
Application of ISO 10303-11 Schuler 1 of 16 

The Application of ISO 10303-11 (the EXPRESS 
Language) in Defining Data Models for Software Design 
and Implementation.  

Robert W. Schuler 
April 2001 

 

Abstract 
International Standards Organization Technical Committee 184, Sub-committee 4, 
Working Group 3 (ISO TC184/SC4/WG3) is responsible for the development of ISO 
10303 (informally known as the STandard for the Exchange of Product model data—
STEP) and has a formalized methodology for capturing domain knowledge in the form of 
an Application Protocol that uses the EXPRESS language to define data requirements for 
the exchange of product model data between dissimilar automation systems. In a very 
real sense, an Application Protocol is a Software Requirements Specification that can be 
realized by compiling EXPRESS language specifications into object repositories that can 
be interfaced by additional software. 
 
This paper provides an overview of the key EXPRESS constructs and shows how these 
key constructs are used within an ISO 10303 Application Protocol. This term paper was 
prepared for Computer Software Engineering course 648 (CSWE 648) " Software Design 
and Implementation" during the Spring Semester of 2001 at the University of Maryland 
University College (UMUC). 
 

Introduction 
As software systems continue to increase in complexity and scope, the need for more 
complex representations of real world objects also increases. Complex systems rely on 
complex data models to support them. Within the Engineering community, computers 
have become central to the design of complex systems and products like Aircraft, Ships, 
Automobiles, Process Plants, etc. In 1979 it became apparent that there was a need to 
exchange computer data describing complex systems between Computer Aided Design 
(CAD) tools running on disparate computer systems with different levels of 
sophistication and capability. The Initial Graphics Exchange Specification (IGES) was 
created to address this need and sanctioned by the American National Standards Institute 
(ANSI). (Kemmerer, 11) 
 
In 1984, a second effort called the Product Data Exchange Specification (PDES) was 
launched to leverage the early lessons from IGES and to produce a more robust product 
data modeling framework. This effort soon became an international standards effort 
which in 1994 yielded an initial collection of documents known formally as “ISO 10303  
Industrial automation system and integration – Product data representation and exchange” 
and informally as the STandard for the Exchange of Product model data (STEP). STEP 
follows a three-tier data modeling approach that captures knowledge in a model using 



Application of ISO 10303-11 Schuler 2 of 16 

domain terminology, maps this data onto a common set of EXPRESS resources, and uses 
an independent representation tier to store/share information that conforms to the models 
in the first two tiers. 
 
At the heart of this mapping effort is an Object-Oriented data modeling language, 
EXPRESS. The EXPRESS Language is formally defined in ISO 10303-11:1994(E) 
“Industrial automation systems and integration—Product data representation and 
exchange—Part 11: Description methods: The EXPRESS language reference manual”. 
The two most common representations of EXPRESS data schemas are lexical and a 
graphical. The lexical form is stored in ASCII files similar to many programming 
languages. The graphical form is called EXPRESS-G and consists of semantically 
defined symbols comprised primarily of boxes, lines and small circular arrowheads. 
Tools are available to allow developers to convert from one form to the other enabling 
both forms to remain synchronized during a project. 

Contents 
This section of the paper provides a “road map” to the rest of the paper. This paper 
consists of the following sections: 

• Abstract—Provides a brief overview of the paper’s subject. 
• Introduction—Provides some background and context useful for interpreting the 

paper. 
• Contents—This section. 
• EXPRESS—Defines the EXPRESS and EXPRESS-G languages in enough detail 

to understand the rest of the paper.  
• STEP—Provides an overview of the layout and document numbers of the STEP 

standard. Also describes STEP’s three tier modeling approach.  
• Application Protocols—Shows the general contents of an Application Protocol 

(AP) and explains the process used by ISO to define them. Also highlights the 
parallels between AP development and canonical software development lifecycle 
models (SDLC). 

• AP 227 Pipe Definition—Traces the definition/representation of a pipe in ISO 
10303-227:2001(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 227: Application protocol: Plant spatial 
configuration” through all three tiers of STEP. This example shows the use of 
EXPRESS in its proper context within ISO 10303. 

• Conclusions—Provides a summary of the paper and highlights some of the key 
ideas that can be concluded from the material presented here. 

• References—Points to the reference material used in preparing this paper. 

EXPRESS 

Overview 
ISO 10303-11:1994(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 11: Description methods: The EXPRESS language 
reference manual” “defines a language by which aspects of product data can be specified. 



Application of ISO 10303-11 Schuler 3 of 16 

The language is called EXPRESS.” (ISO 10303-11,1). The EXPRESS language reference 
manual defines two basic representations of the language with most of the emphasis 
being placed on defining the first as a lexical language. The second representation is a 
graphical form called EXPRESS-G and is defined in annex E of ISO 10303-11. This 
section of the paper provides a brief introduction to both representations of the EXPRESS 
language. 
 
The lexical form of EXPRESS is defined using a derivative of Wirth Syntax Notation 
(WSN). (ISO 10303-11,7). The outermost syntactical element in an EXPRESS schema is 
declared using the SCHEMA keyword. The WSN for SCHEMA is defined on page 56 of the 
specification and is repeated here for reference: 
 
281 schema_decl = SCHEMA schema_id ‘;’ schema_body END_SCHEMA ‘;’ .
280 schema_body = { interface_specification } [constant_decl ]

{declaration | rule_decl} .
228 interface_specification = reference_clause | use_clause .
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl .
 
The complete annotated listing of WSN for the EXPRESS language is contained in 
annex A of ISO 10303-11. For the purposes of this paper, it is sufficient to understand 
that the fist line of the listing above requires that an EXPRESS schema start with a 
syntactical statement similar to: 
 
SCHEMA plant_spatial_configuration;
 
and ends with a syntactical statement similar to: 
 
END_SCHEMA; -- plant_spatial_configuration
 
In this example, the schema_id is “plant_spatial_configuration”. Notice that both of the 
semicolons in the previous two lines are quoted literals on line 182 in the previous listing 
and that the key words SCHEMA and END_SCHEMA are also listed directly. The double 
dashed comment is also declared in WSN within ISO 10303 and is similar to the ‘#’ 
symbol in UNIX shell scripts. That is, from (and including) the double dash to the next 
carriage return is a comment. 
 
In addition to the SCHEMA keyword, we will also consider the following keywords in the 
next few sections of this paper: USE FROM, TYPE, ENTITY, WHERE, RULE, and FUNCTION. 
Except for USE FROM and WHERE, all of these keywords define a block structure within 
an EXPRESS file. The block starts with the keyword and ends with the keyword repeated 
with the prefix “END_”. For example, TYPE and END_TYPE demark a block of an 
EXPRESS file that defines a data type.  
 
The general skeleton of an EXPRESS Schema is listed below. The following sections of 
the paper present each syntactical structure in more detail. 
 
SCHEMA schema_name;
USE FROM other_schema_name (entity_name, entity_name2, . . .);



Application of ISO 10303-11 Schuler 4 of 16 

o o o
TYPE my_type = REAL;

WHERE
Some_assertion;

END_TYPE;
o o o
ENTITY entity_name;

Attribute_1 : attribute_type;
WHERE
Rule_id : some_assertion;

END_ENTITY;
o o o
RULE rule_name FOR (global_language_assignment);

WHERE
SIZEOF(global_language_assignment) <= 1;

END_RULE;
o o o
FUNCTION function_name(variable_name: variable_type): return_type;

Function_body;
END_FUNCTION;
END_SCHEMA;

SCHEMA 
The SCHEMA keyword surrounds all other syntax in an EXPRESS file. Each schema has a 
name that is used to uniquely identify the schema being defined. It is common to refer to 
the EXPRESS file by the name of the schema regardless of the actual filename in a 
computer’s operating system. Within STEP there are two general kinds of schemas: 
short-form and long-form. The distinction is based on the USE FROM keyword and is 
explained later. 

EXAMPLE OF SCHEMA 
SCHEMA plant_spatial_configuration;
o o o
END_SCHEMA;

EXPRESS-G REPRESENTATION OF SCHEMA 
There is no graphical symbol for a schema. In a sense the physical page represents the 
schema because it collects all the EXPRESS-G symbols that define the schema. 

USE FROM 
One schema can copy all or part of another schema’s contents in a manner similar to the 
“#include” compiler directive in the C language. USE FROM does not have a matching 
“END_USE” keyword. It is simply terminated at the next semi-colon. 
 
In STEP, schemas that contain USE FROM statements are called short-form schemas. 
Typically, an Application Protocol contains a short-form schema that uses syntax from 
the Generic Integrated Resource parts of the STEP standard (Generic Integrated 
Resources are explained later in this paper). Each Application Protocol also has an 
official long-form schema in which all of the USE FROMs have been resolved. In other 
words, a long-form schema has copied the necessary syntax directly into itself and is a 
complete and self-contained definition. 



Application of ISO 10303-11 Schuler 5 of 16 

EXAMPLE OF USE FROM 
USE FROM MYSCHEMA (ENTITY_3 AS myEntity_3);
 
This listing says that the current schema has an ENTITY named “myEntity_3” and that the 
definition for this entity is to be copied from (used from) the definition of the ENTITY 
named “ENTITY_3” in the SCHEMA named “MYSCHEMA”. 

EXPRESS-G REPRESENTATION OF USE FROM 
As shown in Figure 1 below, the USE FROM is represented graphically as a box with an 
oval inside. The text in the oval indicates the name of the schema being used and the 
name of the entity being copied. The text below the oval indicates the alias for the used 
entity in the current schema. The EXPRESS-G in Figure 1 says the same thing as the 
previous EXPRESS listing. 
 

 
Figure 1 EXPRESS-G for USE FROM 

TYPE 
One of the more powerful aspects of the EXPRESS language is the flexibility of user-
defined types. In addition to the “built-in” types of: String, Number, Integer, Real, 
Boolean, Logical, and Binary, a data modeler can define data types that add semantic 
meaning to attributes within a schema. 
 
For example, a data modeler can define a type “name” to hold a string value. This allows 
the data model to impose constraints on the strings that are names. Simple constraints can 
be imposed using the keyword WHERE as explained later in the paper. 
 
In addition to types that resolve to individual literals, EXPRESS also allows data 
modelers to define enumerations and a special data type known as a “SELECT TYPE”. A 
SELECT TYPE defines a compound data type that may assume any legal value of any of 
its constituents. 

EXAMPLE OF TYPE 
TYPE DEFINED_1 = STRING;

END_TYPE;

TYPE DEFINED_2 = INTEGER;
END_TYPE;

TYPE SELECT_1 = SELECT
(DEFINED_1,
DEFINED_2,
ENUMERATION_1);

END_TYPE;



Application of ISO 10303-11 Schuler 6 of 16 

TYPE ENUMERATION_1 = ENUMERATION OF
(ONE,
TWO,
THREE);

END_TYPE;
 
This listing shows four user-defined data types named “DEFINED_1”, “DEFINED_2”, 
“SELECT_1”, and “ENUMERATION_1” respectively. DEFINED_1 and DEFINED_2 
are simple types in that they simply add semantics to a string and an integer. In this case 
the added semantics are rather abstract. ENUMERATION_1 is an enumeration data type. 
As shown in the listing, the legal values for ENUMERATION_1 are: “ONE”, “TWO”, or 
“THREE”. SELECT_1 is a select type and defines a data type whose legal values include 
the legal values of any of the other three user-defined data types described so far. 

EXPRESS-G REPRESENTATION OF TYPE 
Figure 2 below shows the EXPRESS-G representation of the previous EXPRESS listing. 
In all cases, TYPEs are represented as boxes with text inside. Native EXPRESS types (e.g. 
STRING and INTEGER) are represented as solid-lined boxes with a solid line on the right 
side. User-defined types are represented as dash-lined boxes. Select types (e.g. 
SELECT_1) are represented by dash-lined boxes with a dashed line on the left side of the 
box. Enumerations (e.g. ENUMERATION_1) are represented as dash-lined boxes with a 
dashed line on the right side. The values allowed for the enumeration are not shown in 
EXPRESS-G. 
 
Lines are used to show relationships between the boxes. The circle on the end of the line 
can be thought of as an arrowhead. For example, DEFINED_1 is a STRING because 
there is a line pointing from DEFINED_1 to STRING. 

 
Figure 2 EXPRESS-G for TYPE 

ENTITY 
ENTITYs are the heart of an EXPRESS schema. They collect attributes and constraints 
together in a manner similar to an ENTITY in IDEF1x or a CLASS in C++. EXPRESS 
supports single and multiple inheritance such that a child entity inherits all of its parents’ 



Application of ISO 10303-11 Schuler 7 of 16 

attributes and constraints. Furthermore, an ENTITY may serve as another ENTITY’s 
attribute, thus expanding the TYPE construct described above. 

EXAMPLE OF ENTITY 
ENTITY ENTITY_1;

ATTRIBUTE_1 : INTEGER;
ATTRIBUTE_2 : STRING;
ATTRIBUTE_3 : ENTITY_2;

END_ENTITY;

ENTITY ENTITY_2;
END_ENTITY;

ENTITY ENTITY_3
SUBTYPE OF(ENTITY_1);

END_ENTITY;
 
This listing shows the definition of three ENTITYs named “ENTITY_1”, “ENTITY_2”, 
and “ENTITY_3” respectively. ENTITY_1 has three attributes, one of which is another 
ENTITY. ENTITY_3 is a subtype of ENTITY_1. This means that an instance of 
ENTITY_3 will also have three attributes defined because ENTITY_3 inherits all of 
ENTITY_1’s attributes. 

EXPRESS-G REPRESENTATION OF ENTITY 
Figure 3 shows the EXPRESS-G representation of the previous EXPRESS listing. Each 
ENTITY is represented as a box with solid borders that contains text. The text is the 
ENTITY’s name. The thin lines with circles show ENTITY_1’s attribution. These thin 
lines represent the has a relationship. The thick line between ENTITY_1 and ENTITY_3 
shows inheritance. This thick line represents the is a relationship. 

 
Figure 3 EXPRESS-G for ENTITY 



Application of ISO 10303-11 Schuler 8 of 16 

WHERE 
Constraints are placed on the sets of legal values for ENTITY attributes by using WHERE. 
The constraints applied using WHERE are commonly referred to as “where rules” which are 
different in scope from the global RULEs as discussed later in the paper. 
 
Where rules may be applied to ENTITYs or TYPEs. In both cases, the WHERE clause 
appears after the primary part of the declaration and before the “END_”. RULES may also 
be applied to a whole collection of entity instances as described in the next section of the 
paper. 

EXAMPLES OF WHERE 
TYPE day_in_month_number = INTEGER;
WHERE

wr1: ((1 <= SELF) AND (SELF <= 31));
END_TYPE; -- day_in_month_number

The listing above shows how a where rule is used to require that a valid 
day_in_month_number be an integer between 1 and 31. This constraint applies to all 
ENTITYs that use this as a data type for an attribute. 

ENTITY offset_curve_2d
SUBTYPE OF (curve);

basis_curve : curve;
distance : length_measure;
self_intersect : LOGICAL;

WHERE
wr1: (basis_curve.dim = 2);

END_ENTITY; -- offset_curve_2d
 
The where rule in the above listing is a little more interesting. It says that the attribute 
named “basis_curve” is of type “curve”, which is an ENTITY; the curve has an attribute 
named “dim”; and a valid instance of offset_curve_2d must have a value of 2 for dim. 

EXPRESS-G REPRESENTATION OF WHERE 
There is no graphical symbol for WHERE. 

RULE 
EXPRESS allows constraints to be applied to whole collections of ENTITYs as well as to 
individual TYPEs and ENTITYs. These constraints are captured as global rules using the 
RULE keyword. 

EXAMPLE OF RULE 
RULE application_context_requires_ap_definition FOR
(application_context, application_protocol_definition);

WHERE
wr1: (SIZEOF(QUERY ( ac <* application_context | (NOT (SIZEOF(

QUERY ( apd <* application_protocol_definition | ((ac :=: apd.
application) AND (apd.
application_interpreted_model_schema_name =
'plant_spatial_configuration')) )) = 1)) )) = 0);



Application of ISO 10303-11 Schuler 9 of 16 

END_RULE; -- application_context_requires_ap_definition
 
The listing above collects a single where rule into a global RULE. This is an example of 
how ugly constraint specification can be in the EXPRESS language. The RULE says that 
“For each instance of application_context, there shall be exactly one instance of 
application_protocol_definition that references the instance of application_context as its 
application with a value of ‘plant_spatial_configuration’ as its application_interpreted-
_model_schema_name.”(ISO 10303-AP227,880). 

EXPRESS-G REPRESENTATION OF RULE 
There is no graphical symbol for RULE. 

FUNCTION 
FUNCTIONs allow complex constraints within where rules to be split out from the where 
rules in a manner similar to splitting out functions as SUBROUTINES within the 
FORTRAN language. Each function has a signature that defines a return type as well as a 
list of input types. 

EXAMPLE OF FUNCTION 
FUNCTION acyclic_curve_replica(

rep: curve_replica;
parent: curve

): BOOLEAN;
IF NOT ('PLANT_SPATIAL_CONFIGURATION.CURVE_REPLICA' IN

TYPEOF(parent))
THEN

RETURN(TRUE);
END_IF;
IF parent :=: rep THEN

RETURN(FALSE);
ELSE

RETURN(acyclic_curve_replica(rep,parent\curve_replica.parent_curve));
END_IF;

END_FUNCTION; -- acyclic_curve_replica

This function is named “acyclic_curve_replica”, takes two input parameters (a 
curve_replica and a curve) and returns a BOOLEAN value (TRUE or FALSE). “The 
acyclic_curve_replica Boolean function is a recursive function which determines 
whether, or not, a given curve_replica participates in its own definition. The function 
returns FALSE if the curve_replica refers to itself, directly or indirectly, in its own 
definition.” (ISO 10303-42,96). 

EXPRESS-G REPRESENTATION OF FUNCTION 
There is no graphical symbol for FUNCTION. 



Application of ISO 10303-11 Schuler 10 of 16 

STEP 

Overview 
The primary purpose of ISO 10303 is to provide a series of Application Protocols that 
facilitate the exchange of data between dissimilar automation systems. Each Application 
Protocol maps domain terminology and data constructs onto a common ISO 10303 
framework of integrated generic resources.  

Document Numbering 
ISO 10303 is organized as a series of parts, each published separately. The structure of 
this international standard is described in ISO 10303-1. The numbering of the parts of 
this International Standard reflects its structure: 
— Parts 11 to 14 specify the description methods; 
— Parts 21 to 29 specify the implementation methods; 
— Parts 31 to 35 specify the conformance testing methodology and framework; 
— Parts 41 to 50 specify the integrated generic resources; 
— Parts 101 to 107 specify the integrated application resources; 
— Parts 201 to 237 specify the application protocols; 
— Parts 301 to 337 specify the abstract test suites; 
— Parts 501 to 520 specify the application interpreted constructs. 
A complete list of parts of ISO 10303 is available from the Internet: 
http://www.nist.gov/sc4/editing/step/titles/ 
 
Application Protocols are the 200 series part of the international standard. The generic 
integrated resources are numbered from 41 to 50 and contain EXPRESS schemas. Each 
Application Protocol uses (USE FROM) combinations of these generic integrated resource 
schemas to form a short-form EXPRESS schema that meets the data exchange needs for a 
domain. 

Three Tier Architecture 
The STEP framework follows a three-tier approach to data exchange. The first tier 
captures a data model from the applications domain using a data modeling format with 
which the domain experts feel comfortable. Many Application Protocols use EXPRESS 
and EXPRESS-G for this first tier modeling effort. Others use IDEF1x and there is 
currently an initiative to use the Unified Modeling Language (UML) for this tier. 
 
The second tier maps all of the data requirements and constraints from the first tier onto a 
set of generic integrated resources. These generic integrated resources are defined using 
the EXPRESS language and every Application Protocol is mapped onto the same set of 
generic integrated resources. In theory, similar data requirements from different domains 
should map to the same EXPRESS constructs in the generic integrated resources. In 
practice this ideal has not yet been proven. 
 



Application of ISO 10303-11 Schuler 11 of 16 

The third tier is defined by parts 21 through 29 and defines the actual patterns of 
computer symbols that get exchanged or shared. ISO 10303-21:1994, “Industrial 
automation systems and integration – Product data representation and exchange – Part 21: 
Clear text encoding of exchange structure” defines a physical file format that allows data 
repositories conforming to EXPRESS schemas to be exchanged as ASCII files. Part 22 
defines a Standard data access interface specification (SDAI) that allows CORBA-like 
sharing of data repositories conforming to EXPRESS schemas across networks and 
between applications. 

Application Protocols (APs) 
STEP is made up of many parts and its primary value stems from Application Protocols 
(Parts numbered from 200 to 236). Application Protocols map domain specific data 
models into EXPRESS schemas based on STEP’s generic integrated resources. Data is 
shared or exchanged between systems by invoking implementation methods specific to 
data conforming to EXPRESS schemas. 

AP Table of Contents 
Just as every EXPRESS schema follows the generic skeleton described above, every 
STEP Application Protocol (AP) follows the same basic format as outlined in the 
following skeletal Table of Contents: 

Introduction
1 Scope
2 Normative references
3 Terms, definitions, and abbreviations
4 Information requirements

4.1 Units of functionality
4.2 Application objects
4.3 Application assertions

5 Application interpreted model
5.1 Mapping table
5.2 AIM EXPRESS short listing

6 Conformance requirements
Annex A (normative) AIM EXPRESS expanded listing
o o o
Annex F (informative) Application activity model

Application Protocol Development 
Application Protocol development follows the basic outline of the Table of Contents 
listed above. That is, first the information requirements are gathered and recorded in an 
application reference model (ARM)—clause 4. Next these requirements are mapped into 
an application interpreted model (AIM)—clause 5. Finally, the AIM EXPRESS short 
listing is “compiled” into the AIM EXPRESS expanded listing (or long-form schema) in 
Annex A. 
 
Actually there is a step in AP development that precedes the ARM. Annex F of an 
Application Protocol contains an application activity model (AAM), which is a SADT (or 
IDEF0) decomposition of the domain being supported. The generation of this model 
usually precedes the development of the ARM. Keeping this artifact in an annex of the 
AP is useful for people who need to get a quick sense of what parts of the domain are 
being modeled. 



Application of ISO 10303-11 Schuler 12 of 16 

 
The application objects defined in the ARM are divided into Units of Functionality 
(UoFs). This helps trace data requirements from the ARM to the AIM and is necessary 
because most APs have more than 250 application objects. 

Parallel between AP Development and the SDLC 
The process of developing an AP (AAM�ARM�AIM�Short-form EXPRESS�Long-
form EXPRESS) follows that of a software development lifecycle model (SDLC) that 
“defines before design” and “designs before building”. Unlike a software project, 
however, the product of Application Protocol Development is a data standard not a 
functioning piece of software. The data standard may itself become a requirement in 
other software development projects. 
 
It is interesting to note that the EXPRESS language allows for a “compilation” of a short-
form EXPRESS model into a long-form EXPRESS model. Furthermore, there are several 
compilers that translate the long-form EXPRESS into a collection of C++ or Java classes, 
which can then be compiled as part of a larger software product. The tracking of domain 
requirements from the ARM to the Long-form EXPRESS entities is very similar to the 
tracking of user requirements to software functionality in a typical software development 
project. 
 
By using STEP standards as part of the requirements for new software development 
efforts, organizations (both developers and customers) can leverage very large data 
modeling efforts for the cost of purchasing the ISO Standards and the cost of learning 
how to read the ISO standards. 

AP 227 Pipe Definition 
This section of the paper traces the definition/representation of a pipe in ISO 10303-
227:2001(E) “Industrial automation systems and integration—Product data representation 
and exchange—Part 227: Application protocol: Plant spatial configuration” through all 
three tiers of STEP: Application Reference Model, Application Interpreted Model, and 
Physical File. 

Tier 1—Application Reference Model (ARM) 
At the application reference model (ARM) tier of the STEP, a pipe is defined in Clause 3, 
is assigned to a Unit of Functionality in Clause 4.1, and is defined as an object in Clause 
4.2 within AP 227. Specifically, Clause 3.3.25 defines a pipe as, “a plant item (see 
3.3.32) that is hollow and approximately cylindrical, that may have a constant cross-
section along its extent, and that conveys fluid, vapour, or particulate material (see 
3.3.22)”, and notes that, “Heating, ventilation, and air conditioning (HVAC) duct that has 
a rectangular cross section is not a pipe.” (ISO 10303-227, 11). 
 
Clause 4.1.5 defines the piping_component_characterization Unit of Functionality (UoF). 
“The piping_component_characterization UoF describes the individual elements of the 
Piping_system within a Plant. Piping_component objects include pipes, fittings, valves, 
in-line equipment, and othervelements that regulate, control, or convey Piping_system 



Application of ISO 10303-11 Schuler 13 of 16 

fluids.” (ISO 10303-227, 22) Clause 4.1.5 also assigns the ARM object Pipe to the 
piping_component_characterization UoF. This is significant, because locating the pipe 
object in the mapping table in clause 5 requires knowing to which UoF it belongs. 
 
Finally, clause 4.2.154 defines the Pipe object. “A Pipe is a type of Piping_component 
(see 4.2.157) that is a hollow cylindrical conveyance, with a constant radius for the cross-
sectional circle, for directing fluid, vapour, or particulate flow. Each Pipe may be one of 
the following: a Mitre_bend_pipe (see 4.2.142), a Nipple (see 4.2.143), a Straight_pipe 
(see 4.2.232), or a Swept_bend_pipe (see 4.2.248).” This clause also notes that, “In most 
cases, the Pipe will conform to the dimensional requirements for nominal pipe size as 
tabulated in national standards such as American National Standards Institute (ANSI) 
B36.10 and ANSI B36.19.”, and that, “This definition does not exclude tubing and flex 
hoses from consideration as Pipe.” (ISO 10303-227, 95) 

Tier 2—Application Interpreted Model (AIM) 
Figure 4 shows the mapping table entry that maps the Pipe ARM object onto both a 
piping_component_definition and a piping_component_class in the AIM. This mapping 
is reflected in the two left-most columns in the table. The right-most column is called the 
“Reference path” and uses a rather cryptic (but entirely ASCII) syntax to show all of the 
STEP integrated resources that are required to represent a pipe. If you look closely about 
3/4 of the way down the reference path you will see that the “name” attribute of the 
piping_component_class is required to equal the literal ‘pipe’. 

 
Figure 4 Mapping Table Entry for PIPE 



Application of ISO 10303-11 Schuler 14 of 16 

 
Figure 5 shows an EXPRESS-G representation of the ENTITYs required by the reference 
path. The key entities to review are the piping_component_definition, which inherits all 
of the attributes from product_definition, and piping_component_class, which inherits 
attributes from both group and characterized object. The full long-form EXPRESS 
schema from which these ENTITYs where copied was available at the time this paper was 
written at the following URL: http://www.nist.gov/sc4/step/parts/part227/is/wg3n904.exp 
 
NOTE: The two literal values ‘pipe’ and ‘plant item’ from the “Reference path” in 
Figure 4 are annotated on Figure 5. 
 

 
Figure 5 EXPRESS-G Sub-Schema for a Pipe 



Application of ISO 10303-11 Schuler 15 of 16 

Tier 3—Physical File 
A full discussion of the mapping of data from instances of an EXPRESS schema into a 
physical file is beyond the scope of this paper. This section of the paper is only intended 
to expose the reader to a glimpse of the third tier of the STEP framework. It is enough to 
note here that ISO 10303-21:1994(E) “Industrial automation systems and integration—
Product data representation and exchange—Part 21: Implementation methods: Clear text 
encoding of the exchange structure” defines a mechanism for doing so. The following 
listing is the result of compiling the long-form schema (wg3n904.exp) mentioned in the 
Tier 2 discussion using a tool called Ecco (http://ecco.pdtec.de) to generate a simple 
repository interface application, and then using this application to create the necessary 
entity instances. The resulting entries in the physical file appear as follows: 
 
#0=PIPING_COMPONENT_DEFINITION('dummy1', 'test entity', #3, #7);
#1=PRODUCT_CONTEXT('plant item', #4, 'test');
#2=PRODUCT('test product', 'product 1', 'test product', ());
#3=PRODUCT_DEFINITION_FORMATION('3', 'test

product_definition_formation', #2);
#4=APPLICATION_CONTEXT('MSWE646 Demonstration');
#5=APPLIED_CLASSIFICATION_ASSIGNMENT(#6, $, (#2));
#6=PIPING_COMPONENT_CLASS('pipe', 'test pipe', $, $);
#7=PRODUCT_DEFINITION_CONTEXT('pipe_thang', #4, 'before concept'); 

Conclusions 
This paper has provided a high-level introduction to the EXPRESS data modeling 
language and has provided some insight into the application of this language to 
developing Application Protocols within the STEP (ISO 10303) framework.  
 
By using the EXPRESS language, ISO 10303 Application Protocols meet several of the 
primary tenants of good software specification. Specifically they are traceable and traced 
and they are precise. Whether they are also clear and unambiguous is a matter for debate 
and is outside the scope of this paper. EXPRESS offers an advantage over other 
languages such as IDEF and UML in that it able to be machine processed and the 
relationship between its graphical and lexical forms is standardized. 
 
The USE FROM mechanism is another advantage of EXPRESS. This mechanism allows 
patterns of data models to be shared in a standardized manner. STEP’s use/abuse of USE
FROM in its Generic Integrated Resources has resulted in the complexity reflected in 
Figure 5. Specifically, the STEP methodology led to the need to instantiate eight ENTITYs 
just to say “there is a pipe.” Furthermore, to understand the meaning of these entities 
requires recognizing a patter that consists of the fourteen ENTITYs shown in Figure 5. 
 
The process of mapping domain information into data structures is an essential part of 
any software development effort whether it follows a formal development lifecycle 
model or not. Software development efforts targeted towards the design of complex 
systems (like process plants, automobiles, or ships) can gain a great deal of leverage by 
incorporating STEP Application Protocols. This leverage is amplified by the fact that 
long-form EXPRESS schemas can be directly compiled into data repositories with 
application programming interfaces (APIs). As more applications attempt to share data 



Application of ISO 10303-11 Schuler 16 of 16 

over the Internet, and as the complexity of the data being shared continues to increase 
languages like EXPRESS and frameworks like STEP will become even more essential. 
 
 

References 
ISO 10303-1:1994(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 1: Overview and fundamental principles” 
 
ISO 10303-11:1994(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 11: Description methods: The EXPRESS language 
reference manual” 
 
ISO 10303-21:1994(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 21: Implementation methods: Clear text encoding of 
the exchange structure” 
 
ISO 10303-42:1994(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 42: Integrated generic resources: Geometric and 
topological representation” 
 
ISO 10303-227:2001(E) “Industrial automation systems and integration—Product data 
representation and exchange—Part 227: Application protocol: Plant spatial 
configuration” 
 
Kemmerer, Sharon J. editor, (1999), “STEP The Grand Experience”, NIST Special 
Publication 939, National Institute of Standards and Technology, CODEN: NSPUE2. 
 


