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. Introduction.

Lors de la découverte d’un nouvel astre — cométe, planéte, astéroide — il est important de
pouvoir établir rapidement les caractéristiques de sa trajectoire afin de pouvoir le localiser
pour de nouvelles observations. C’est surtout le cas de cometes ou astéroides, pour lesquelles
la magnitude peut décroitre dans les semaines qui suivent sa découverte, le rendant ainsi
introuvable. Les calculs de trajectoire permettent également d’identifier le retour périodique
d’une comete, ou de localiser les planétes pour les astronomes en quéte d’observations. Bref,
il s’agit d’un élément essentiel de 1’astronomie observationnelle.

Nous allons présenter ici 'une des principales méthodes de détermination des éléments
d’une orbite elliptique, méthode que I’on doit au mathématicien allemand Gauss. A 1’origine,
cette méthode se fondait essentiellement sur des approximations successives et des calculs
numériques simples, faute d’outils puissants. Nous verrons que le développement de
I’informatique permet aujourd’hui de s’affranchir de ses approximations, en utilisant des
logiciels de résolution performants. Nous appliquerons alors cette méthode a la détermination
des ¢léments de Jupiter. Munis de ces résultats, nous présenterons — et appliquerons - la
méthode qui permet de calculer les éphémérides de la planéte.



ll. Les systémes de coordonnées en astronomie de
position.

Il existe en astronomie de position un certain nombre de systémes de repérages, plus ou
moins adapté a I’observation ou au calcul d’éphémérides. Nous allons présenter ici les quatre
principaux, en les introduisant dans un ordre « naturel » pour un observateur.

1)Systéme de coordonnées azimutales .

Il s’agit du systéme de repérage le plus immédiat. Il utilise le plan horizontal pour un

observateur au centre de la sphére céleste, ainsi que la verticale en ce point. On définit alors :

- I’horizon comme le cercle intersection du plan horizontal avec la sphére céleste ;

- le zénith comme le point intersection de la verticale avec la sphere céleste, et situé au-
dessus de I’observateur (le point diamétralement opposé est appelé le nadir) ;

- le plan méridien du lieu d’observation comme le plan passant par le zénith — et le nadir —
contenant la direction nord-sud.

On repere alors un point M de la sphere céleste —¢toiles, planctes ou tout autre corps — au
moyen de deux coordonnées angulaires : sa hauteur apparente h au-dessus de 1’horizon et
I’angle que fait par rapport a la direction du sud, la droite joignant le centre de la sphere
céleste a la projection de M sur le plan horizontal. Ce dernier angle est appelé I’azimut a du
point M ; il varie de 0° a 360°, et est compté positivement vers 1’ouest. h, lui varie de —90° a
90° , et est compté positivement vers le nord.

Ce systeme de repérage, bien que trés naturel pour un observateur, est finalement trés peu
utilisé pour la raison suivante : a et h sont des fonctions (parfois compliquées !) du temps, et
dépendent en plus du lieu d’observation. Il est donc trés malaisé d’employer ces coordonnées
dans les tables d’éphémérides. On va donc essayer , par étapes, d’introduire des coordonnées
qui ne sont plus fonctions du temps — ie indépendantes de la rotation de la Terre.
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2) Systéme de coordonnées horaires.

Ce systeme privilégie I’axe de rotation de la Terre sur elle-méme. On définit alors :

- I’équateur céleste comme le cercle intersection du plan perpendiculaire a cet axe avec la
sphere céleste ;

- les poles nord et sud comme les points intersection de 1’axe de rotation de la Terre avec la
sphere céleste ;

- le méridien du lieu comme le demi-cercle passant par les pdles et par le zénith.

On repere alors un point M de la sphére par sa hauteur apparente par rapport a I’équateur
céleste, ainsi que par 1’angle, mesuré dans 1’équateur céleste, entre le méridien et la projection
de M sur cet équateur. Ces angles sont appelés respectivement déclinaison et angle horaire. La
déclinaison varie entre —90° et 90°, et est comptée positivement vers le pole nord. L’angle
horaire varie de 0 a 24h — I’équateur étant alors gradué de 0 a 24h - , et est comptée
positivement vers 1’ouest.

On voit tout de suite que la déclinaison de M reste invariable pour une étoile fixe,
puisqu’elle décrit un petit cercle parallele a I’équateur céleste. Il n’en va pas de méme pour
I’angle horaire qui, comme 1’azimut, est une fonction du temps. D’ou I’introduction des
coordonnées équatoriales, sur lesquelles la rotation de la Terre ne joue cette fois plus aucun
role.

3) Systéme de coordonnées équatoriales.

On garde ici les mémes ¢léments que dans le paragraphe précédent, mais on introduit en plus
un point appartenant a I’équateur céleste, immobile dans la sphére des fixes, et appelé point
vernal. C’est en fait le point ou se trouve le Soleil a I’équinoxe de Printemps. Un point M est
alors repéré par sa déclinaison — c’est le méme angle que précédemment — et par ’angle,



toujours mesuré dans 1’équateur céleste, entre la projection de M et le point vernal. Cet angle
est appelé I’ascension droite de M ; il varie entre 0 et 24h, et est compté positivement vers
I’est.

Ce dernier systéme répond aux exigences que nous nous étions fixées sur 1’invariance dans

le temps des coordonnées du point M, ou plus exactement sur I’indépendance de ces
coordonnées avec la rotation de la Terre .
A ce stade, on pourrait penser que 1’on a terminé de décrire les principaux systémes de
repérages. Il se trouve qu’en pratique, on utilise parfois un quatriéme systéme de repérage, lié
non plus a la rotation de la Terre sur elle-méme, mais a la rotation de la Terre autour du
Soleil.

4)Systeme de coordonnées écliptiques.

On privilégie dans ce systéme le plan contenant le Soleil et la trajectoire de la Terre, plan que
I’on appelle plan de I’écliptique. Son intersection avec la sphére céleste est un cercle — appelé
écliptique — qui coupe 1’équateur céleste en deux points diamétralement opposés, dont 'un est
précisément le point vernal ( I’autre correspondant a 1’équinoxe d’automne). On repére alors
un point M par sa latitude et sa longitude écliptiques, dont les définitions sont analogues a la
déclinaison et 1’ascension droite , mais pris cette fois par rapport au plan de I’écliptique.

On peut bien shr établir des formules de passage d’un systéme de coordonnées a un autre.



lll. Eléments de mécanique céleste.

Eléments de I'orbite d’une planéte.

Lors de la découverte d’une plancte ou d’une comete, il est essentiel a partir des observations

de déterminer I’ensemble des caractéristiques nécessaires au suivi de 1’objet découvert, et a

Iétablissement d’éphémérides. Le choix de ces éléments n’est pas unique', mais en pratique,

on utilise essentiellement les 7 éléments qui vont étre définis ci-dessous.

Considérons tout d’abord I’orbite (que nous supposerons elliptique, ce qui est le cas de

planétes, astéroides et de nombreuses cometes) de I’astre étudié, ainsi que le plan de cette

orbite. Le plan de référence sera celui de I’écliptique, ie celui contenant la trajectoire de la

Terre autour du Soleil (cf figure ci-dessous). On définit alors :

- la ligne des nceuds comme la droite intersection de ces deux plans orbitaux ; cette droite

coupe la trajectoire de 1’astre étudié en deux points N et N, appelés respectivement nceud

ascendant et descendant ;

- la longitude du nceud ascendant qui est ’angle (Sy,SN) = w ;

- P’argument du périastre (le périastre P désignant le point de la trajectoire le plus proche du
Soleil S) qui est I’angle (SN,SP) =Q ;

- Dinclinaison de I’orbite i comme I’angle que font entre eux les deux plans orbitaux, i étant
compté de 0° a 180° ;

- Dinstant de passage au périastre, T, qui permet de préciser la position de I’astre sur son
orbite.

- Le moyen mouvement n, égal a 21UT ou T désigne la période de révolution sidérale.

On choisit alors généralement les 6 parametres suivants qui, une fois connus, permettent de
déterminer entiérement le mouvement d’un astre: a, e, 1, Q, w, T,ou bien encore a, e, i,
Q, wet n — ceux que nous allons calculer dans la suite.

' La résolution de I’équation du mouvement, qui est du second ordre, introduira six constantes du mouvement —
par exemple les vecteurs positions et vitesses initiales. Ces quantités sont généralement d’un emploi malaisé, ne
serait-ce que par la difficulté de les connaitre par 1’observation. On utilise alors des relations de passage avec un
jeu de six autres constantes, plus accessibles et plus commodes dans les calculs, relations qui permettent de
redéfinir les conditions initiales a 1’aide de ces nouvelles constantes.



Corps céleste

Détermination d’une orbite planétaire - méthode de Gauss.

La méthode de Gauss permet de déterminer les ¢léments d'une orbite elliptique a partir de
trois observations - pas trop ¢loignées dans le temps - de l'astre étudié. Historiquement, c’est
I’'une des premieres méthodes du genre, elle a donc I’avantage de pouvoir étre mise en ceuvre
trés facilement, sans outils puissants de calculs. Avant de présenter le principe de cette
méthode, fondée dans sa forme originelle sur des approximations successives, nous allons tout
d’abord démontrer un certain nombre de relations générales qui nous seront utiles pour établir
le systéme d ‘équations qu’il nous faudra résoudre.

Considérons tout d’abord la trajectoire — elliptique- d’une planéte autour du Soleil S. Notons a
et b les demi-axes de I’ellipse, et e son excentricité. On appellera O le centre de I’ellipse, et on
rapporte le plan a un repére (Oxy), (Ox) étant ’axe joignant O a S.On appellera C le cercle de
centre O et de rayon a, M la position de la planéte sur son orbite, M ‘ le point de C qui a la
méme abscisse x que M.On pose enfin r = SM, (OS,0M’) = u et (OS,SM) = v, ces angles
étant respectivement I’anomalie excentrique et I’anomalie moyenne. Les coordonnées
rectilignes de M, rapportées au repére choisi, s’expriment comme suit” :

* On utilisera ici certaines propriétés, que nous ne démontrerons pas, des ellipses, & savoir : b=a /1 —¢e?,

b
y—M:— et OS = ae.

Yur a



X =acosu (1

y=a+l-e’sinu (2)

On peut également écrire des relations portant sur le rayon vecteur r :

rcosv=x—ae=a(cosu—e) 3)
rsinv=y=a+l-e’sinu (4)
r=a(l-ecosu) ®))

Par ailleurs, nous pouvons écrire grace a la seconde loi de Kepler sur la constance de la
vitesse aréolaire que :

mbt_Tr = %ab(u — esinu) 6)

relation dans laquelle t - T désigne le temps écoulé depuis le passage de la planéte au
périhélie, et T est sa période de révolution sidérale.
Nous tirons de cette derniere relation 1’équation dire de Kepler :

u—esinu=27n(t—r) (7)

Le terme de droite est généralement noté M et appelé I’anomalie moyenne.

Signalons encore un dernier type de relation exprimant v en fonction de u : en effectuant la
somme (resp la différence) des relations (3) et (5), on obtient en effet :

Jr cos% = Ja(l-e) cos% (8)
ﬁsin% = Ja(l+e) sin% (9)

Considérons a présent le Soleil S ainsi que les trois positions observées de la planéte P; (i =
1,2,3), de coordonnées héliocentriques X;, y;, zi, aux dates t;. On posera : 0,=t; —t;, 0, =t3 —t,,
0; = t; — t;. Notons S; (resp S,,S3) l'aire du triangle SP,P, (resp SP,P3;, SP,P3). La premiére
remarque que l'on peut faire est que le plan P; P, P; passe par l'origine S du repére
(héliocentrique). On en déduit que la matrice des coordonnées des P; a un déterminant nul:

X N 4

Det|x, y, z,|=0

X3 V3 Z3



En développant ce déterminant, on trouve que :
X1 (Y2 Z3-Y3 Zz) - X2 (Y1 Z3-Y3 Z1) +X3 (Y1 -2 Z1) =0 (10)

Par ailleurs, l'aire de S; (par exemple) est donnée par le module de .5* SP; SP; ;la projection
de S; sur le plan Syz est donc précisément la quantité (y; z - y2 z1). Les triangles considérés
étant tous coplanaires, le rapport de l'aire projetée sur l'aire initiale est le méme, ce qui nous
permet d'écrire:

YiZ,-Y, 74 :i (11)
S,

Y125-Y5 7

Ainsi qu'une formule similaire pour S»/S;. En reportant ces égalités dans (10), on peut alors
écrire:
S

Xt 22 xp x5 DL =0 (12a)
3 S3

Des relations semblables peuvent de méme étre établies en développant le déterminant par
rapport aux autres colonnes:

}ﬁ% -2tys =0 (12b)

3

I
(e

S,
7l — -Zpt+ 73
3

(12¢)

“lun S

(%)

Ces formules donnent des relations entre les coordonnées de 1’astre, en faisant intervenir les
rapports des aires.

Ces rapports étant a priori inconnus, il est nécessaire d’en trouver une expression, expression
que nous nous proposons d’établir maintenant.

Notons 23 I’aire du secteur curviligne limitée par les rayons vecteurs 1, et 13 et I’arc d’orbite
Py P3. Posons en outre :

y = &

3 s,
On a alors:
S Vs
S3 yZ 23

Nous allons introduire a présent la constante des aires C, définie comme le double de la
vitesse aréolaire :

_p dv

C=r22=
dt



C est reli¢ de maniere simple a Z, puisque 1’on a en effet :
23 =2C6;

On en déduit alors I’expression des rapports des aires :
— (13)

S,
avec une formule analogue pour le rapport —.
3

Bien siir, nous n’avons fait que déplacer le probléme, car y est inconnu. Nous devons donc a
présent établir une équation permettant de calculer y.

Connaissant I’aire de I’ellipse et la période de révolution sidérale, on peut tout d’abord mettre
C sous la forme plus utilisable suivante :

= 27na2\/1—ez

2n s :
On poseran = - (moyen mouvement, déja introduit plus haut).

On écrit alors 23 sous la forme suivante :

223=na? 93\/]—62:212 (M3—M1) VJ1-¢?

En utilisant alors I’équation (7), on trouve :

223=a?+1-¢e*(2(u3—u;)—e(sinuz—sinu;)) (14)

L’expression de S; est, elle, obtenue a partir des relations (3) et (4) écrites a la fois pour les
positions 1 et 3 :

2 S3=r1; 138N (v3—v))=2a%+1—¢e*(sin (2(v3 — v1)) — e (sin uz — sin u;)) (15)

Nous pouvons donner une autre expression de S;: pour cela, , on utilise les relations
(5),(7),(8) et (9), écrites a la fois pour la position 1 et la position 3 :

7 cosl =4 a(l-e) cosﬁ r cosv—3 =4 a(l-e) cosu—3
) 2 VP2 2
\/Zsinv—21=1/a(l+e)sin%1 7 sin‘}73=1/cz(l+e)sinu?3

Vs TV, Uy tu,

= /11y cos

) (16)

=a(cos g —ecos
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ainsi que: 4/r;7; sin Vs ;vl =al-e*sing (17)

nrytxx; +yyy; tzz,
2

Notons que le terme de gauche de la relation (16) vaut également \/

b

quantité que nous appellerons X3 par la suite.

ri=a(l-ecosu) r3=a(l-ecosus)

1, tr U, —U u, +tu
= 1 3 =g(l-ecos—=—~Lcos—=—1)
2 2 2

(13)

La multiplication des relations (16) et (17) fait alors apparaitre I’aire S3 :

_62

S;= x,a sing (19)

En ¢élevant au carré cette expression, et en remarquant que a* (1 —e?) =p =

2 2
%24 = on

k6,2’

aboutit a la relation :

k6,

ys? = (20)

2)x,%asin 2(%)

Soustrayons alors les équations (14) et (15) :
2
53— S3= %\/1 —e(u, —u, —sin(u, —u,) (21)
Divisons maintenant par (13), ce qui élimine I’inconnue e et fait introduire y :

a u,—u, —sin(u, —u,)

Vi- 1=
’ )(3\/E )

(22)

Us — iy

sin(

On multiplie enfin (20) par (22), ce qui élimine cette fois I’inconnue a :

k6, u, —u, —sin(u; —u,)

\/5)(3 (Sil’l(u3 ;ul ))3

Sy = 23
Y5 - Y3 5 (23)

Nous obtenons ainsi une équation dans laquelle n’interviennent que deux inconnues, a savoir

y; et (Il3 — ul).
Nous devons donc établir une autre relation portant sur ces deux inconnues. Pour cela, nous
allons réutiliser la relation (16), couplée cette fois avec (18) qui ne nous a pas encore servi.
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Ces deux relations faisant intervenir e, nous pouvons ¢éliminer cette inconnue, ce qui permet
d’obtenir :

_nhtrn

1
+ —
eCOS(u3 Zul):COS (le3 ul) X} — 2a

2 a\/E cos(u3 ;ul)

D’ou :

Uy, —u, )= ntr —ﬁcos(% —u

I G e e

a sin? (

Ceci permet de réécrire 1’équation (20) sous la forme :

k6, I
2 R —LCOS(

2 W2

ys? (25)

U — iy

Ceci fournit une deuxiéme relation entre y; et (uz —uy).

Les relations que nous venons d’écrire sont bien slir valables pour les autres positions de la
planéte, et nous sommes donc en mesure de calculer les éléments de ’orbite a partir de trois
observations de la plancte.

Notons &; et ; les coordonnées équatoriales de la planéte, relevées aux dates t;. Rappelons
que nous avons not¢ les coordonnées héliocentriques de la planéte (xi, yi, zi). Les coordonnées
héliocentriques de la Terre aux dates t; seront notées (Xi, Yi, Z;). Nous avons donc :

Xi = A cos O cos 0; -X; = A A -X;
yi :Ai CcoS 61 sin o;-Y; = i Ai -Y;
zi =/\; sin &—Zi =v;\ -Z;

En remplagant ces expressions dans les relations (12) établies plus haut, on trouve les trois
premieres équations de notre systéme :

AMA; 62y3 B VAV EYAY % = %Xl — X, + €1y3 X5

32 Oy, 6, 6.y,
(V7AW €2y3 - H2A2+H3A3% :%Yl ~Y,+ €1y3 Y;
6.y, Oy, 6, 6.y,
Vid 62y3 -V2A2+V3A3%: %21_224_ €1y3 Z;
6.y, Oy, 6, 6.y,

Ces équations font intervenir 6 inconnues, a savoir les A; et les yi. Mais nous avons établi des
relations portant sur ces mémes Y. Ces derni¢res faisaient intervenir un autre type

12



,. N . o U Ty
d’inconnues, a savoir les quantités du type :

. Ceci fait un total de 9 inconnues, pour les

9 équations qui constituent le systéme suivant :

PNTAY] zzyz _)\2A2+)\3A3% :%Xl—xz‘f' zly3 X;
€ 4 Vs Vi
ulAl 2211:3 _u2A2+u3A3%ZZ—JJ:3YI_Y2+ 211/3 Y;
2 4 372 4
Vid, O, -V2A2+V3A3%= %21_224_ N2 Zs
6.y, Oy, 6, 6.y,
' -y = k6 uy —u, —sin(u, ~u,)
3 —
22, (sin(uzizul )
Vi -y = k6> u, —u, —sin(u, —u,)
3 —
22, (sin(uzizul )
Vol -y = k6,> uy, —u, —sin(u; —u,)
3 —
2'\/5)(2 (sm(%)f

k6, u, —u, —sin(u; —u,)

3
s -Yst = 3 _
2\/5)(3 (Sil’l(u3 2 ul ))3
k@ ? 1
y12:2)(12 7, +r X U, —u
TR U IO S S 1
A ( )
22:k6?22 1
2,2 h T Xy U —u,
2 \/ECOS( 5 )
y32:k«932 1

2x,2ntr X, c

2 W2

La résolution de ce systéme permet de déterminer les A;, et donc les rayons vecteurs. On peut
également déterminer a, a partir de I’équation (20) par exemple ; des lors, le calcul de e
devient trés aisé. Quant a I’inclinaison et la longitude du périhélie, elles s’obtiennent grace
aux calculs des projections des aires S;, obtenues a 1’aide des coordonnées xi, yi, zi de la
planéte. Nous terminons la détermination avec w, obtenu grace a des relations entre rayons
vecteurs et coordonnées écliptiques héliocentriques, puis n, établie via la loi de Kepler.
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IV. Application : calcul des éléments de I’orbite de
Jupiter.

Calcul des éléments de l'orbite.

Nous avons utilisé les trois observations suivantes pour le calcul des éléments de 1’orbite de
Jupiter, observations espacées chacune de 10 jours :

01/01/2000 : ascension droite : 1h35m24.47892s ; déclinaison :+8°35°10.5123"’
11/01/2000 : ascension droite : 1h37m26.00387s ; déclinaison :+8°50°9.7596°°
21/01/2000 : ascension droite : 1h40m39.31252s  ; déclinaison :+9°11°47.2238’

A partir de ces observations, ainsi que des positions héliocentriques de la Terre a ces mémes
dates, nous calculons tout d’abord les coefficients A;, Wi, et Vi déja introduits :

01/01/2000 11/01/2000 21/01/2000
Ap 0.9043425 0.9001721 0.8934619
Uy 0.3998433 0.4075474 0.419742
Vi 0.1492981 0.1536075 0.15982

Nous sommes alors en mesure de faire résoudre le systeme précédent par un logiciel de
résolution numérique. Nous avons utilis¢ Maple et Mathematica, et nous avons obtenu les
résultats suivants :

A; =4.613910830  y; =1.000040259 g1 =-0.007583625130
D, =4.771563042  y,=1.000040228 g, =-0.007581653186
A; =4.931807155  y;=1.000160988 g3 =-0.01516528094

Nous calculons alors les coordonnées équatoriales héliocentriques de Jupiter :

01/01/2000 11/01/2000 21/01/2000
Xi 4.0041102258 3.95792727689 3.91078870354
Vi 2.73372588115 2.79222691426 2.85005369857
zZi 1.07424163241 1.10044337792 1.12637911694

Ainsi que les coordonnées écliptiques héliocentriques, qui s’obtiennent grace a I’angle € que
font le plan de I’écliptique et le plan de I’équateur céleste:

X’i = Xi
y’i = Vi COSE + 7; Sin€
Z’i = -y SIn€ + z; cos€

01/01/2000 11/01/2000 21/01/2000
X' 4.0041102258 3.95792727689 3.91078870354
Yi 2.93545197995 2.99954809377 3.06291978539
z’ -0.101852596764 -0.101084132859 -0.100291515403
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Nous sommes maintenant en mesure de calculer I’inclinaison de 1’orbite et la longitude du
périhélie en calculant les projections d’aires :

2S5c081=x"1y’3—x"3y’1=0.784335990512
2 S3sini1sinQ =y’;12’3 —y’3z’; = 0.01756540636
2 S3sinicosQ =x"1z2’3 — x’32°1 = - 0.003254297535

De tout ceci nous déduisons:

S3=0.392269703127
i=1°18’
Q=100°29

Nous pouvons aussi calculer les rayons vecteurs, ainsi que X3 et donc a par (20) :
X3=49.2935424629
a=>5.21910

D’ou aussie :
e=0.05771

Le moyen mouvement (introduit plus haut)est obtenue grace a la loi de Képler qui exprime
que le rapport as/T? reste constant. Connaissant ce rapport pour la Terre, ainsi que le demi
grand axe de Jupiter, on peut donc en déduire son moyen mouvement n :

n=0.98560767 a "
D’ou n=305.4535"" par jour.

Pour calculer w, on utilise les relations entre les rayons vecteurs et les coordonnées
écliptiques héliocentriques. On a en effet par projection :

Z’1 =1 sin i sin (vi+)

L’autre inconnue de cette relation est v;, qui peut étre déterminée grace a la formule suivante,
valable pour toute trajectoire elliptique :

€ Ccos v = P , avec p = C%k et C =2S,y,/6,

1
1
Munis de ces relations, nous trouvons finalement :

w=-95.99°

Voici donc les éléments de 1’orbite de Jupiter que nous trouvons a I’issue de nos calculs :

a=15.219010
e =0.05771
1=1°18’30"
n=305.4535"
w=-95.99°
Q=100°29
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Ces valeurs sont a comparer avec celles communément admises. Notons que 1’inclinaison
trouvée ne s’écarte que de quelques secondes de la valeur « exacte ».Pour a et Q, I’erreur est

inférieure a 1%.Elle est de 2% pour n, mais atteint 10% pour wet 16% pour e :

Tableau récapitulatif | Valeur trouvée Valeur « exacte » Ecart relatif
a 5.21910 5.2026 0.3%

e 0.05771 0.0483 16%

i 1°18°28” 1°18°30” 0.05%

W -95°99° -86°44° 9.8%

Q 100°29° 99°27° 1%

n 305.45335” 299.13” 2%

Nous sommes maintenant en mesure de calculer les éphémérides de la planéte Jupiter, a partir
des ¢léments que nous avons calculés. Avant cela, il est important de préciser quelques
notions sur la prise en compte des perturbations

Perturbations.

La méthode que nous avons employée précédemment considére la trajectoire elliptique
comme non perturbée, ie la planéte n’est soumise qu’a une force centrale. En réalité, la
situation est bien plus complexe, car les planétes interagissent entre elles et modifient ainsi les
¢léments de leurs orbites. Les masses des planétes étant faibles devant celles du Soleil, les
effets sont bien sir trés faibles, mais un calcul précis d’éphéméride doit en tenir compte, car
ces perturbations peuvent, dans certains cas et au bout d’un certain temps, écarter la planéte
de sa trajectoire non perturbée de plusieurs dizaines de secondes d’arc.

Dans le cas de Jupiter, la principale source de perturbation est la planete Saturne, qui est
d’ailleurs elle-méme grandement influencée par Jupiter. Le calcul exact de la variation des
¢léments n’est en général pas réalisable, aussi va-t-on procéder par approximations
successives en calculant les termes correctifs les uns aprés les autres, pour chaque élément.
Nous allons prendre pour exemple le cas de a. Donnons-nous d’abord les relations® exprimant
les variations de cet élément dans le temps, en fonction des composantes normale et
tangentielle de la force, notées respectivement P et S :

da__ 2 (pPySesiny)

E_ ny(-e*») r

Il est également possible d’exprimer cette variation en fonction de la fonction de force
perturbatrice R, et de ses dérivées par rapport aux éléments de I’orbite :

da = ia—R, dans laquelle de représente la quantité dM+dwo.
dt nade€

Au premier ordre, on écrira donc :

a=ag+ 0a, avec :

3 7 . . . , , r s 1% 7
Nous ne démontrerons pas ces relations, mais le lecteur intéressé pourra se reporter aux ouvrages spécialisés,
dont certains se trouvent dans la bibliographie.
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2 ¢ OR
6121: J.(a—)odt

nydy %
On peut monter qu’en premicre approximation, on a :
Ro=%ZFycos Dy ,avec: Dg=j(not +€)+j (ng’t +€’)+kuy +k’a’y +1Qy+I'Q’%
J k L j’, Kk, I désignant des entiers relatifs. Quant a Fy, il ne dépend que de a, e et i.
On a alors par intégration :

2 D
Ola= 2jF, — cos _'0 :
nya, jny tjn,

D’ou I’expression du premier terme correctif. On notera que cette expression ne fait intervenir
que des fonctions sinusoidales du temps ;on parle alors de termes correctifs périodiques. Le
seul terme dépendant linéairement du temps est celui pour lequel j = j° = 0, mais ce terme est
nul en raison de la présence du j en facteur de I’ensemble.

Signalons pour finir que le terme jny + j’n’o peut induire des phénomenes de résonance s’il
existe j et j* tels que ce terme devienne trés petit, ie si les périodes des deux planctes
considérées sont dans un rapport quasi-rationnel. Or, on constate que :

n=299.1283"

n’ =120.4547"’,

d’oun/n’ =2.4833 = 2.5.

Plus précisément, 5n’ — 2n = 1467.1°’= 0.4075° par an, d’ou une période ce cette perturbation
de 360/0.4075 = 883 ans. On observe alors des variations de Q pouvant aller jusqu’a 20’ pour
Jupiter et 50° pour Saturne.

V. Calculs des éphémérides
Introduction

Pour prédire la position future d’une planéte par rapport a la Terre (ou au Soleil) il ne
suffit pas, en général, résoudre le probleme des deux corps. Dans les situations réelles on
serait amené a prendre en compte la masse des corps célestes, qui se trouvent dans
I’environnement de ladite plancte, les potentiels gravitationnels, qui ne sont pas
rigoureusement sphériques, des forces d’origine non-gravitationelles issues de la pression de
radiation du Soleil, du frottement sur les poussieres du milieu interplanétaire et des forces
¢lectromagnétiques. Il en résulte un mouvement dit perturbé par rapport au mouvement
théorique du probléme des deux corps.

Il n’est pas donc suffisant de définir qu’une seule orbite keplérienne pour un tel
mouvement mais un ensemble d’orbites keplériennes, dites instantanées, de définition
suivante: a I’instant ty, ’astre A occupe une position Ay et posséde un vecteur vitesse Vi dans
son mouvement relatif au corps central S. Si a cet instant to on supprimait toutes les actions
perturbatrices, 1’astre décrirait alors une orbite keplérienne de foyer S. Cette orbite
« théorique » est appelé orbite osculatrice a I’instant ty, qui est I’époque d’osculation. Il est a
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noter qu’elle est tangente en Ag. A chaque instant, I’astre A se trouve donc sur une orbite
osculatrice et I’ensemble de ces orbites admet pour enveloppe I’orbite perturbée que décrit
’astre. Les points de contacts entre ces orbites sont évidemment les positions correspondantes
de A a chaque instant.

L’orbite réelle n’est pas nécessairement plane. Pour connaitre la position de I’astre A a
chaque instant t, il faut connaitre la position de A sur I'orbite keplérienne osculatrice
correspondante, a t.

Il est donc nécessaire de repérer les orbites osculatrices a chaque instant, ou des orbites
«voisines » comme c’est le cas pour les planétes (2 ne pas oublier que certaines astres
peuvent étre fortement perturbés par un passage approché au voisinage des planétes géantes).

Des méthodes de calcul plus précises prennent en compte ces perturbations; elles
furent mises en ouvre des le 18¢me siecle avec Euler et Clairaut notamment. Ces méthodes
sont de deux types: I'une de caractére analytique constitue la théorie des Perturbations
générales, ’autre, numérique, forme la théorie des Perturbations spéciales.

En utilisant la théorie des perturbations générales, on considere le systeme différentiel
de six équations de premier ordre dénommées €quations planétaires de Lagrange. Les seconds
membres de ces équations contiennent, outre la fonction perturbatrice, les fonctions inconnues
qui, sont les éléments osculateurs considérés comme les fonctions du temps. Les inconnues
s’expriment (de fagon approchée) par des développements de la forme:

n k
Q=Q0+Q1T+Q2Tz+...+2(Ai +BT) sin(z a;L;), ouQ représente une des inconnues.
i=1 j=1
( ) ( )
J P
Qo correspond a la partie non-perturbée de Q, donc la valeur qu’aurait le parametre Q si le
mouvement était keplérien. T correspond a la date d’observation exprimée en siécle julienne

(ou en millénaire julien): 7 = % (origine 2000) avec N étant le jour julien de la

date. Q;T: constitue une approximation linéaire (du premier ordre par rapport au temps) et est
appelée: inégalité séculaire (ou terme séculaire)”.

Les termes P contiennent des termes périodiques formés de sinus dont ’argument (la
variable) est une combinaison linéaire des variables angulaires L;, des astres concernés, ainsi

que des termes mixtes BiT sin(z al;).

J
Certains termes périodiques sont a longue période, les autres sont dits a courtes
, . 5 ;. . , . . . oy
périodes”. L’ensemble des termes périodiques caractérise 1’oscillation de I’élément osculateur
calculé autour d’une valeur moyenne de cet ¢lément, formée des termes séculaires.

3
0= ZQPT P ou Q correspond a 1, Q, w(pour les éléments angulaires) et e ou M.
p=0
Ces éléments moyens de 1’orbite définissent a chaque instant t une orbite ,,moyenne*
qui ne correspond évidemment pas a 1’orbite osculatrice au méme instant décrite plus haut.

* L’expression ,,inégalité“ est utilisée parce qu’en 19 siécle et au début de 20 siécle il fut démontré que dans le
systéme solaire le demi grand-axe es orbites a des planétes et par suite leur moyen mouvement n ne contenanait
pas d’inégalités séculaires du premier ordre, ni du second. L’intégration approchée des équations de Lagrange
s’effectue en plusieurs approximations qui donnent Q, a la premicre approximation, Q,, coefficient du terme
séculaire du second ordre, 4 la deuxiéme approximation... Les coefficients Q; sont trés petits a partir de T°.

> Ces termes sont dus & la nutation. Les termes & longue période (p.e. 26 000 ans) sont développé usuellement en
série entiére du temps.
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Toute éphéméride établie en considérant ces éléments moyens comme ¢léments osculateurs a
T est donc assez approximative (I’erreur commise peut €tre trés importante pour des grandes
planétes). Par contre, ce type de calcul est tres simple.

Une plus grande précision peut étre obtenue au prix de calculs volumineux, qui sont
dus a la présence de centaines des termes sinusoidaux dont les arguments sont les anomalies
et les longitudes moyennes ainsi que les arguments de périhélie des planétes perturbés et
perturbant. Les séries utilisées sont divergentes, c’est pourquoi on ne les utilise que sur des
données réduites (quelques centaines années).

La méthode des perturbations spéciales, mise en ceuvre des le début du 19°™ siecle,
proceéde par intégration numérique des équations différentielles (systeme différentiel de
second ordre non linéaire) du mouvement perturbé. Le principe en était plus simple que le
précédent mais les calculs manuels furent laborieux.

Pour le calcul des éphémérides des planétes du systéme solaire on a choisi d’utiliser
les ¢léments moyens a la place des éléments osculateurs en se satisfaisant d’un calcul moins
précis. Notre but est aussi comparer nos résultats avec ceux du Bureau des Longitudes pour
pouvoir conclure sur la précision de nos calculs.

Calcul de la position des planétes

Pour trouver les éphémérides d “une planéte il faut déterminer d’abord sa position pour
L 6, A 11z .
une date précise” ; il faut donc connaitre ses éléments d’orbite.

On va utiliser les ¢léments dit « moyens » des orbites de la planéte qui sont de la
forme Q=Q+Q;T+Q,T?, Q représentant un élément. On propose deux présentations
différentes : I'une donnant directement les six fonctions (i, Q, a, e, W (longitude de périhélie),
L (longitude moyenne)), théorie TOP82 de J.L.Simon ; I’autre ne donnant pas directement des
¢léments, mais d’autres fonctions permettant de les retrouver, théorie VSOP82 de P.
Bretagnon. Il faut noter que les coefficients des ¢léments d’orbite sont exprimés par rapport a
une certaine date. Dans la suite, on va utiliser les ¢léments d’orbite rapportés a I’année 2000.

Pour les calculs suivants on a choisi la présentation de VSOPS82 qui est aussi utilisé
par le Bureau des Longitudes (parmi d’autres). Les fonctions données par cette théorie sont
les suivantes’ :

- demi grand axe a=1f(T),
- longitude moyenne LM={(T),
- excentricité x cos(@) KA=f(T),
- excentricité x sin(T0) HA=A(T),
- sin(i/2) x sin(Q) P=A(T),

- sin(i/2) x cos(Q) Q=f(T).

Sous cette présentation on voit aisément que les ¢léments d’orbites sont égaux :
- longitude de périhélie® w=arctg (HA/KA),

% Cette date va étre dans les calculs suivants exprimée dans les milénaires juliens — ANNEXE.
7 Certaines notations introduites (p.e. LM, KA, HA, P, Q) ne sont pas celles qui sont commonement utilisées.
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- excentricité e=HA/sin(w),
- longitude du nceud ascendant Q=arctg(P/Q),
- inclinaison de ’orbite i=2arcsin(P/sin(Q).

Pour pouvoir déterminer la position du Jupiter a partir de ces fonctions il faut trouver
I’anomalie moyenne M. On regarde I’image suivant, ou v I’anomalie vraie, AMO ’argument

de mobile, w I’argument de la latitude du périhélie et E ’anomalie excentrique, qui va
permettre de déterminer M.

rMobile

La longitude moyenne ou la longitude vraie du mobile LM est définie comme la somme de la
longitude du nceud ascendant Q et I’anomalie du mobile AMO (LM=Q+AMO). Sur I’image
on peut lire que M=AMO-W.

On a donc M=LM-Q-w=LM-w.

Ensuite, on va calculer I’anomalie excentrique E, a I’aide de 1’équation de Kepler :
E=M+e.sinE. Cette anomalie peut étre calculer numériquement par un calcul itératif — un
boucle de 5 itération est en général suffisant.
Il faut définir ’anomalie vraie v en connaissant v =2arctg(((l+e)/(l-e))l/z*tg(E/2))9.
Connaissant ’argument de latitude de la planéte APL=00+v-Q on peut déterminer la position
de la planete dans les coordonnées écliptiques héliocentriques. Ces coordonnées porteront le
nom de la latitude écliptique b et de la longitude écliptique L

On voit sur I’image suivant a quoi correspondent ces deux coordonnées.

¥ La longitude du périhélie est donnée par le calcul d’un arctan, donc il y a ambiguité de Ttsur le résultat en
fonction du signe de KA. Si KA est négatif il faut ajouter 11a la longitude de périhélie. La méme chose va se
passer avec la longitude du noeud ascendant, ou pour Q négatif il faut ajouter Ta Q.

? Le rayon vecteur et I’anomalie vraie s’obtiennent par : r cos v = a(cos E —e) et r sin v=a (1-¢?)"* sin E. En
¢levant ces expressions au carré et en additionnant ces deux relations, on trouve 1’expression pour le rayon
vecteur r=a . (1-e.cos E). En divisant I’expression r cos v = a(cos E — ) par I’expression pour le rayon vecteur,
on obtient cos v = (cos E —e)/ (1- e. cos E). Pour trouver une expression plus commode on utilise la relation
tg?(v/2) = (1 — cos v)/(1 + cos v) qui mene au résultat indiqué plus haut.
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La latitude écliptique b peut étre déduit a ’aide de formule pour les triangles sin a/sin A=sin
b/ sin B. On a donc sin b/sin i=sin APL/sin 90. D’ou b=arcsin(sin i . sin APL)

La longitude écliptique 1 peut étre déduit a I’aide de cos a=cos b . cos c.

Donc cos APL=cos NH . cos LA. Pour obtenir la longitude 1 il faut ajouter la longitude du
nceud a I’arc NH. On obtient donc : 1 = arc cos(cos APL/ cos b) + Q.

On a trouvé la position du Jupiter dans les coordonnées écliptiques héliocentriques. Pour
pouvoir exprimer sa position par rapport a la Terre il faudrait introduire la position du Soleil
par rapport a la Terre et la rajouter a la position de la planéte par rapport au Soleil. Dans ce
document on ne démontre pas le passage entre les différents systémes de coordonnées, dans le
chapitre suivant, on introduit tout de suite les relations correspondantes. Le passage entre les
différents types de coordonnées est possible trouver dans tous les ceuvres traitant la
problématique en question.

Calcul des éphémérides du Jupiter

Les planetes décrivent des orbites autour du Soleil. C’est pourquoi, pour déterminer la
position du Jupiter par rapport a la Terre, il faut calculer d’abord les coordonnées du Soleil
par rapport a la Terre, puis les coordonnées des planétes par rapport au Soleil, et ensuite on
combine les résultats de ces deux calculs.

Le déroulement du calcul est le suivant' :

1. Calcul de la date exprimée en millénaires juliens T (ad ANNEXE) et du temps sidéral TS
(ad Programme) a partir de la date (jour, mois, année), de I’heure (heures, minutes, secondes),
et des coordonnées terrestres du lieu d’observation (latitude L et longitude G).

2. Calcul de Soleil pour obtenir la longitude écliptique du Soleil LOs (s désigne le Soleil) :
LOs=AVs+LPs , ou AVs est anomalie vraie du Soleil et LPs est la longitude du périhélie de
Soleil.

1E=0.4090928042-0.0022696552*T-2.86e-7*T*T

A=1.00000101778

LM=4.895062967+6283.319668*T+5.3e-4*T*T
KA=-0.003740816-0.004793106*T+0.00028*T*T
HA=0.016284477-0.001532379*T-0.00072*T*T

1% Les notations introduites sont utilisées pour rendre le programme plus compréhensible. Quelques notations
communes sont mentionnées entre parenthéses.
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LPs=atan(HA/KA); E= abs (HA/sin (LPs)); AM=LM-LPs; AE=AM+E*sin AE;
AVs=2*atan(((1+E)/(1-E))""**tan(AE/2))

3. Calcul des coordonnées cartésiennes écliptiques géocentriques du Soleil : connaissant As
(a), AEs (E) et Es (e) on a le rayon vecteur Soleil R=A x (1-E.cosAE) ou r=a x (1-e.cosE)

Les coordonnées du Soleil sont alors les suivantes : Xs=Rs x cos LOs et

Ys=Rs x sin LOs

4. Calcul des coordonnées écliptiques héliocentriques LO et LA du Jupiter, a I'aide des
¢léments fournis pour la plancte :

A=5.20260319132+1.91323°-6*T

LM=0.5995464972+529.9348075*T+3.9°-4*T*T
KA=0.046985721-0.001796949*T-0.00204*T*T
HA=0.012003857+0.013628604*T+4°-5*T*T

Q=-0.002065611-0.001905724*T+0.0001 1 *T*T
P=0.011183772-0.000839731*T-0.00016*T*T

et des expressions suivantes :

LN=arctg (P/Q) (Q) ; I0=2arcsin(P/sin LN) (i) ;
LP=arctg(HA/KA) ; E= HA/sin LP; AM=LM-LP ; AE=AM+Esin AE;
AV=2arctg(((1+E)/(1-E))'"? x tg (AE/2)) ; APL=LP+AV-LN

Si on prend en compte aussi des perturbations a longue période pour le Jupiter, ce qui
correspond a I’influence perturbatrice de Saturne avec sa période de I’inégalité de 883 ans, on
introduit ’argument B, tel que : B=3.08686+7.3738*T. Les corrections a apporter sur les
¢léments sont les suivantes :

dA=4.6e-6 cos B

dLM=5.78e-3 sin B

dE=6.3e-6 sin B+2.25e-6 cos B d’ou E corrigé Ec=E+dE

dLP=1/Ec(1.22e-4 sin B — 3.49¢-4 cos B)

LA=arcsin(sin IO . sin APL) ou LA=arcsin(sin i. sin )
LO=arccos(cos APL/cos LA)+LN ou LO=arccos(cos w/cos LA)+Q

5. Calcul du rayon vecteur R du Jupiter : si A est le demi grand axe de 1’orbite du Jupiter, E
I’excentricité et AE ’anomalie excentrique, on a : R=A x (1-E.cos AE)

6. Calcul des coordonnées cartésiennes écliptiques héliocentriques du Jupiter
X1=R .cos LA .cos LO

Y1=R.cos LA .sin LO

Z1=R .sin LA

7. Calcul des coordonnées cartésiennes écliptiques géocentriques du Jupiter
X2=Xs+X1

Y2=Ys+Y1
72=71 (car Zs=0)
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8. Calcul des coordonnées sphériques écliptiques géocentriques du Jupiter : longitude LOG et
latitude LAG

LOG= arctg (Y2/X2) et si X2 négatif, on ajoute Tta LOG
LAG=arctg(Z2/(X22+Y22)"?)

9. Calcul des coordonnées de la planete dans le systéme géocentrique sphérique équatorial
(changement d’axes écliptique-équatorial)

déclinaison D=arcsin(sin LAG.cos IE + cos LAG . sin IE . sin LOG)
ascension droite AD=arctg((cos IE . sin LOG — sin IE . tg LAG)/cos LOG) en sachant que si
cos LOG est négatif on ajoute Tta AD

10. Calcul des coordonnées horaires du Jupiter
Si G est la longitude terrestre du lieu d’observation, et TS est le temps sidéral de Greenwich,
les coordonnées horaires seront les suivantes : angle horaire AH = TS-AD-G et D

11. Calcul des coordonnées locales du Jupiter

hauteur HC = arcsin(sin D. sin L+ cos D . cos L . cos AH)

azimut AZ=arctg(sin AH/(sin L cos AH — cos L tg D)) avec la condition : si le dénominateur
est négatif, ajouter Ta AZ (L est la latitude terrestre du lieu).

Ces formules sont utilisées dans le programme suivant qui donc permet de déterminer la
position du Jupiter pour une date et un lieu d’observation donnée. Ce programme est écrit
pour MATLAB.

Programme : Ephémérides de Jupiter avec des perturbations de Saturn

cl ose all
format | ong

% Proganme: Ephénerides de Jupiter avec des perturbations de Saturn

% Définition de la longitude ( deg puis mn)
Dl=i nput (' Definition de la |ongitude (que deg): ');
ML=i nput (' Definition de la |longitude (que mn): ');

% définiton de la latitude (deg puis mn)
D2=i nput (' Definition de la laitude (que deg) : ');
M2=i nput (' Definition de la latitude (que mn) : ');

% définition de jour, puis nobins puis années d' observation
JO=i nput (" Quel jour : ');

MO=i nput (" Quel nmois @ ');

AN=i nput (" Quel ans @ ');

% Nonbre de jours par nois
N( 1) =0;

N(2) =31;

N(3) =59;

N( 4) =90;

N(5) =120;

N( 6) =151;
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N( 7) =181;
N( 8) =212;
N( 9) =243;
N( 10) =273;
N( 11) =304;
N( 12) =334;

% définiton de heures, mnutes et secondes en tenps nondi al
H=i nput (' Heures @ ')
Mei nput (" M nutes :
S=i nput (' Secondes :

N - -

K=180/ pi ;
G=si gn(D1) *(abs(D1) +ML/ 60) / K; % | ongi tude en rad
L=si gn(D2) *(abs(D2) +M2/ 60) / K; % | atitude en rad

J2=N( MO) +JO+( H+M 60+S/ 3600) / 24- 1; % nonbre de jours pour |a date de
| ' observation

% cal cul de | a date julienne
AA=AN 4-f | oor (AN 4);
i f ==0
AA=1,
end
i f ==1 & M>>2
J2=J2+1;
end

T=( (AN 2000) *365. 25+0. 5+J2- AA)/ 365250; % m |l ainaires juliens
Tsi =( (AN-2000) *365. 25+0. 5- AA) / 36525; % siecle juliens pour le 1.1.
d' annee

% d' observation (0hOm

% tenps sideral noyen de Greenwich a 0 heure pour |'annee d' observation;
c' est aussi
%l a | ongitude noyenne de la Terre a cette nene date de reference

TSa=100. 4606184+36000. 77005361* Tsi +3. 87929167e- 4* Tsi "2-
0. 000000025875* Tsi *3;
TSO0=TSa- f | oor ( TSa/ 360) * 360;

i f TSO0<O
TSO0=TS0+360
end

TS1=TS0+360. 98564735*J2;
TS=2*pi *( TS1/ 360-f | oor (TS1/ 360)); % tenps sideral de Greenw ch au
nonent de

% |'observation

% PARAMETRES DU SOLEI L

% i nclinaison ecliptique par rapport au plan equatori al
| E=0. 4090928042- 0. 0022696552* T- 2. 8604007e- 7* T* T+8. 789672e- 6* T* T* T,

% dem grand axe de |'orbite terrestre expriné en unités astronom ques
AS=1. 00000101778;

% | ongi t ude noyenne du Sol ei |
LMS=4. 895062967+6283. 319663* T+5. 3001819e- 4* T* T+3. 6942802e- 7*T* T* T;
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% excentricite x cos LP
KAS=- 0. 003740816- 0. 004793106* T+0. 000281128* T*T+7. 3831e-5*T*T*T;

% excentricite x sin LP
HAS=0. 016284477- 0. 001532379*T- 0. 000720171* T* T+3. 2299e-5*T*T*T;

LPS=at an( HAS/ KAS) ; % | ongi tude de perihelie
ES=abs( HAS/ si n(LPS) ) ; % excentricite
ANB=LM5- LPS; % anomal i e noyenne
AES=ANE; % anomal i e excentri que
for 1=1:5

AES=AMS+ES* si n( AES) ;
end

% anonal i e vraie
AVS=2*at an((sqrt ((1+ES)/ (1-ES)))*tan(AES/ 2));

ALS=AVS+LPS; % argunent de l|atitude du Sol eil
% syst ene equatori al
D=asi n(sin(lIE)*si n(ALS)); % decl i nai son
AD=at an(cos(| E)*tan(ALS)); % ascensi on droite
if (cos(ALS))<0
AD=AD+pi ;
end
i f AD<O
AD=AD+2* pi ;
end

RVS=AS* ( 1- ES*cos( AES) ) ; % rayon vecteur du Sol eil
% coor donnes cartesi ennes pour |le Soleil

XS=RVS*cos(ALS);

YS=RVS*si n( ALS);

AH=TS- AD- G % angl e horaire

% COORDONNES POUR LE JUPI TER

A=5.20260319132+1. 91323e- 6*T,; % dem grande axe de Jupiter
LM=0. 5995464972+529. 9348075* T+3. 9e- 4* T* T, % | ongi t ude noyenne

KA=0. 046985721- 0. 001796949* T- 0. 00204* T* T, % excentricite x cos LP
HA=0. 012003857+0. 013628604* T+4e-5* T* T; % excentricite x sin LP
%sin (102 x sin LN, ou IO est |'inclinaison de |'orbite et LN est

% |l a | ongi ude du noeud ascendant
Q=-0.002065611- 0. 001905724* T+0. 00011*T*T;

%sin (102 x cos LN, ou IO est |'inclinaison de |'orbite et LN est
% |l a | ongi ude du noeud ascendant

P=0.011183772- 0. 000839731*T- 0. 00016*T*T;

LP=at an( HA/ KA) ; % | ongi tude de perihelie

i f KA<O

LP=LP+pi ;
end
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E=abs(HA/ si n(LP)); % excentricite
B=3. 08686+7. 11355* T, % arguemmt B pour prendre

% en conpte des perturbations dues au Saturne
Ul=si n(B);
V1=cos(B);
DA=4. 5902e- 6* V1, % correction sur |a dem -grande axe
A=A+DA;
DLMES. 78402e- 3* UL, % correction sur |la |ongitude noyenne
LM=LM+DLM
DE=6. 3e- 6* U1l+2. 2515e- 6* V1; % correction sur |'excentricite
E=E+DE;
DLP=(1.2217e- 4*Ul- 3. 4906e-4*V1)/E, %correction sur la |ongitude du
peri helie
LP=LP+DLP;

% cal cul e des el enents d' orbite

LN=at an(P/ Q ; % | ongi t ude du noeud ascedent
if Q<0
LN=LN+pi ;
end
| O=2*asi n(P/sin(LN)); % inclinaison de |'orbite
AMELM LP; % anomal i e noyenne
AE=AM % anomal i e excentri que
for i=1:10
AE=AM+E* si n( AE) ;
end

% anonal i e vraie

Av=2*atan((sqrt((1+E)/(1-E)))*tan(AE/ 2));

ARP=LP+AV- LN; % anomal i e de latitude du Jupiter

LA=asi n(sin(1 O *si n(ARP)); % | atitude ecliptique heliocentrique

LC=acos(cos(ARP)/cos(LA)) +LN, % | ongi tude ecli[tique heliocentrique
% (precision 0.01 degre d'angle)

if LA<O
LO=2*pi - LO+2*LN;
end
R=A*(1- E*cos(AE)); % rayon vecteur duJupiter (en km

% coordonnees du Jupiter par rapport au Sol eil
X1=R*cos(LA)*cos(LO;

Y1=R*cos(LA) *si n(LO);

Z1=R*si n(LA);

% coordonnees de Jupiter par rapport a la Terre
X2=XS+X1;

Y2=YS+Y1;

72=71;

LOG=at an( Y2/ X2) ; % | ongi t ude geocentrique de Jupiter

if X2<0
LOG=LOGH+pi ;

end
LAG=at an( Z2/ sqrt ( X2* X2+Y2*Y2) ) ; % | atitude geocentrique de Jupiter

% decl i nai son de Jupiter

26



D=asi n(si n(LAG) *cos(I| E) +cos(LAG *si n(1 E)*si n(LOG) ) ;

% ascensi on droite de Jupiter
AD=at an( (cos(I E) *si n(LOG -si n(lE)*tan(LAG )/ cos(LOG));

if cos(LOG <0
AD=AD+pi ;
end

i f AD<O
AD=AD+2* pi ;
end

% angl e horaire de Jupiter
AH=TS- AD- G

% cal cul des coordonnes horizontal es de Jupiter

HC=asi n(si n(D)*si n(L)+cos(D)*cos(L)*cos(AH)); % haut eur cal cul e
Al=sin(L)*cos(AH) -cos(L)*tan(D);

AZ=at an(si n(AH)/ Al); % azi mut

i f Al<O
AZ=AZ+pi ;
end

i f AZ<0
AZ=AZ+2* pi ;

end

P=t an(pi / 2- abs(HC) ) ;
Qabs(HC) *K;

if Q=9

% correction due a la refraction de |'atnosphere (degres)
R=0. 016*P- 1. 858e- 5* P*P*P+6. 17e- 8* P"5;

el se R=0.61-0.15*Q+0. 01546*Q*Q 0. 00057*Q* ¥ Q
end

HCC=HC+R/ K; % haut eur cal cul e corrige

di sp(9)

di sp(d)

a=' DECLI NAISON D (en degrés):"'
di sp(a)

D=f | oor ( D*K*1000) / 1000

b="AS. DROTE AD (en degrés):"'

di sp(b)

ADd=f | oor ( AD*K*1000) / 1000

c=' soit (en heures):'
di sp(c)

ADh=AD* K/ 15

di sp(d)

e=' HAUTEUR H (en degrés):';
f="AZI MUT AZ (en degrés):"'
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di sp(e)

H=f | oor ( HCC*K*1000) / 1000
di sp(f)

AZf =f | oor ( AZ*K*1000)/ 1000
di sp(d)

di sp(g)

Pour le calcul des éphémérides sans prendre en compte les perturbations il faut enlever
dans ce programme les termes qui incluent B.

VI. Conclusion.

Nous venons de présenter les calculs des ¢léments d’une orbite elliptique ainsi que
I’établissement d’une éphéméride. Nous avons représenté¢ dans le tableau ci-dessous les
valeurs calculées des coordonnées équatoriales de la planéte Jupiter entre 1996 et 2010,
valeurs obtenues avec ou sans prise en compte des perturbations, et comparées avec celles que

fournit le Bureau des Longitudes :

DECLINAISON

(degrés)

calcul sans pert.|calcul avec pert. bdI
19. 06. 1996 -22,676 -22,673 -22,666
19. 06. 1997 -14,989 -14,989 -14,9902
19. 06. 1998 -2,351 -2,358 -2,3769
19. 06. 1999 9,885 9,878 9,8564
19. 06. 2000 18,853 18,85 18,8381
19. 06. 2001 23,026 23,026 23,0235
19. 06. 2002 22,145 22,143 22,1479
19. 06. 2003 16,854 16,846 16,8587
19. 06. 2004 8,227 8,213 8,2367
19. 06. 2005 -2,405 -2,422 -2,3862
19. 06. 2006 -13,478 -13,491 -13,4515
19. 06. 2007 -21,723 -21,727 -21,7065
19. 06. 2008 -22,11 -22,111 -22,1309
19. 06. 2009 -13,337 -13,348 -13,393
19. 06. 2010 -0,483 -0,502 -0,5476
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ASCENSION

(degrés)
calcul sans pert.|calcul avec pert. bdI
19. 06. 1996 285,796 285,831 285,9029
19. 06. 1997 324,462 324,464 324,46
19. 06. 1998 357,617 357,602 357,5592
19. 06. 1999 27,047 27,029 26,9765
19. 06. 2000 55,735 55,722 55,6747
19. 06. 2001 84,291 84,29 84,2525
19. 06. 2002 112,199 112,214 112,1798
19. 06. 2003 138,543 138,571 138,53
19. 06. 2004 163,696 163,732 163,6753
19. 06. 2005 188,996 189,037 188,9557
19. 06. 2006 217,371 217,411 217,2946
19. 06. 2007 251,872 251,897 251,742
19. 06. 2008 291,555 291,548 291,3892
19. 06. 2009 329,535 329,502 329,3745
19. 06. 2010 1,978 1,935 1,8316

La méthode sans perturbation fournit les coordonnées de Jupiter avec une précision d’environ
0°.15 sur quelques dizaines d’années, alors qu’en tenant compte des perturbations, la
précision ne descend pas en-deca de 0°.10 ; la différence n’est donc pas notable, méme si a
long terme les méthodes ne considérant pas les perturbations s’éloignent peu a peu des
observations. Ceci justifie la prise en compte des termes correctifs, malgré des temps de

calcul qui augmentent exponentiellement avec le nombre de termes utilisés.

Signalons que le lecteur intéressé par la détermination des éléments d’une orbite parabolique

pourra se reporter aux ouvrages spécialisés mentionnés en bibliographie.
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VIIl. ANNEXE

Détermination de la date en millénaires juliens

L’année julien vaut 365.25 jours civils. Trois années de 365 jours sont suivis d’une
année de 366 jours. L’année julienne est donc trop longue de 0.0078 jour civil (I’année
tropique vaut actuellement 365.242198781...) et prend en 100 ans presque 1 jour de retard.

Les calcules relatifs a tous les astres requicrent des temps exprimés en millénaires
juliens (ou siecles)a partir de J 2000,0.

Le calcul présenté par la suite est valide dans la période 1900- 2099. Le principe
consiste a calculer le nombre de jours J qui sépare I’instant considéré de la date du 1.1.2000 a
12 heures, et a diviser ce nombre par 365 250 (ou 36 525) afin de les chiffrer en millénaires
juliens (ou siecles julien).

Le calcul de J sera plus facile en considérant que trois années normales succedent a
une année bissextile, et donc que ’année est de 365.25 jours.

Dans ces conditions, pour les premiere, deuxiéme et le troisieme années normales qui
suivent une année bissextile, il importera d’ajouter respectivement un correctif de 0.75, 0.5 et
0.25 jour.

L’algorithme a utiliser est le suivant :

J = Rang du jour + (AN-2000)*365.25-0.5+correctif.
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