que des termes mixtes BiT )sin(∑

j
ji Lα .  

 Certains termes périodiques sont à longue période, les autres sont dits à courtes 
périodes5. L�ensemble des termes périodiques caractérise l�oscillation de l�élément osculateur 
calculé autour d�une valeur moyenne de cet élément, formée des termes séculaires. 

∑
=

=
3

0p

p
pTQQ , où Q correspond à i, Ω, ω (pour les éléments angulaires) et e ou M. 

 Ces éléments moyens de l�orbite définissent à chaque instant t une orbite �moyenne� 
qui ne correspond évidemment pas à l�orbite osculatrice au même instant décrite plus haut. 

                                                        
4 L�expression �inégalité� est utilisée parce qu�en 19 siècle et au début de 20 siècle il fut démontré que dans le 
système solaire le demi grand-axe es orbites a des planètes et par suite leur moyen mouvement n ne contenanait 
pas d�inégalités séculaires du premier ordre, ni du second. L�intégration approchée des équations de Lagrange 
s�effectue en plusieurs approximations qui donnent Q1 à la première approximation, Q2, coefficient du terme 
séculaire du second ordre, à la deuxième approximation... Les coefficients Qi sont très petits à partir de T3. 
5  Ces termes sont dus à la nutation. Les termes à longue période (p.e. 26 000 ans) sont développé usuellement en 
série entière du temps. 
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Toute éphéméride établie en considérant ces éléments moyens comme éléments osculateurs à 
T est donc assez approximative (l�erreur commise peut être très importante pour des grandes 
planètes). Par contre, ce type de calcul est très simple. 
 Une plus grande précision peut être obtenue au prix de calculs volumineux, qui sont 
dus à la présence de centaines des termes sinusoïdaux dont les arguments sont les anomalies 
et les longitudes moyennes ainsi que les arguments de périhélie des planètes perturbés et 
perturbant. Les séries utilisées sont divergentes, c�est pourquoi on ne les utilise que sur des 
données réduites (quelques centaines années). 
 

La méthode des perturbations spéciales, mise en �uvre dès le début du 19ème siècle, 
procède par intégration numérique des équations différentielles (système différentiel de 
second ordre non linéaire) du mouvement perturbé. Le principe en était plus simple que le 
précédent mais les calculs manuels furent laborieux.  

 
 
 
Pour le calcul des éphémérides des planètes du système solaire on a choisi d�utiliser 

les éléments moyens à la place des éléments osculateurs en se satisfaisant d�un calcul moins 
précis. Notre but est aussi comparer nos résultats avec ceux du Bureau des Longitudes pour 
pouvoir conclure sur la précision de nos calculs. 

 

Calcul de la position des planètes 
 

Pour trouver les éphémérides d �une planète il faut déterminer d�abord sa position pour 
une date précise6 ; il faut donc connaître ses éléments d�orbite. 

  
On va utiliser les éléments dit « moyens » des orbites de la planète qui sont de la 

forme Q=Q0+Q1T+Q2T² , Q représentant un élément. On propose deux présentations 
différentes : l�une donnant directement les six fonctions (i, Ω, a, e, ϖ (longitude de périhélie), 
L (longitude moyenne)), théorie TOP82 de J.L.Simon ; l�autre ne donnant pas directement des 
éléments, mais d�autres fonctions permettant de les retrouver, théorie VSOP82 de P. 
Bretagnon. Il faut noter que les coefficients des éléments d�orbite sont exprimés par rapport à 
une certaine date. Dans la suite, on va utiliser les éléments d�orbite rapportés à l�année 2000. 
 
 Pour les calculs suivants on a choisi la présentation de VSOP82 qui est aussi utilisé 
par le Bureau des Longitudes (parmi d�autres). Les fonctions données par cette théorie sont 
les suivantes7 :  

- demi grand axe   a = f(T), 
- longitude moyenne   LM=f(T), 
- excentricité x cos(ϖ)   KA=f(T), 
- excentricité x sin(ϖ)  HA=f(T), 
- sin(i/2) x sin(Ω)  P=f(T), 
- sin(i/2) x cos(Ω)  Q=f(T). 

 
Sous cette présentation on voit aisément que les éléments d�orbites sont égaux : 

- longitude de périhélie8  ϖ=arctg (HA/KA), 

                                                        
6 Cette date va être dans les calculs suivants exprimée dans les milénaires juliens � ANNEXE.  
7  Certaines notations introduites (p.e. LM, KA, HA, P, Q) ne sont pas celles qui sont commonement utilisées. 
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- excentricité   e=HA/sin(ϖ), 
- longitude du n�ud ascendant Ω=arctg(P/Q), 
- inclinaison de l�orbite  i=2arcsin(P/sin(Ω). 

 
 
Pour  pouvoir déterminer la position du Jupiter à partir de ces fonctions il faut trouver 
l�anomalie moyenne M.  On regarde l�image suivant, où v l�anomalie vraie, AMO l�argument 
de mobile, ω l�argument de la latitude du périhélie et E l�anomalie excentrique, qui va 
permettre de déterminer M.  

 
La longitude moyenne ou la longitude vraie du mobile LM est définie comme la somme de la 
longitude du n�ud ascendant Ω et l�anomalie du mobile AMO (LM=Ω+AMO). Sur l�image 
on peut lire que M=AMO-ω.  

On a donc M=LM-Ω-ω=LM-ϖ. 
 
Ensuite, on va calculer l�anomalie excentrique E, à l�aide de l�équation de Kepler :  

E=M+e.sinE. Cette anomalie peut être calculer numériquement par un calcul itératif � un 
boucle de 5 itération est en général suffisant. 
Il faut définir l�anomalie vraie v en connaissant v =2arctg(((1+e)/(1-e))1/2*tg(E/2))9. 
Connaissant l�argument de latitude de la planète APL=ϖ+v-Ω on peut déterminer la position 
de la planète dans les coordonnées écliptiques héliocentriques. Ces coordonnées porteront le 
nom de la latitude écliptique b et de la longitude écliptique l.  
 On voit sur l�image suivant à quoi correspondent ces deux coordonnées. 
 

                                                                                                                                                                             
8 La longitude du périhélie est donnée par le calcul d�un arctan, donc il y a ambiguité de π sur le résultat en 
fonction du signe de KA. Si KA est négatif il faut ajouter π à la longitude de périhélie. La même chose va se 
passer avec la longitude du noeud ascendant, où pour Q négatif il faut ajouter π à Ω. 
9 Le rayon vecteur et l�anomalie vraie s�obtiennent par : r cos v = a(cos E � e) et r sin v = a (1-e²)1/2 sin E.  En 
élevant ces expressions au carré et en additionnant ces deux relations, on trouve l�expression pour le rayon 
vecteur r=a . (1-e.cos E). En divisant l�expression r cos v = a(cos E � e) par l�expression pour le rayon vecteur, 
on obtient cos v = (cos E � e)/ (1- e. cos E). Pour trouver une expression plus commode on utilise la relation 
tg²(v/2) = (1 � cos v)/(1 + cos v) qui mène au résultat indiqué plus haut. 
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La latitude écliptique b peut être déduit à l�aide de formule pour les triangles sin a/sin A=sin 
b/ sin B. On a donc sin b/sin i=sin APL/sin 90. D�où b=arcsin(sin i . sin APL) 
La longitude écliptique l peut être déduit à l�aide de cos a=cos b . cos c.      
Donc cos APL=cos NH . cos LA. Pour obtenir la longitude l il faut ajouter la longitude du 
n�ud à l�arc NH. On obtient donc : l = arc cos(cos APL/ cos b) + Ω. 
 
On a trouvé la position du Jupiter dans les coordonnées écliptiques héliocentriques. Pour 
pouvoir exprimer sa position par rapport à la Terre il faudrait introduire la position du Soleil 
par rapport à la Terre et la rajouter à la position de la planète par rapport au Soleil. Dans ce 
document on ne démontre pas le passage entre les différents systèmes de coordonnées, dans le 
chapitre suivant, on introduit tout de suite les relations correspondantes. Le passage entre les 
différents types de coordonnées est possible trouver dans tous les �uvres traitant la 
problématique en question. 
 

Calcul des éphémérides du Jupiter 
 
 Les planètes décrivent des orbites autour du Soleil. C�est pourquoi, pour déterminer la 
position du Jupiter par rapport à la Terre, il faut calculer d�abord les coordonnées du Soleil 
par rapport à la Terre, puis les coordonnées des planètes par rapport au Soleil, et ensuite on 
combine les résultats de ces deux calculs. 
 
 Le déroulement du calcul est le suivant10 : 
 
1. Calcul de la date exprimée en millénaires juliens T (ad ANNEXE) et du temps sidéral TS 
(ad Programme) à partir de la date (jour, mois, année), de l�heure (heures, minutes, secondes), 
et des coordonnées terrestres du lieu d�observation (latitude L et longitude G). 
 
2. Calcul de Soleil pour obtenir la longitude écliptique du Soleil LOs (s désigne le Soleil) : 
LOs=AVs+LPs , où AVs est anomalie vraie du Soleil et LPs est la longitude du périhélie de 
Soleil. 
IE=0.4090928042-0.0022696552*T-2.86e-7*T*T 
A=1.00000101778 
LM=4.895062967+6283.319668*T+5.3e-4*T*T 
KA=-0.003740816-0.004793106*T+0.00028*T*T 
HA=0.016284477-0.001532379*T-0.00072*T*T 
                                                        
10 Les notations introduites sont utilisées pour rendre le programme plus compréhensible. Quelques notations 
communes sont mentionnées entre parenthèses. 
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LPs=atan(HA/KA) ; E= abs (HA/sin (LPs)) ; AM=LM-LPs ; AE=AM+E*sin AE ; 
AVs=2*atan(((1+E)/(1-E))1/2*tan(AE/2)) 
 
3. Calcul des coordonnées cartésiennes écliptiques géocentriques du Soleil : connaissant As 
(a), AEs (E) et Es (e) on a le rayon vecteur Soleil R=A x (1-E.cosAE) ou r=a x (1-e.cosE) 
Les coordonnées du Soleil sont alors les suivantes :  Xs=Rs x cos LOs et  
Ys=Rs x sin LOs 
 
 4. Calcul des coordonnées écliptiques héliocentriques LO et LA du Jupiter, à l�aide des 
éléments fournis pour la planète : 
A= 5.20260319132+1.91323e-6*T 
LM=0.5995464972+529.9348075*T+3.9e-4*T*T 
KA=0.046985721-0.001796949*T-0.00204*T*T 
HA=0.012003857+0.013628604*T+4e-5*T*T 
Q=-0.002065611-0.001905724*T+0.00011*T*T 
P=0.011183772-0.000839731*T-0.00016*T*T 
et des expressions suivantes : 
 
LN=arctg (P/Q) (Ω) ; IO=2arcsin(P/sin LN) (i) ;  
LP=arctg(HA/KA) ; E= HA/sin LP ; AM=LM-LP ; AE=AM+E.sin AE ; 
AV=2arctg(((1+E)/(1-E))-1/2 x tg (AE/2)) ; APL=LP+AV-LN 
 
Si on prend en compte aussi des perturbations à longue période pour le Jupiter, ce qui 
correspond à l�influence perturbatrice de Saturne avec sa période de l�inégalité de 883 ans, on 
introduit l�argument B, tel que : B=3.08686+7.3738*T. Les corrections à apporter sur les 
éléments sont les suivantes : 
dA=4.6e-6 cos B 
dLM=5.78e-3 sin B 
dE=6.3e-6 sin B+2.25e-6 cos B d�où E corrigé Ec=E+dE 
dLP=1/Ec(1.22e-4 sin B � 3.49e-4 cos B) 
 
LA=arcsin(sin IO . sin APL) ou LA=arcsin(sin i. sin ω) 
LO=arccos(cos APL/cos LA)+LN ou LO=arccos(cos ω/cos LA)+Ω 
 
5. Calcul du rayon vecteur R du Jupiter : si A est le demi grand axe de l�orbite du Jupiter, E 
l�excentricité et AE l�anomalie excentrique, on a : R=A x (1-E.cos AE) 
 
6. Calcul des coordonnées cartésiennes écliptiques héliocentriques du Jupiter 
 
X1=R . cos LA . cos LO 
Y1=R . cos LA . sin LO 
Z1=R . sin LA 
 
7. Calcul des coordonnées cartésiennes écliptiques géocentriques du Jupiter 
 
X2=Xs+X1 
Y2=Ys+Y1 
Z2=Z1 (car Zs=0) 
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8. Calcul des coordonnées sphériques écliptiques géocentriques du Jupiter : longitude LOG et 
latitude LAG 
 
LOG= arctg (Y2/X2) et si X2 négatif, on ajoute π à LOG 
LAG=arctg(Z2/(X2²+Y2²)1/2) 
 
9. Calcul des coordonnées de la planète dans le système géocentrique sphérique équatorial 
(changement d�axes écliptique-équatorial) 
 
déclinaison D=arcsin(sin LAG.cos IE + cos LAG . sin IE . sin LOG) 
ascension droite AD=arctg((cos IE . sin LOG � sin IE . tg LAG)/cos LOG) en sachant que si 
cos LOG est négatif on ajoute π à AD 
 
10. Calcul des coordonnées horaires du Jupiter 
Si G est la longitude terrestre du lieu d�observation, et TS est le temps sidéral de Greenwich, 
les coordonnées horaires seront les suivantes : angle horaire AH = TS-AD-G et D 
 
11. Calcul des coordonnées locales du Jupiter 
hauteur HC = arcsin(sin D. sin L+ cos D . cos L . cos AH) 
azimut AZ=arctg(sin AH/(sin L cos AH � cos L tg D)) avec la condition : si le dénominateur 
est négatif, ajouter π à AZ (L est la latitude terrestre du lieu). 
 
Ces formules sont utilisées dans le programme suivant qui donc permet de déterminer la 
position du Jupiter pour une date et un lieu d�observation donnée. Ce programme est écrit 
pour MATLAB. 
 

Programme : Ephémérides de Jupiter avec des perturbations de Saturn 
 
close all 
format long 
 
% Progamme: Ephémerides de Jupiter avec des perturbations de Saturn 
 
                   
% Définition de la longitude ( deg puis min) 
D1=input('Definition de la longitude (que deg): '); 
M1=input('Definition de la longitude (que min): '); 
 
% définiton de la latitude (deg puis min) 
D2=input('Definition de la laitude (que deg) : '); 
M2=input('Definition de la latitude (que min) : '); 
 
% définition de jour, puis moins puis années d'observation 
JO=input('Quel jour : ');  
MO=input('Quel mois : '); 
AN=input('Quel ans : '); 
 
% Nombre de jours par mois 
N(1)=0; 
N(2)=31; 
N(3)=59; 
N(4)=90; 
N(5)=120; 
N(6)=151; 
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N(7)=181; 
N(8)=212; 
N(9)=243; 
N(10)=273; 
N(11)=304; 
N(12)=334; 
 
% définiton de heures, minutes et secondes en temps mondial  
H=input('Heures : '); 
M=input('Minutes : '); 
S=input('Secondes : '); 
 
K=180/pi; 
G=sign(D1)*(abs(D1)+M1/60)/K;   % longitude en rad 
L=sign(D2)*(abs(D2)+M2/60)/K;   % latitude en rad 
J2=N(MO)+JO+(H+M/60+S/3600)/24-1;  % nombre de jours pour la date de 
l'observation 
 
% calcul de la date julienne 
AA=AN/4-floor(AN/4); 
if AA==0  
 AA=1; 
end 
if AA==1 & MO>2 
   J2=J2+1; 
end 
 
T=((AN-2000)*365.25+0.5+J2-AA)/365250; % millainaires juliens 
Tsi=((AN-2000)*365.25+0.5-AA)/36525;  % siecle juliens pour le 1.1. 
d'annee  
              % d'observation (0h0m) 
          
% temps sideral moyen de Greenwich à 0 heure pour l'annee d'observation; 
c'est aussi   
% la longitude moyenne de la Terre a cette meme date de reference  
                                                                               
TSa=100.4606184+36000.77005361*Tsi+3.87929167e-4*Tsi^2-
0.000000025875*Tsi^3;   
TS0=TSa-floor(TSa/360)*360; 
 
if TS0<0 
   TS0=TS0+360 
end  
 
 
TS1=TS0+360.98564735*J2; 
TS=2*pi*(TS1/360-floor(TS1/360));  % temps sideral de Greenwich au 
moment de 
             %  l'observation 
 
% PARAMETRES DU SOLEIL 
 
% inclinaison ecliptique par rapport au plan equatorial 
IE=0.4090928042-0.0022696552*T-2.8604007e-7*T*T+8.789672e-6*T*T*T;  
 
% demi grand axe de l'orbite terrestre exprimé en unités astronomiques 
AS=1.00000101778; 
 
% longitude moyenne du Soleil 
LMS=4.895062967+6283.319663*T+5.3001819e-4*T*T+3.6942802e-7*T*T*T; 
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% excentricite x cos LP 
KAS=-0.003740816-0.004793106*T+0.000281128*T*T+7.3831e-5*T*T*T; 
 
% excentricite x sin LP 
HAS=0.016284477-0.001532379*T-0.000720171*T*T+3.2299e-5*T*T*T; 
 
LPS=atan(HAS/KAS);       % longitude de perihelie 
ES=abs(HAS/sin(LPS));      % excentricite 
AMS=LMS-LPS;         % anomalie moyenne  
AES=AMS;           % anomalie excentrique 
 
for I=1:5 
   AES=AMS+ES*sin(AES); 
end 
 
% anomalie vraie 
AVS=2*atan((sqrt((1+ES)/(1-ES)))*tan(AES/2)); 
 
ALS=AVS+LPS;         % argument de latitude du Soleil 
 
% systeme equatorial 
D=asin(sin(IE)*sin(ALS));     % declinaison 
AD=atan(cos(IE)*tan(ALS));     % ascension droite 
 
if (cos(ALS))<0 
   AD=AD+pi; 
end 
 
if AD<0 
   AD=AD+2*pi; 
end 
  
RVS=AS*(1-ES*cos(AES));       % rayon vecteur du Soleil 
 
% coordonnes cartesiennes pour le Soleil 
XS=RVS*cos(ALS); 
YS=RVS*sin(ALS); 
 
AH=TS-AD-G;            % angle horaire 
 
% COORDONNES POUR LE JUPITER 
 
A=5.20260319132+1.91323e-6*T;     % demi grande axe de Jupiter 
LM=0.5995464972+529.9348075*T+3.9e-4*T*T;  % longitude moyenne 
KA=0.046985721-0.001796949*T-0.00204*T*T;  % excentricite x cos LP 
HA=0.012003857+0.013628604*T+4e-5*T*T;   % excentricite x sin LP 
 
% sin (IO/2) x sin LN, où IO est l'inclinaison de l'orbite et LN est  
% la longiude du noeud ascendant 
Q=-0.002065611-0.001905724*T+0.00011*T*T;   
 
% sin (IO/2) x cos LN, où IO est l'inclinaison de l'orbite et LN est  
% la longiude du noeud ascendant 
P=0.011183772-0.000839731*T-0.00016*T*T;  
 
LP=atan(HA/KA);         % longitude de perihelie 
 
if KA<0 
   LP=LP+pi; 
end 
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E=abs(HA/sin(LP));    % excentricite 
B=3.08686+7.11355*T;    % arguemnt B pour prendre  
          % en compte des perturbations dues au Saturne 
U1=sin(B); 
V1=cos(B); 
DA=4.5902e-6*V1;     % correction sur la demi-grande axe 
A=A+DA; 
DLM=5.78402e-3*U1;    % correction sur la longitude moyenne 
LM=LM+DLM; 
DE=6.3e-6*U1+2.2515e-6*V1;  % correction sur l'excentricite 
E=E+DE; 
DLP=(1.2217e-4*U1-3.4906e-4*V1)/E; % correction sur la longitude du 
perihelie 
LP=LP+DLP; 
 
% calcule des elements d'orbite 
 
LN=atan(P/Q);      % longitude du noeud ascedent 
if Q<0 
   LN=LN+pi; 
end 
IO=2*asin(P/sin(LN));    % inclinaison de l'orbite 
AM=LM-LP;        % anomalie moyenne 
AE=AM;         % anomalie excentrique 
for i=1:10 
   AE=AM+E*sin(AE); 
end 
 
% anomalie vraie  
AV=2*atan((sqrt((1+E)/(1-E)))*tan(AE/2)); 
ARP=LP+AV-LN;      % anomalie de latitude du Jupiter 
LA=asin(sin(IO)*sin(ARP));  % latitude ecliptique heliocentrique 
LO=acos(cos(ARP)/cos(LA))+LN; % longitude ecli[tique heliocentrique  
          % (precision 0.01 degre d'angle) 
if LA<0 
   LO=2*pi-LO+2*LN; 
end 
 
R=A*(1-E*cos(AE));     % rayon vecteur duJupiter (en km) 
 
% coordonnees du Jupiter par rapport au Soleil 
 
X1=R*cos(LA)*cos(LO);     
Y1=R*cos(LA)*sin(LO); 
Z1=R*sin(LA); 
 
% coordonnees  de Jupiter par rapport a la Terre 
X2=XS+X1; 
Y2=YS+Y1; 
Z2=Z1; 
 
LOG=atan(Y2/X2);  % longitude geocentrique de Jupiter  
 
if X2<0  
   LOG=LOG+pi; 
    
end 
 
LAG=atan(Z2/sqrt(X2*X2+Y2*Y2));  % latitude geocentrique de Jupiter 
 
% declinaison de Jupiter 
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D=asin(sin(LAG)*cos(IE)+cos(LAG)*sin(IE)*sin(LOG)); 
 
% ascemsion droite de Jupiter 
AD=atan((cos(IE)*sin(LOG)-sin(IE)*tan(LAG))/cos(LOG)); 
 
if cos(LOG)<0 
   AD=AD+pi; 
end 
 
if AD<0 
   AD=AD+2*pi; 
end 
 
% angle horaire de Jupiter 
AH=TS-AD-G; 
 
% calcul des coordonnes horizontales de Jupiter 
HC=asin(sin(D)*sin(L)+cos(D)*cos(L)*cos(AH)); % hauteur calcule 
A1=sin(L)*cos(AH)-cos(L)*tan(D);       
AZ=atan(sin(AH)/A1);         % azimut  
 
if A1<0 
   AZ=AZ+pi; 
end 
 
if AZ<0 
   AZ=AZ+2*pi; 
    
end 
 
P=tan(pi/2-abs(HC)); 
Q=abs(HC)*K; 
 
if Q>=9 
    
   % correction due a la refraction de l'atmosphere (degres) 
   R=0.016*P-1.858e-5*P*P*P+6.17e-8*P^5; 
    
else R=0.61-0.15*Q+0.01546*Q*Q-0.00057*Q*Q*Q; 
end 
 
HCC=HC+R/K;         % hauteur calcule corrige 
 
 
d='                              '; 
disp(d) 
g='   ------------   '; 
disp(g) 
disp(d) 
a='DECLINAISON D   (en degrés):'; 
disp(a) 
D=floor(D*K*1000)/1000 
b='AS. DROITE AD   (en degrés):'; 
disp(b) 
ADd=floor(AD*K*1000)/1000 
c='           soit (en heures):'; 
disp(c) 
ADh=AD*K/15 
disp(d) 
e='HAUTEUR H       (en degrés):'; 
f='AZIMUT AZ   (en degrés):'; 
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disp(e) 
H=floor(HCC*K*1000)/1000 
disp(f) 
AZf=floor(AZ*K*1000)/1000 
disp(d) 
disp(g) 
    
    

 Pour le calcul des éphémérides sans prendre en compte les perturbations il faut enlever 
dans ce programme les termes qui incluent B. 
 
 
 
 
 
 

VI. Conclusion. 
 
Nous venons de présenter les calculs des éléments d�une orbite elliptique ainsi que 
l�établissement d�une éphéméride. Nous avons représenté dans le tableau ci-dessous les 
valeurs calculées des coordonnées équatoriales de la planète Jupiter entre 1996 et 2010, 
valeurs obtenues avec ou sans prise en compte des perturbations, et comparées avec celles que 
fournit le Bureau des Longitudes : 
 
 

  
DECLINAISON 
(degrés)     

  calcul sans pert. calcul avec pert. bdl 
19. 06. 1996 -22,676 -22,673 -22,666 
19. 06. 1997 -14,989 -14,989 -14,9902 
19. 06. 1998 -2,351 -2,358 -2,3769 
19. 06. 1999 9,885 9,878 9,8564 
19. 06. 2000 18,853 18,85 18,8381 
19. 06. 2001 23,026 23,026 23,0235 
19. 06. 2002 22,145 22,143 22,1479 
19. 06. 2003 16,854 16,846 16,8587 
19. 06. 2004 8,227 8,213 8,2367 
19. 06. 2005 -2,405 -2,422 -2,3862 
19. 06. 2006 -13,478 -13,491 -13,4515 
19. 06. 2007 -21,723 -21,727 -21,7065 
19. 06. 2008 -22,11 -22,111 -22,1309 
19. 06. 2009 -13,337 -13,348 -13,393 
19. 06. 2010 -0,483 -0,502 -0,5476 
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ASCENSION 
(degrés)   

  calcul sans pert. calcul avec pert. bdl 
19. 06. 1996 285,796 285,831 285,9029 
19. 06. 1997 324,462 324,464 324,46 
19. 06. 1998 357,617 357,602 357,5592 
19. 06. 1999 27,047 27,029 26,9765 
19. 06. 2000 55,735 55,722 55,6747 
19. 06. 2001 84,291 84,29 84,2525 
19. 06. 2002 112,199 112,214 112,1798 
19. 06. 2003 138,543 138,571 138,53 
19. 06. 2004 163,696 163,732 163,6753 
19. 06. 2005 188,996 189,037 188,9557 
19. 06. 2006 217,371 217,411 217,2946 
19. 06. 2007 251,872 251,897 251,742 
19. 06. 2008 291,555 291,548 291,3892 
19. 06. 2009 329,535 329,502 329,3745 
19. 06. 2010 1,978 1,935 1,8316 
 
 
La méthode sans perturbation fournit les coordonnées de Jupiter avec une précision d�environ 
0°.15 sur quelques dizaines d�années, alors qu�en tenant compte des perturbations, la 
précision ne descend pas en-decà de 0°.10 ; la différence n�est donc pas notable, même si à 
long terme les méthodes ne considérant pas les perturbations s�éloignent peu à peu des 
observations. Ceci justifie la prise en compte des termes correctifs, malgré des temps de 
calcul qui augmentent exponentiellement avec le nombre de termes utilisés. 
  Signalons que le lecteur intéressé par la détermination des éléments d�une orbite parabolique 
pourra se reporter aux ouvrages spécialisés mentionnés en bibliographie. 
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VIII. ANNEXE 
 

Détermination de la date en millénaires juliens 
 
L�année julien vaut 365.25 jours civils. Trois années de 365 jours sont suivis d�une 

année de 366 jours. L�année julienne est donc trop longue de 0.0078 jour civil (l�année 
tropique vaut actuellement 365.242198781�) et prend en 100 ans presque 1 jour de retard.   

 
Les calcules relatifs à tous les astres requièrent des temps exprimés en millénaires 

juliens (ou siècles)à partir de J 2000,0. 
 

Le calcul présenté par la suite est valide dans la période 1900- 2099. Le principe 
consiste à calculer le nombre de jours J qui sépare l�instant considéré de la date du 1.1.2000 à 
12 heures, et à diviser ce nombre par 365 250 (ou 36 525) afin de les chiffrer en millénaires 
juliens (ou siècles julien). 

Le calcul de J sera plus facile en considérant que trois années normales succèdent à 
une année bissextile, et donc que l�année est de 365.25 jours. 

Dans ces conditions, pour les première, deuxième et le troisième années normales qui 
suivent une année bissextile, il importera d�ajouter respectivement un correctif de 0.75, 0.5 et 
0.25 jour. 

 
L�algorithme à utiliser est le suivant : 
 

J = Rang du jour + (AN-2000)*365.25-0.5+correctif. 
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