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Abstract

It is shown that Electromagnetism creates geometry different from Rieman-
nian geometry. General geometry including Riemannian geometry and ge-
ometry underlying Electromagnetism as special cases is constructed. Action
for electromagnetic field and Maxwell equations are derived from curvature
function of geometry underlying Electromagnetism.
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1 Introduction

After it was realized that the underlying geometry for gravitation is Riemannian ge-
ometry the action functional for gravitational field has been derived from curvature
characteristics of Riemannian geometry, namely the Lagrangian for gravitational
field is scalar curvature of Riemannian geometry. And equation for geodesics coin-
cides with the equation of motion for a particle interacting with gravitational field
[1],[2].

After this discovery, many physicists and mathematicians tried to find underling
geometry for electromagnetism. The requirements for this geometry are the follow-
ing; equation of motion for a particle interacting with electromagnetic field must
coincide with the equation for geodesics and Lagrangian for electromagnetic field
must be related to curvature characteristics of the underlying geometry as in the
case of Riemannian geometry and gravitation. All attempts to geometrize electro-
magnetism has been done in the framework of Riemannian geometry in a variety
of different approaches [3]-[11]. Unfortunately, these attempts failed to satisfy the
above requirements completely [12], [13] and the problem of geometrization of elec-
tromagnetism remained open.

In the present paper we show that electromagnetism can not be geometrized in
the framework of Riemannian geometry. Therefore, for geometrization of electro-
magnetism we need different type of geometry. We construct a new geometry for this
aim and call it General Geometry. This geometry includes already known Rieman-
nian geometry as a special case. We introduce notion of curvature function which
serves as a source for defining curvature characteristics of geometry. And prove
that the most simplest particular case of General Geometry is geometry underlying
Electromagnetism.

We show that equation for geodesics in geometry underlying electromagnetism
coincides with the equation of motion for a charged particle interacting with elec-
tromagnetic field and construct Maxwell equations and action functional for elec-
tromagnetic field from curvature function.

In the next section we show that electromagnetism creates geometry different
from Riemannian geometry and therefore cannot be geometrized in the framework
of Riemannian geometry.

We develop General Geometry including Riemannian geometry as a special case
in section 3.

In section 4, we derive action functional for electromagnetic field and Maxwell
equations from curvature function of the underlying geometry.

Section 5 is devoted to discussion of correspondence between physical properties
of fields and mathematical properties of corresponding geometries. We also discuss
the problem of geometry and matter.
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2 Interacting Classical Particle

The action for a free particle is

S =
1

2
m

∫
duηµνx

µ
uxν

u,

where xu = dx/du, ηµν = diag(1− 1− 1− 1), and m is mass parameter. Consider a
particle which interacts with gravitational field hµν with coupling constant λ:

S =
1

2
m

∫
duηµνx

µ
uxν

u +
1

2
λ

∫
duhµνx

µ
uxν

u. (1)

We can represent (1) as

S =
1

2

∫
dugµνx

µ
uxν

u, (2)

gµν = mηµν + λhµν . (3)

This has been interpreted as a free particle moving in curved spacetime with metric
gµν in General Relativity.

We go one step further and consider a charged particle, with charge q which
interacts with electromagnetic field Aµ:

S =
1

2
m

∫
duηµνx

µ
uxν

u +
q

c

∫
duAµx

µ
u, (4)

and represent (4) as

S =
1

2

∫
duAgµνx

µ
uxν

u, (5)

Agµν = mηµν +
q

c
(Aµfν + Aνfµ), (6)

where fνx
ν
u = 1. It easy to see that fν are functions of du/dxν and therefore spoil

locality. It is clearly seen that we cannot represent (4) in the form of (5) with
local functions of x and xu. This indicates that electromagnetism creates geometry
different from Riemannian one. Hence, it cannot be geometrized in the framework of
Riemannian geometry. The appropriate geometry for electromagnetism is presented
in sections 3 and 4.

For the general case S = 1
2

∫
dugµν(x, xu)x

µ
uxν

u when gµν are considered as a
function of x and xu we obtain equation of motion

d2xν

du2
Gλν + Γλ,µνx

µ
uxν

u = 0, (7)

where

Gλν(gµν) =
1

2

∂2gµσ

∂xν
u∂xλ

u

xµ
uxσ

u +
∂gµν

∂xλ
u

xµ
u +

∂gλσ

∂xν
u

xσ
u + gλν ,

2Γλ,µν(gµν) =
∂2gµν

∂xσ∂xλ
u

xσ
u +

∂gλν

∂xµ
+

∂gλµ

∂xν
− ∂gµν

∂xλ
.

Function Gλν(gµσ) plays the role of a tensor for raising and lowering indices and
Γλ,µν connection.

Gλν(
Agµσ) = ηλν , Gλν(gµσ) = gλν . (8)
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3 General Geometry

In this section we construct a new geometry. This geometry includes Riemannian
geometry, geometry underlying Electromagnetism (see next section), geometry un-
derlying a unified model of Electromagnetism and Gravitation [13], and infinite
number of geometries, physical interpretation of which is not known at the present
time, as special cases. Because of this we call it General Geometry.

Let M be a manifold with coordinates xλ, λ = 1, ..., n. Consider a curve on this
manifold xλ(u). Vector field

V = ξλ ∂

∂xλ

has coordinates ξλ. In Riemannian geometry it is accepted that

dξλ

du
= −Γ′σ

λν(x)xν
uξ

λ, (9)

where Γ′σ
λν(x) are functions of x only.

To construct General Geometry we assume that

dξσ

du
= −Γσ

λ(x, xu)ξ
λ. (10)

Γσ
λ(x, xu) are general functions of x and xu. The next step is to consider x as a

function of two parameters u, υ and find lim ∆ξσ/∆u∆υ.
∆u→0

∆υ→0
In order to do that we

need

dξσ

du
= −Γσ

λξλ,
dξσ

dυ
= −Γ̃σ

λξλ,

Γσ
λ = Γσ

λ(x, xu, xυ), Γ̃σ
λ = Γ̃σ

λ(x, xu, xυ).

After simply calculations we arrive at

lim
∆ξσ

∆u∆υ
= Rσ

λξλ,

∆u→0

∆υ→0

where

Rσ
λ =

d

dυ
Γσ

λ − d

du
Γ̃σ

λ + Γ̃σ
ρΓρ

λ − Γσ
ρ Γ̃ρ

λ.

We call Rσ
λ curvature function.

Representing Γσ
λ(x, xu) as

Γσ
λ(x, xu) = F σ

λ (x) + Γσ
λν(x)xν

u + Γσ
λνµ(x)xν

ux
µ
u + ...

and considering each order in xu separately we define a set of new geometries. Only
the first order in xu is already known Riemannian geometry. It is easy to demonstrate
that. Let

Γσ
λ(x, xu, xυ) = Γσ

λν(x)xν
u, Γ̃σ

λ(x, xu, xυ) = Γσ
λν(x)xν

υ.

Curvature function for this case is

Rσ
λ = Rσ

λµν(x
ν
ux

µ
υ − xν

υx
µ
u),
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where
Rσ

λµν = ∂µΓσ
λν − ∂νΓ

σ
λµ + Γσ

ρµΓρ
λν − Γσ

ρνΓ
ρ
λµ

is the curvature tensor of Riemannian geometry. Hence, Riemannian geometry is a
particular case of General Geometry.

4 Geometry of Electromagnetism

In this section we consider the most simplest case of General Geometry

Γσ
λ(x, xu, xυ) = F σ

λ (x(u, υ)), Γ̃σ
λ(x, xu, xυ) = F σ

λ (x(u, υ)),

when Γσ
λ(x, xu) does not depend on xu. For this geometry we have

dξσ

du
= −F σ

λ (x)ξλ. (11)

Geometry defined by (11) has different properties than Riemannian geometry de-
fined by (9). We do not get into details here. We simply mention that in this
geometry the notion of parallel transport is not defined. As we show in the sequel
this makes it be underlying geometry for Electromagnetism. We call it Geometry
of Electromagnetism.

To obtain equations for geodesics we substitute ξλ in (11) by xλ
u and arrive at

d2xσ

du2
= −Fσλ(x)xλ

u.

This is exactly equation of motion for a charged particle moving in electromagnetic
field Aµ, if we choose

Fσλ =
q

cm
(∂σAλ − ∂λAσ),

where c is the velocity of the light. Then we find curvature function

Rσ
λ = Rσ

µλ(x
µ
υ − xµ

u),

where
Rσ

µλ = ∂µF σ
λ .

After summing by two of the three indices we obtain

Rλ = Rµ
µλ = ∂µF µ

λ .

Equations Rλ = 0 coincide with the Maxwell equations. We choose the length of a
curve as

ds =
√

ηµνdxµdxν +
q

cm
Aµdxµ

and indices are raised and lowered by ηµν because of (8). We can construct from Rλ

and Aλ a Lagrangian

R = AλRλ = ∂µ(AλF µ
λ ) − 1

2
FµλF

µλ.
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This coincides with the Lagrangian of electromagnetic field up to total derivative.
We see that as in the case of Riemannian geometry and gravitation we can find

equations and action functional for electromagnetic field from geometric character-
istics of Geometry of Electromagnetism. And equation for geodesics coincides with
the equation of motion for a particle interacting with electromagnetic field.

From the geometrical point of view a charged particle interacting with electro-
magnetic field can be considered as a free particle in the spacetime with the length

of a curve ds =
√

ηµνdxµdxν + q
cm

Aµdxµ and equation for geodesic

d2xσ

du2
=

q

cm
(∂λAσ − ∂σAλ)x

λ
u,

where Aµ is a solution to equation Rλ = 0.

5 Discussion

We note that the property of gravitational field that we can choose reference frame
where gravitational field is absent corresponds to the property of Riemannian ge-
ometry that we can perform change of variables so that the right hand side of (9)
will be equal to zero.

For electromagnetic field we cannot find a reference frame where it is absent. This
property demonstrates again that electromagnetism creates geometry different from
Riemannian and corresponds to property of (11) that we cannot eliminate its right
hand side by changing coordinates. Therefore, geometrization of electromagnetism
in geometries like Riemannian, where notion of parallel transport is defined must
fail.

Because of the above mentioned correspondences we see that Riemannian geom-
etry and Geometry of Electromagnetism are well suited for gravitation and electro-
magnetism respectively. It is worth expecting that we can construct geometries of
weak and strong interactions using correspondence between Physics and Mathemat-
ics. If we know underlying geometries for weak and strong interactions we can look
for a geometry containing all geometries as special cases. Then from its curvature
function we may construct an action unifying all fundamental interactions. In this
way we will be able to find electroweak model without Higgs fields and unify all
interactions.

As it follows from the results of previous section geometry underlying electro-
magnetism is defined by

dξσ

du
= − q

cm
(∂σAλ − ∂λAσ)ξλ.

And the length of a curve is ds =
√

ηµνdxµdxν + q
cm

Aµdxµ. We see that geometry
and the length of a curve depend on characteristics of interacting particles q, m and
sources for Aµ in contrast with the case of gravitation where geometry depends on
characteristics of sources for gravitational field only. Geometry of electromagnetism
gives us a new understanding of problem of geometry and matter with conclusion
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that geometry is determined by interaction. If there is no interaction geometry is
flat as it follows if we choose neutral particle (q = 0). In this case in the presence of
electromagnetic field Aµ,

dξσ

du
= 0.

We choose Γσ
λ(x, xu, xυ) = F σ

λ (x) + Γσ
λν(x)xν

u for geometry underlying unified
model of Electromagnetism and Gravitation [13]. In this case we construct action
from curvature function which is the sum of the action for Electromagnetic field in
spacetime with (3) and gravitational field gµν . This model predicts that electromag-
netic field is a source for gravitational field.

In conclusion we note that Kaluza -Klein theory gives Maxwell equations in weak
fields approximation only. For the full theory, without any approximations, it fails
to reproduce Maxwell equations.
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