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Abstract

We show that results obtained in paper Foundations of Physics 33, No. 7, 1107
(2003) are not correct.
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In a recent paper [1], R. G. Beil claims to have derived electromagnetism form the
so called Finsler geometry. However, this result contradicts one of the results of [2],
where it is shown that electromagnetism can not be geometrized in the framework of
Riemannian geometry. Because Finsler geometry is Riemannian geometry with Finsler
metric [3], electromagnetism cannot be geometrized in its framework too.

In the present paper we demonstrate that results obtained in [1] are not correct. In
section 4 of [1], R. G. Beil, after choosing matrix (52) gets connection of Riemannian
geometry (59). Then he imposes condition (60)-(61) on field B
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Using this condition he represents equation of motion
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in the form (62)

dv e 0B 0B

However, this result is not correct. The correct result is
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Of course, according to condition (60) the product of the second term in the bracket
of (62) with v* is equal to zero, but we can replace zero by f gf;‘ v* with an arbitrary
function f. R. G. Beil chose f = —1. This choice does not have any foundation. We
can choose f =1 with the same success .

Next, R. G. Beil compares (62) with equation of motion
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and claims that
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This claim is not correct even if we choose f = —1 as R. G. Beil did, because by

comparing (62) with (i) we obtain
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Basic solution to this equation cannot be (63) because v* are not independent due
to condition (60). In order to solve (ii) we have to count condition (60) which gives
F\ =%

After formula (63), R. G. Beil claims that F),) can be identified with electromagnetic

field. However, any tensor in the form of (63) can not be identified with electromagnetic
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field, because in order F),5 to be identified with electromagnetic field it must satisfy
Maxwell equations 0, F),y = 0.

From the physical point of view condition (60) is not acceptable for electromagnetic
field and charged particles, because it expresses charge of a particle as a function of
its velocity and electromagnetic potential. Also, this condition gives electromagnetic
potential as a function of inverse velocities, which is not acceptable as was pointed out
in [2].

We also would like to note that the so called Finsler geometry is not a geometry
different from Riemannian geometry. It is actually Riemannian geometry with the so
called Finsler metric (see for example [3]). R. G. Beil (as many authors) uses notions
of Finsler geometry and Finsler metric interchangeably.

As it is proven in [2], Riemannian geometry with any metric is not suitable for
geometrization of electromagnetism because there is no equivalence principle for elec-
tromagnetic interaction.

Finally, in sec. 5, R. G. Beil states that metric with explicit appearance of e/m
is introduced by Randers. However, this is not the case. In his work [4], Randers
considered Riemannian geometry with metric without any coefficients. Metric and
new geometries with explicit appearance of e/m have been introduced in [2](see also

[5],[6])-
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