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Chapter 1

Introduction

First let me try to state in clear terms exactly what [Godel] proved, since some

of us may have sort of a fuzzy idea of his proof [of Second Incompleteness

Theorem], or have heard it from someone with a fuzzy idea of the proof ...

Charles Kendrick

Looking for a (I∆0 + Exp)-derivable Π1-formula which is not provable in

I∆0, Paris and Wilkie wrote in [11], 1981: “Presumably I∆0 6` CFCon(I∆0)

although we do not know this at present” in which CFCon is “Cut-Free Con-

sistency”.

A more general problem was mentioned later in 1985 by Pudlak, as he puts

in [12]: “we know only that T 6` HCon(T ) for T containing at least I∆0+Exp,

for weaker theories it is an open problem”.
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If the theory under consideration, let us call it T , is too weak, then HCon(T )

is just a complicated formula, meaningless in T , i.e. T can not show its (even

elementary) properties, c.f. [4].

But for the I∆0 case, things are different: in [6] the authors have developed

coding of sets and sequences in I∆0 and have formalized syntatical concepts

like terms, proof, etc such that I∆0 can prove some of their primitive properties,

see also [17]. It follows that I∆0 can recognize Herbrand Consistency (HCon)

so a question like “I∆0 `? HCon(I∆0)” could be of interest.

Adamowicz showed I∆0 + Ω1 6` HCon(I∆0 + Ω1) in an unpublished paper

(a preprint, [3]) and later showed I∆0 + Ω2 6` HCon(I∆0 + Ω2) with two

different methods, one with Zbierski (see [1] and [2].)

Paris and Wilkie’s conjecture has been proved by Willard, who has shown

in [20] that Tableaux Consistency of I∆0 is not provable in I∆0. In an earlier

paper [19], Willard showed that the Second Incompleteness Theorem for an

axiom system Q+V, where V is a fixed Π1 sentence. Willard pointed out also

in [19] that this generalization of the Second Incompleteness Theorem holds

for all finite extensions of Q+V and very broad classes of infinite extensions

of it, as well. I∆0 + V turns out to fall into the last category and has the

property that V is a theorem of I∆0. This means that I∆0 +V is an alternate

axiomatization of I∆0 (this point is not stated in [19] explicitly). The sentence

V there has a complicated structure.
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In this thesis we show a (kind of) weak Σ1-completeness of Herbrand Con-

sistency of (certain) weak arithmetics. As easy corollaries, these theorems

imply Godel’s Second Incompleteness Theorem for Herbrand Consistency of

those arithmetics. In particular it is shown that I∆0 does not prove Her-

brand Consistency of an axiomatization of I∆0. Our results for Cut-Free

Herbrand Consistency are roughly analogous to Willard’s theorem from [20]

about I∆0’s cut-free Incompleteness properties, except that one aspect of our

formalism requires a certain re-axiomization of I∆0, called later I∆0. Our re-

axiomatization of I∆0 is simpler than Willard’s I∆0 + V from [19]. Our work

was done subsequent to [19], but it was done in parallel (and independently)

of the additional theorems now appearing in Willard’s second and more recent

paper [20].

Overall, our results answer the problem mentioned by Pudlak for some the-

ories T . For (some) other theories, it is answered by Adamowicz and Zbierski

[1], Adamowicz [2], [3], and Willard [18], [19], [20].

In Chapter 2 we introduce the basic definitions which will be used through-

out. They are formalized afterward and two important examples illustrate the

ideas and their motivations. Importance of the first example is that Adamow-

icz and Zbierski’s question 2 in [1] can be answered by it, and the second

example illustrates a useful technique used in Chapter 4.

In the third Chapter a weak form of formalized Σ1-completeness theorem is
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proved for Herbrand Consistency (of an axiomatization) of I∆0, by which the

theorem I∆0 6` HCon(I∆0), where I∆0 is a certain axiomatization of I∆0,

can be shown.

In Chapter 41 we show T 6` HCon(T ) with the usual axiomatization of T

where the theory T is properly between I∆0 and I∆0+Ω1 (denoted by I∆0+Ω

introduced in Chapter 2.)

And finally in Chapter 5, relations of our definitions are compared with

earlier notions introduced by Adamowicz. And Adamowicz’s model-theoretic

proof of I∆0 + Ω2 6` HCon(I∆0 + Ω2) in [2] is generalized for I∆0 + Ω1

(according to our definitions) as well.

So, summing up, we show:

Chapter 3, I∆0 does not prove Herbrand Consistency of a certain axioma-

tization of I∆0.

Chapter 4, Insisting on having “usual axiomatization2 of arithmetic” it is

shown that I∆0 + Ω, a proper subtheory of I∆0 + Ω1, does not prove its

own Herbrand Consistency.

1One of the ideas of this chapter (constructing a model by closing the set S0
i under the

Skolem functions of α) was also obtained independently by Adamowicz.
2Usual Axiomatization of arithmetic (in the literature) is taken to be the axioms of PA−

or Q plus the induction axioms (in the case of bounded arithmetic, induction axioms for

bounded formulae are taken.)
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Chapter 5, I∆0 + Ω1 does not prove its own Herbrand Consistency (again

its usual axiomatization is taken.) Here a different proof (originated by

Adamowicz for I∆0+Ω2, which is not based on diagonalization) is given.

A part of this thesis was presented as a talk in Logic Colloquium 2001,

Vienna ([14]) also in the Student Session of ESSLLI 2001, Helsinki ([13]).

Key Words: Bounded Induction, Skolem Functions, Herbrand’s Theorem,

Godel’s Second Incompleteness Theorem.

2000 Mathematics Subject Classification: Primary 03F30, 03F25;

Secondary 03F07, 03F20, 03F40, 03H15



Chapter 2

Basic Definitions and

Formalizations

Although [Godel’s Second Incompleteness] theorem can be stated and proved

in a rigorously mathematical way, what it seems to say is that rational

thought can never penetrate to the final ultimate truth · · ·

Rucker, Infinity and the Mind

2.1 Basic Definitions

Consider a formula θ in the prenex normal form

∀x1∃y1 · · · ∀xm∃ymθ(x1, y1, · · · , xm, ym)

6



CHAPTER 2. BASIC DEFINITIONS AND FORMALIZATIONS 7

and denote its Skolem functions by f θ
1 , · · · , f θ

m; so its Skolemized form by

definition is

∀x1 · · · ∀xmθ(x1, f θ
1 (x1), · · · , xm, f θ

m(x1, . . . , xm)).

For a sequence of terms σ = 〈t1, · · · , tm〉, the Skolem instance Sk(θ, σ) is

θ(t1, f θ
1 (t1), · · · , tm, f θ

m(t1, . . . , tm)).

Herbrands’s Theorem states that a theory is consistent if and only if every

finite set of its Skolem instances is propositionally satisfiable (see e.g. [9] and

[21], also [5] is a good source for proof-theoretical view of this theorem.)

Let Λ be a set of Skolem terms of a theory T (i.e. constructed from the Skolem

function symbols of T ) available Skolem instances of θ in Λ are Sk(θ, σ)

for all sequence of terms σ = 〈t1, · · · , tm〉 such that both {t1, · · · , tm} and

{f θ
1 (t1), · · · , f θ

m(t1, . . . , tm)} are subsets of Λ.

Any function, p, whose domain is a set of atomic formulae and its range

is {0, 1} is called an evaluation, if it preserves the equality (for all a, b and

atomic formulae ϕ, p[a = b] = 1 implies p[ϕ(a)] = p[ϕ(b)]) and satisfies the

equality axioms (p[a = a] = 1 for all a.) For a set of terms Λ, an evaluation

on Λ is an evaluation whose domain is the set of all atomic formulae with

terms from Λ (i.e. the variables are substituted by the terms from Λ.) An

evaluation p satisfies an atomic formula ϕ if p[ϕ] = 1. This definition can be



CHAPTER 2. BASIC DEFINITIONS AND FORMALIZATIONS 8

extended to all open (quantifier-less) formulae in a unique way.

In this thesis, we will consider only evaluations which are defined on (the

set of atomic formulae constructed from) a given set of terms.

Evaluation p on Λ is an T -evaluation for a theory T , if it satisfies all the

available Skolem instances of T in Λ.

When Λ is the set of all Skolem terms of T , any T -evaluation on Λ determines

a Herbrand model of T (see [9].)

The following Example illustrates the above definitions.

Example 1. Take the language L1 = {F, G, R, S, c} in which F,G are

2-ary predicates, R,S are 1-ary predicates and c is a constant symbol. Let E

be the theory axiomatized by

E1. ∀x∃y(F (x, y))

E2. ∀x∃y(G(x, y))

E3. ∀x, y(F (x, y) → R(x) ∨ S(y))

E4. ∀x(G(x, y) → ¬S(x)).

Fix Skolem function symbol f for E1 and g for E2. So their Skolemized

forms are:

E1′. ∀xF (x, f(x))

E2′. ∀xG(x, g(x))
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For Λ1 = {f(c), g(f(c)), f(g(c))}, the formulae G(f(c), g(f(c))) and F (f(c), g(f(c))) →

R(f(c)) ∨ S(g(f(c))) are available Skolem instances of E2 and E3 in Λ1 but

F (c, f(c)) and F (f(c), f(f(c))) are not.

The evaluation q on Λ1 defined by its true formulae: {φ | q[φ] = 1} =

{G(f(c), g(f(c)))} is an E-evaluation, while r defined by its true formulae

{φ | r[φ] = 1} = {F (f(c), f(g(c)))} is not.

Let ϕ = ∀xR(x). We present a Herbrand proof of E ` ϕ:

Without loss of generality we can assume c is the Skolem constant symbol

for ¬ϕ = ∃x¬R(x), so its Skolemized form is ¬R(c). We shall find a set of

terms such that there is no (E + ¬ϕ)-evaluation on it.

Set Λ = {c, f(c), g(f(c))}. If p is an (E + ¬ϕ)-evaluation on Λ then

p[¬R(c)] = 1; on the other hand p[F (c, f(c))] = 1 by E1′, so p[R(c)∨S(f(c))] =

1 by E3, also p[G(f(c), g(f(c)))] = 1 by E2′ and so p[¬S(f(c))] = 1 by E4,

hence p[R(c)] = 1 since we had p[R(c) ∨ S(f(c))] = 1; and this is a contradic-

tion. So there is no (E + ¬ϕ)-evaluation on Λ. 4

Toward formalizing the definition of Herbrand Consistency, we read the

above Herbrand’s Theorem as:

“A theory T is consistent if and only if for every finite set of Skolem terms

of T , say Λ, there is an T -evaluation on Λ.”

So Herbrand Consistency of a theory T can be defined as:

“For every set of Skolem terms of T , there is an T -evaluation on it.”
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Herbrand’s Theorem is provable in I∆0 + SupExp, and it is known that

Herbrand consistency is not equivalent to the standard, say Hilbert’s, consis-

tency in I∆0 + Exp (see [6], [12].) The theory I∆0 was introduced in [10], a

weak arithmetic in which exponential function is not total, see also [17].

We take the language of arithmetic L = {0, S, +, .,≤} in which the opera-

tions “S” (successor) “ + ” (addition) and “ · ” (multiplication) are regarded

as predicates. For example “x + y = z” is a 3-ary predicate, and the tradi-

tional statements should be re-read in this language by using the predicates

{S, +, ·}; as an example ∀x, y, z(x + (y + z) = (x + y) + z) can be read as

∀x, y, z, u, v, w(“y + z = v” ∧ “x + v = w” ∧ “x + y = u” → “u + z = w”).

So we may need some extra universal quantifiers (and variables) to repre-

sent the arithmetical formulae in this language, but for simplicity, and when

there is no confusion, we will use the old notation.

Let us look at a more arithmetical example:

Example 2. This example illustrates a theory (called C) and a ∀1-theorem of

it (called η) such that there exists an C-evaluation which is not η-evaluation.

An equivalent of η (called η′) has the property that “every C-evaluation is an

η′-evaluation as well”. The formula η′ is obtained from η by conditioning its

open part: if η has the form η = ∀xα(x) with open α, then η′ is ∀x, y
(

β(x, y) →

α(x)
)

for open β. The condition β(x, y) proposes the existence of some terms

which are needed to prove C ` η. See lemma 4.2.3 in Chapter 4 too.

Let C be the theory in the language of arithmetic axiomatized by:
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C1. ∀x, y(y = S(x) → x ≤ y ∧ ¬y = x)

C2. ∀x, y, z, u, v(x ≤ y ∧ z + x = u ∧ z + y = v → u ≤ v)

[ that is (x ≤ y → z + x ≤ z + y) ]

C3. ∀x, y, z, u, v(x ≤ y ∧ z · x = u ∧ z · y = v → u ≤ v)

[ that is (x ≤ y → z · x ≤ z · y) ]

C4. ∀x, y, z(z = x + y → y ≤ z)

[ that is (y ≤ x + y) ]

C5. ∀x, y(x ≤ y ∧ y ≤ x → x = y)

C6. ∀x, y, z, u, v(¬x = y ∧ u = S(x) ∧ v = S(y) → u ≤ y ∨ v ≤ x)

[ that is (x 6= y → x + 1 ≤ y ∨ y + 1 ≤ x) ]

C7. ∀x, y, z, u, v(u = z + x ∧ v = z + y ∧ u = v → x = y)

[ that is (z + x = z + y → x = y) ]

C8. ∀x, y, z, u, v(v = S(y) ∧ z = x · y ∧ u = x · v → z + y = u)

[ that is (x · y + y = x · S(y)) ]

C9. ∀x, y, z(x ≤ y ∧ y ≤ z → x ≤ z)

C10. ∀x∃y
(

y = S(x)
)

∧ ∀x, y∃z
(

z = x + y
)

Let η be the uniqueness statement in the division theorem:

∀x, y, y′, u1, u2, v1, v2, w1, w2(y′ = S(y) ∧ w1 = y′ · u1 ∧ w2 = y′ · u2 ∧ x =
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w1 + v1 ∧ v1 ≤ y ∧ x = w2 + v2 ∧ v2 ≤ y −→ u1 = u2)

[that is (x = (y+1) ·u1+v1∧v1 ≤ y∧x = (y+1) ·u2+v2∧v2 ≤ y −→ u1 = u2)]

It can be shown that C ` η.

Let Λ = {a, b, b′, q1, q2, r1, r2, t1, t2} be a set of terms, and define q on Λ by

{φ | q[φ] = 1} = {b′ = S(b), t1 = b′ · q1, t2 = b′ · q2, a = t1 + r1, r1 ≤ b, a =

t2 + r2, r2 ≤ b, b ≤ b′, r1 ≤ b′, r2 ≤ b′, r1 ≤ a, r2 ≤ a, t1 ≤ a, t2 ≤ a}.

Then q is a C-evaluation which does not satisfy the (available) Skolem

instance Sk(η, σ) for σ = 〈a, b, b′, q1, q2, r1, r2, t1, t2〉 (in Λ.)

If we write the uniqueness statement of the division theorem in the form:

η′ = ∀x, y, y′, u1, u2, v1, v2, w1, w2, u′1, u
′
2, w

′
1, w

′
2([u

′
1 = S(u1) ∧ u′2 = S(u2) ∧

w′
1 = y′ · u′1 ∧ w′

2 = y′ · u′2] ∧ y′ = S(y) ∧ w1 = y′ · u1 ∧ w2 = y′ · u2 ∧ x =

w1 + v1 ∧ v1 ≤ y ∧ x = w2 + v2 ∧ v2 ≤ y −→ u1 = u2)

(the statements in brackets [ ] are added to the ones in η)

then for any set of terms Γ and any C-evaluation p on it, p satisfies all the

available Skolem instances of η′ in Γ:

Assume p satisfies b′ = S(b)∧t1 = b′ ·q1∧t2 = b′ ·q2∧a = t1+r1∧r1 ≤ b∧a =

t2+r2∧r2 ≤ b∧b ≤ b′∧q′1 = S(q1)∧q′2 = S(q2)∧t′1 = b′ ·q′1∧t′2 = b′ ·q′2, then we

show p[q1 = q2] = 1, otherwise by C6 either p[q′1 ≤ q2] = 1 or p[q′2 ≤ q1] = 1.

Assume p[q′1 ≤ q2] = 1, then by C1 we have p[b ≤ b′] = 1 so by C9, we get

p[r1 ≤ b′] = 1, and since p[t′1 = t1 + b′] = 1 by C8, hence p[a ≤ t′1] = 1; on the
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other hand p[t′1 ≤ t2] = 1 by C3, so p[a ≤ t2] = 1 by C9. Also p[t2 ≤ a] = 1

by C4, so p[a = t′1] = 1 by C5, hence p[r1 = b′] = 1 by C7, and this is

contradiction by C1, since p[b′ ≤ b] = 0.

Similarly p[q′2 ≤ q1] = 1 is impossible, so p[q1 = q2] = 1. 4

2.2 Model-Theoretic Observations

Let T = {T1, · · · , Tn} be a finite arithmetical theory. We can assume {f i,j
k | 1 ≤

i, j ≤ n & k ≤ n} is the set of its Skolem function symbols, in which f i,j
k is the

i-th k-ary Skoelm function symbol for Tj. For example if Tj is ∀x∃y∃zA(x, y, z)

then its Skolemized is ∀A(x, f 1,j
1 (x), f2,j

1 (x)).

For a set of terms Λ, set

Λ0 = Λ, and inductively

Λu+1 = Λu∪{f i,j
l (a1, · · · , al) | i, j, l ∈ N & 1 ≤ i, j ≤ n & k ≤ n & a1, · · · , al ∈

Λu},

that is we close the set Λ under the Skolem functions.

Assume p is an evaluation on Λj for a j > N.

Let K ′ =
⋃

k∈N Λk.

Define the equivalence relation ∼ on K ′ by

x ∼ y ⇐⇒ p[x = y] = 1,
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and denote its equivalence classes by [a] = {b | a ∼ b}.

Let K = {[a] | a ∈ K ′}. Put the L-structure on K by

K |= φ([a1], · · · , [al]) iff “p[φ(a1, · · · , al)] = 1” for atomic φ (and l ≤ 3.)

This is well-defined and the above equivalence holds for open φ as well.

(∗) Moreover if p is an T -evaluation, then K |= T . This is called “a

Herbrand model of T” (see [9].)

Write Tj as Tj = ∀x1∃y1 · · · ∀xm∃ymφ(x1, y1 . . . , xm, ym) with open φ,

and take arbitrary a1, · · · , am ∈ K ′, then f1,j
1 (a1), · · · , f 1,j

m (a1, . . . , am) ∈

K ′, so p[φ(a1, f
1,j
1 (a1), · · · , am, f 1,j

m (a1, . . . , am))] = 1.

Hence K |= φ([a1], [f
1,j
1 (a1)], · · · , [am], [f1,j

m (a1, . . . , am)]) or K |= Tj.

But the converse of the above implication (∗) does not hold necessarily,

there might be a complicated (non-open) formula ϕ, such that K |= ϕ, but p

does not satisfy all the available Skoelm instances of ϕ in K ′.

However for ∀∃-formulae, a partial converse holds:

For a moment assume the statement “x ∈ Λj” and “p is an evaluation on

Λj” (as well as “p[A] = 1” for open A) can be written by some arithmetical

formulae (later we will see that they can be written by bounded formula in

I∆0.)

Lemma 2.2.1 Suppose θ = ∀x1, · · · , xr∃y1, · · · , ysA(x1, · · · , xr, y1, · · · , ys),

with open A and T ` θ, for a theory T in the language of arithmetic. Then
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there is a natural n0 ∈ N such that for any M |= T , with p, j, Λ ∈ M in which

j >M N, and p is an evaluation on Λj in M , the following holds:

∀x1, · · · , xr ∈ Λ∃y1, · · · , y2 ∈ Λn0 M |= “p[A(x1, · · · , xr, y1, · · · , ys)] = 1”.

(c.f. lemma 2.8 of [1].)

Proof. Assume not. Then for every n ∈ N, the following theory

Yn = T + j > n + +“p is an evaluation onΛj” a1, · · · , ar ∈ Λ + ∀y1, · · · , ys ∈

Λn“p[A(a1, · · · , ar, y1, · · · , ys)] = 0”,

in which j, p, Λ, a1 · · · , ar are regarded as new constants, is consistent.

Take a M |=
⋃

n∈N Yn, then pM , jM , ΛM ∈ M with jM >M N, and M |=

“pM is an evaluation on(ΛM)jM ”.

Let K ′ =
⋃

n∈N(Λ
M)n, and K = {[a] | a ∈ K ′},

where [a] = {b ∈ K ′ | M |= “pM [a = b] = 1”}.

We know that K |= T , so K |= θ. Hence K |= A([aM
1 ], · · · , [aM

r ], y1, · · · , ys),

for some y1, · · · , ys ∈ K.

Write y1 = [Y1], · · · , ys = [Ys], for a natural k with Y1, · · · , Ys ∈ Λk. Then

M |= “p[A(aM
1 , · · · , aM

r , Y1, · · · , Ys)] = 1”, but this is contradiction, since we

had M |= ∀z1, · · · , zs ∈ Λk“p[A(aM
1 , · · · , aM

r , z1, · · · , zs)] = 0”. �

This lemma will be used in Chapter 4.

All atomic formulae in our language are of the form x1 = x2, x2 = S(x1),
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x1 + x2 = x3, x1 · x2 = x3 and x1 ≤ x2, where x1, x2, x3 are variables or the

constant 0.

Denote the cardinal of a set A by |A|; a more accurate definition is explained

later.

By terms we mean, terms constructed from the Skolem functions of a

theory T under consideration.

Take a model M |= I∆0 + Exp and let Λ ∈ M be a set of terms. There

are 2|Λ|3 +3|Λ|2 different atomic formulae with constants from Λ, so there are

22|Λ|3+3|Λ|2 different evaluations on Λ (in M .)

So the above definition of Herbrand Consistency has a deficiency in weak

arithmetics (in the lack of exponentiation) from the viewpoint of incomplete-

ness: unprovability of the consistency of T in T is equivalent to having a model

of T which contains a proof of contradiction from T . By the above definition,

a Herbrand proof of contradiction consists of a set of terms, say Λ, such that

there is no T -evaluation on it.

Existence of an evaluation (in a model) means existence of its code for a

fixed coding. And by “availability of all the possible evaluations” we mean

“existence of an upper bound for all those codes”.

Let γ be a coding (we do not need the accurate definition of a coding.) De-

fine the partial function Fγ(Λ) = max{γ − code(p) | p is an evaluation on Λ}.

Availability of all the possible evaluations on Λ is (by definition) the exis-
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tence of Fγ(Λ).

Now, since card(A) ≤ max(A) for any (arithmetical) set A (in I∆0 +Exp)

we have 22|Λ|3+3|Λ|2 ≤ Fγ(Λ), for any coding γ.

If Exp is not available in a model N (of say I∆0) and |Λ| (for a Λ ∈ N) is

too large such that 22|Λ|3+3|Λ|2 does not exist (in N) it may happen that none

of the (few) available evaluations on Λ (in the model N) is an T -evaluation.

This doesn’t give a real Herbrand proof of contradiction from T ! By “real”

we mean our intuition of a real Herbrand Proof of Contradiction. From such

a model’s viewpoint such a Λ is a Herbrand Proof of Contradiction, since all

the evaluations on Λ in the model are non-T -evaluations.

However existence of such a model (and a Herbrand Proof of Contradiction

in it) “is devoid of any philosophical interest and ... in such a weak system

[the Herbrand Consistency predicate] can not be said to express [Herbrand]

Consistency” ([4], page 504, see also page 511 of the same reference.)

Or, informally speaking, such a model does not contain “enough evalua-

tions” on that set of terms to be able to judge about Herbrand Proof based

on that set.

It would be more reasonable (and more interesting) if we could find a model

with a sufficiently small set of terms in it, that is a Λ, such Fγ(Λ) exists and

none of the evaluations on this set (which can be counted in the model) is an

T -evaluation.

In the forthcoming sections, we will formalize Herbrand Consistency by a
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Π1-formula, such that its negation will give an (intuitively) actual Herbrand

Proof of Contradiction in weak arithmetics.

2.3 Formalizations

For a specified coding (so-called “Linear Compressed Coding” in [20]) which is

used throughout the thesis (introduced in Chapter V of [6]) we will compute

a rough upper bound for the codes of all evaluations on a set Λ. Existence

of that upper bound guarantees availability of all the (intuitionally) possible

evaluations on Λ.

We use Hajek-Pudlak’s coding of sets and sequences ([6], pp. 295, 309,

312) the main properties of this coding are:

1) “s is a sequence” ∧z = 4·
(

64
(

max(s)+1
)2

)lh(s)
−→ ∃t ≤ z{“t is a sequence”∧

lh(t) = lh(s) ∧ ∀i < lh(s)
(

(s)i = (t)i
)

} [Proposition 3.30, page 311]

2) ∀x ≤ u∃y ≤ vϕ(x, y) ∧ ∃z
(

z = (v + 2)u
)

−→ ∃s ≤ (v + 2)4u{lh(s) =

u∧ ∀i < u
(

ϕ(i, (s)i)∧ (s)i ≤ v
)

}, for bounded ϕ [(modified) Proposition 3.31,

page 311]

3) s ∗ t ≤ 64 · s · t [Proposition 3.29, page 311]

4) ∀p [“p is a sequence” → ∀z∃q ≤ 9 · p · (z + 1)2
(

“q is a sequence”

∧∀x ≤ q{x ∈ q ↔ x ∈ p ∨ x = z}
)

] [Lemma 3.7, page 297]

5) For a sequence t if s1, · · · , sm ≤ y, and (2y)c·log(t) exists then t(x1/s1, · · · , xm/sm)
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which is resulted from t by substituting si to xi for 1 ≤ i ≤ m, exists and

t(x1/s1, · · · , xm/sm) ≤ (2y)c·log(t), where c ∈ N is a fixed constant.

[Proposition 3.36 and (modified) explanations afterward]

Analogous statements hold for (the codes of) sets.

For a set A its cardinal is defined as noun(v) − 1 if A = (u, v) and 0

otherwise, where noun is as Definition 3.22 in [6], page 306. (Intuitively noun

counts the number of 1’s in the binary expansion of v.)

For further references we re-state the above properties for sets. Suppose s

and t are sets.

I) z = 4 ·
(

64
(

max(s) + 1
)2

)|s|
−→ ∃t ≤ z{|t| = |s| ∧ ∀x < t(x ∈ t ↔ x ∈

s)}.

II) ∀x ≤ u∃y ≤ vϕ(x, y) ∧ ∃z
(

z = (v + 2)u
)

−→ ∃s ≤ (v + 2)4u{|s| =

u ∧ ∀y ≤ s
(

y ∈ s ↔ ∃x ≤ u ϕ(x, y)
)

}, for bounded ϕ.

III) s ∪ t ≤ 64 · s · t

IV) ∀s∀z∃t ≤ 9 · s · (z + 1)2∀x ≤ t{x ∈ t ↔ x ∈ s ∨ x = z}
)

]

Code the ordered pair 〈a, b〉 by (a + b)2 + b + 1.

Fix the function symbol f i,j
k which is supposed to be the i-th, k-ary Skolem

function for the j-th axiom of a theory T (so if the j-th axiom is ∃x∀y∃u∃vA(x, y, u, v)

then its Skolemized is ∀yA(f 1,j
0 , y, f 1,j

1 (y), f 2,j
1 (y)).)
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And fix the function symbol f i
k which is supposed to be the i-th, k-ary

function, these symbols are reserved to be Skolem function of a formula θ in

the definition of HConT (θ).

Terms are well-bracketing sequences constructed from {(, )} ∪ {f i,j
k }i,j,k ∪

{f i
l }i,l (see [6], page 313.)

Example 3. Let the theory T be axiomatized by

1. ∀x∃y∃z∀uA(x, y, z, u)

2. ∃u∃v∀xB(x, u, v)

and let θ be ∃z∀x∃yC(x, y, z), for open A,B,C.

So, the Skolemized form of T is

1′. ∀x∀uA(x, f 1,1
1 (x), f 2,1

1 (x), u)

2′. ∀xB(x, f 1,2
0 , f 2,2

0 )

and the Skolemized form of θ is ∀xC(x, f1
1 (x), f1

0 ).

In this particular example, for Herbrand Consistency of θ with T it is enough

to have a (T + θ)-evaluation on any set of terms constructed from the 1-ary

function symbols {f1,1
1 , f2,1

1 , f 1
1} and the constant symbols {f 1,2

0 , f 2,2
0 , f 1

0}. 4

The following lemma illustrates a computation on codes of terms, which

will be used several times in the forthcoming chapters.

The cut log2 is defined by: x ∈ log2 ⇐⇒ 22x exists.
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Lemma 2.3.1 (I∆0)

For an i ∈ log2 which i ≥ 1, there is a sequence X with length i such that

(X)0 = 0 & ∀j < i{(X)j+1 = f 1,1
1 ((X)j)} and (code of) X ≤ Ki2,

for a fixed K ∈ N.

Proof. The term f1,1
1 (f1,1

1 (· · · f 1,1
1 (0) · · · )) in which f 1,1

1 appears j times is

a well-bracketing sequence made from L′ = {f1,1
1 , 0}. So, by the arguments in

pp. 312-313 of [6], there is a bounded formula TermL′(x) which expresses that

x is a term in the language L′.

Let the bounded formula ϕ(j, x) be TermL′(x) ∧ lh(x) = 3j + 1.

And fix the terms c0 = 0, and cj+1 = f 1,1
1 (cj) for j < i.

(So, the formula ϕ(j, x) defines “x = cj”.)

Let m = 644 · ·code(“f1,1
1 ”) ·code(“(”) ·code(“)”), and K = (m ·code(“0”)+2)4.

Then cj+1 ≤ m · cj for any j < i by 3). So, by induction on j ≤ i, it can be

shown that cj ≤ mjc0 (note that all the parameters in the induction formula

are bounded by mi which exists, since i ∈ log2.)

So, we have ∀j ≤ i∃x ≤ micode(“0”) (ϕ(j, x)), hence by 2) there is a X

such that X ≤ (micode(“0”) + 2)4i and ∀j ≤ iϕ(j, (X)j). Finally note that

(micode(“0”) + 2)4i ≤ (mcode(“0”) + 2)4i2 = Ki2 . �

Similarly, one can show there is a set X ′ = {c0, c1 · · · , ci} with code ≤ Ki2 .
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Let y be (the code of) a set of terms, we compute an upper bound for the

codes of evaluations on y: each evaluation is (informally) of the form

{〈y1 = y2, p[y1 = y2]〉 | y1, y2 ∈ y}
⋃

{〈y1 ≤ y2, p[y1 ≤ y2]〉 | y1, y2 ∈

y}
⋃

{〈y2 = S(y1), p[y2 = S(y1)]〉 | y1, y2 ∈ y}
⋃

{〈y1 · y2 = y3, p[y1 · y2 =

y3]〉 | y1, y2, y3 ∈ y}
⋃

{〈y1 + y2 = y3, p[y1 + y2 = y3]〉 | y1, y2, y3 ∈ y};

in which p[φ] ∈ {0, 1} for any atomic formula φ with constants from y.

There is a natural number a such that for any k ∈ {0, 1}

code(〈y1 = y2, k〉) ≤ 2 + (1 + ay1y2)2,

code(〈y1 ≤ y2, k〉) ≤ 2 + (1 + ay1y2)2,

code(〈y2 = S(y1), k〉) ≤ 2 + (1 + ay1y2)2,

code(〈y1 + y2 = y3, k〉) ≤ 2 + (1 + ay1y2y3)2, and

code(〈y1 · y2 = y3, k〉) ≤ 2 + (1 + ay1y2y3)2.

So code(〈φ, k〉) ≤ 2 + (1 + ay3)2 for all k ∈ {0, 1} and atomic φ with constants

from y.

Hence, by 1), we can write p ≤ 4
(

64
(

3 + (1 + ay3)2
)2

)2|y|3+3|y|2
, for any p,

an evaluation on y.

There is natural number N ∈ N such that for any set y with |y| ≥ N ,

4
(

64
(

3 + (1 + ay3)2
)2

)2|y|3+3|y|2
≤ (y)|y|4 .

Definition 2.3.2 Call a set of terms y, admissible if F (y) = (y)|y|4 exists.
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(We note that any y with |y| ≤ N is admissible.)

Here, it should be emphasized that, we code evaluations (=functions) just like

sets. A function on an l-element domain is coded like an l-element set.

We modify the definition of Herbrand Consistency of a theory T as: “ for every

admissible set of Skolem terms of T , there is an T -evaluation on it”. This is

formalized below.

So with this new definition, unprovability of Herbrand consistency of T in

T means having a model of T with an element which codes an admissible set

of Skolem terms of T such that there is no T -evaluation on this set in the

model. Since all the possible evaluations on the admissible sets are accessible

in the model, this set of terms distinguishes an “actual” Herbrand proof of

contradiction from T .

Moreover this modification will enable us to formalize Herbrand Consis-

tency as a Π1-sentence (see also, page 428 of [12]).

By “terms” we mean terms constructed from the Skolem function symbols

{f i,j
k }i,j,k ∪ {f i

l }i,l introduced above Let the bounded formula Terms(y) be for

“y is a set of terms constructed from those symbols” (see [6], page 313.)

There are bounded formulae eva(x) and eval(x, y) which represent “x is an

evaluation” and “y is a set of terms and x is an evaluation on y”.

For atomic formula φ, p[φ] = 1 is a bounded formula, for more complex φ

the statement p[φ] = 1 can be written by a Π1-formula:
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Definition 2.3.3 let the bounded formula Sat(p, φ, s) be

“eva(p)& s is a sequence of pairs 〈ai, bi〉, such that:

1) each ai is (the code of) a formula and each bi is 0 or 1,

2) for k = length(s), ak = φ and bk = 1,

3) each ai is either of the form

3.1) ai = aj ∧ ak for some j, k < i and bi = bj · bk,

or 3.2) ai = aj ∨ ak for some j, k < i and bi = bj + bk − bj · bk,

or 3.3) ai = aj → ak for some i, j < k and bi = 1 + bj · bk − bj,

or 3.4) ai = ¬aj for some j < i and bi = 1− bj,

or 3.5) ai is atomic and bi = p[ai]. ”

Let S(θ) be the number of subformulae of the formula θ. For the above

sequence s, by the property I) of the coding, we have

(the code of) s ≤ 4
(

64
(

1 + 〈φ, 1〉
)2

)S(φ)
≤ (φ + 2)20·S(φ).

Let H(φ) = (φ + 2)20·S(φ).

Definition 2.3.4 (Satisfaction)

So we can write p[φ] = 1 as: ∀z
(

z ≥ H(φ) → ∃s ≤ zSat(p, φ, s)
)

.

Let ‖θ‖ be the number of existential quantifiers in the prenex normal form
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of θ (we can assume it has the form θ = ∀x1∃y1 · · · ∀xm∃ymθ(x1, y1, · · · , xm, ym),

so ‖θ‖ = m in this case.)

For a formula θ fix its Skolem functions as f θ
1 , · · · , f θ

α where α = ‖θ‖. Write

σ = 〈t1, · · · , tα〉 where {t1, · · · , tα}, {f θ
1 (t1), · · · , f θ

α(t1, . . . , tα)} ⊆ y for a set of

terms y. We compute an upper bound for the codes of Sk(θ, σ) for all such

σ’s, in terms of y and θ.

We have Sk(θ, σ) = θ(x1/t1, y1/f θ
1 (t1), · · · , xα/tα, yα/f θ

α(t1, · · · , tα)), hence

(the code of) Sk(θ, σ) ≤ (2y)c·log(θ).

Note that the code of all tj’s and f θ
j (t1, · · · , tj) are ≤ y, since all belong to y.

And since we can assume θ ≤ θ, then (the code of) Sk(θ, σ) ≤ (2y)c·θ.

Now, we can write H(Sk(θ, σ)) ≤
(

(2y)c·θ + 2
)20S(θ).

Let G(θ, y) =
(

(2y)c·θ + 2
)20S(θ).

We note that “u = Sk(θ, σ)” can be written by a bounded formula in terms

of θ, σ, y. Also let the bounded formula Avail(σ, y) be for

“σ = 〈t1, · · · , tα〉 ∧ {t1, · · · , tα, f θ
1 (t1), · · · , f θ

α(t1, . . . , tα)} ⊆ y”.

Definition 2.3.5 Now we can write “p is an θ-evaluation on y” as:

Terms(y) ∧ eval(p, y) ∧ ∀z[z ≥ G(θ, y) → ∀u ≤ z∀σ ≤ y{Avail(σ, y) ∧ “u =

Sk(θ, σ)” → ∃s ≤ zSat(p, u, s)}].

Denote its bounded counterpart by SatAvail(p, y, θ, z), that is:
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Terms(y) ∧ eval(p, y) → ∀u ≤ z∀σ ≤ y{Avail(σ, y) ∧ “u = Sk(θ, σ)” −→

∃s ≤ zSat(p, u, s)}.

And finally we can formalize (the modified) Herbrand Consistency:

Definition 2.3.6 For a finite theory {T1, · · · , Tn}, define the predicate HConT (x),

as:

∀z
(

∀y ≤ z [ Terms(y) ∧ z ≥ F (y) ∧
∧

1≤j≤n z ≥ G(Tj, y) ∧ z ≥ G(x, y) →

∃p ≤ z∃s ≤ z{eval(p, y) ∧
∧

1≤j≤n SatAvail(p, y, Tj, s) ∧ SatAvail(p, y, x, s)}]
)

.

The bound (z ≥)F (y) guarantees that (the set of terms with code) y is ad-

missible, and the bounds G(Tj, y), G(x, y) are for the existence of the sequence

(s) in the definition of satisfaction (p[φ] = 1.)

We note that the bounds G(Tj, y) and for a standard x the bound G(x, y)

for z, are polynomial with respect to y, so for sufficiently large, also for non-

standard y’s, they are less than the bound F (y).

The cut I is defined (informally) by: x ∈ I ⇐⇒ “a β−code for 〈2, 22, · · · 22x〉 exists”.

Formal definitions are given in Chapter 3 and in Chapter 4.

Definition 2.3.7 The predicate HCon∗T (x) is obtained from HConT (x) by

restricting the (only unbounded) universal quantifier to I:

∀z ∈ I
(

∀y ≤ z [ Terms(y) ∧ z ≥ F (y) ∧
∧

1≤j≤n z ≥ G(Tj, y) ∧ z ≥

G(x, y) → ∃p ≤ z∃s ≤ z{eval(p, y)∧
∧

1≤j≤n SatAvail(p, y, Tj, s)∧SatAvail(p, y, x, s)}]
)

.
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2.4 Main Theorems

Proposition 2.4.1 The formulae HConT (φ) and HCon∗T (φ) binumerate “Her-

brand Consistency of T with φ” in N:

N |= HConT (φ) iff N |= HCon∗T (φ) iff “{φ}∪T is Herbrand consistent.”

Herbrand Consistency of T , HCon(T ), is HConT (“0 = 0”).

Since in view of Herbrand (and any cut-free) proof, the notion of sub-theory

is different than of Hilbert proof (see the explanation after the proof of the

main theorem) so by “S is a fragment of T” or “T is extending S” we mean

that “the axiom-set of S is a sub-set of the axiom-set of T”.

Note that by a theory we mean “a set of sentences” and this is regarded

differently than “the set of its logical consequences”. See also [20].

In Chapter 3 we prove:

Proposition 2.4.2 There is a finite set of I∆0-derivable sentences, say B,

such that for every bounded formula θ(x) with x as the only free variable, and

for any finite theory α (in the language of arithmetic) whose axiom-set contains

the set B,

I∆0 ` HCon(α) ∧ ∃x ∈ I θ(x) → HCon∗α(“∃x ∈ I θ(x)”)

Having this proposition we can prove our main theorem:
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Theorem 2.4.3 Take B as in the previous proposition, and let H be a finite

fragment of I∆0 containing PA− such that the previous proposition is provable

in H, then for any finite consistent theory α (in the language of arithmetic)

whose axiom-set contains the set B ∪H, we have α 6` HCon(α).

Proof. Let τ be the fixed point of HCon∗α(¬x) (that is HCon∗α(¬τ) ≡ τ

and it is available in PA−, i.e. PA− ` HCon∗α(¬τ) ≡ τ , see [8].)

The theory α + ¬τ is consistent, since otherwise, by proposition 2.4.1, we

would have N |= ¬HCon∗α(¬τ) and so by the fact that PA− is Σ1-complete

([8]) we would get PA− ` ¬HCon∗α(¬τ), hence α ` ¬τ , then α would be

inconsistent.

Write ¬τ ≡ ∃x ∈ I θ(x) for a bounded θ, then

α + ¬τ + HCon(α) ` HCon(α) ∧ ∃x ∈ I θ(x),

so by proposition 2.4.2, we get

α + ¬τ + HCon(α) ` HCon∗α(“∃x ∈ I θ(x)”),

and then α+¬τ +HCon(α) ` HCon∗α(¬τ), hence α+¬τ +HCon(α) ` τ .

So α ` HCon(α) → τ , and this shows that α 6` HCon(α). �

It is worth mentioning that different axiomatizations of a theory have dif-

ferent Herbrand-proof speeds, as Willard observes in [20]: “a redundant axiom

can super-exponentially shorten the length of some cut-free proofs”. And

since the cost of switching a proof to a (cut-free) Herbrand proof is of super-
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exponential (see e.g. [15] and [16]) accepting some theorems of a weak theory

(e.g. I∆0) as axioms, may economize its proof system.

Definition 2.4.4 Define the function ω(x) = xlog2x, and denote its totality

axiom by Ω = ∀x∃y“y = ω(x)”.

For any term t(ω) (in the language of arithmetic extended by the function

symbol ω, see [6]) we have t(ω)[x] < ω1(x) for sufficiently large x; in fact it

can be shown by induction on t that t(ω)[x] < xP (log2x) for sufficiently large

x, where P (log2x) is a polynomial with respect to log2, log3, · · · . For example

ω2(x) = xQ(log2x) where Q(log2x) = log3x · log2x +
(

log2x
)2.

Thus I∆0 a6` I∆0 + Ω a6` I∆0 + Ω1.

In Chapter 4 we show,

Proposition 2.4.5 There is a finite fragment of I∆0 + Ω, say D, such that

for every bounded formula θ(x) with x as the only free variable, and for any

finite theory α (in the language of arithmetic) extending D,

I∆0 + Ω ` HCon(α) ∧ ∃x ∈ I θ(x) → HCon∗α(“∃x ∈ I θ(x)”)

Then with a proof very similar to that of theorem 2.4.3, it can be shown

that:
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Theorem 2.4.6 Take D as the previous proposition, and let H be a finite

fragment of I∆0 + Ω containing PA− such that the previous proposition is

provable in H, then for any finite consistent theory α (in the language of

arithmetic) extending D ∪H, we have α 6` HCon(α).

Hence we show Godel’s Second Incompleteness Theorem for Herbrand Con-

sistency of a certain axiomatization of I∆0 (where some I∆0-theorems are

taken as axioms.) And for the theory I∆0 + Ω (and also for I∆0 + Ω1 in

Chapter 5) we show Godel’s Second Incompleteness Theorem for its Herbrand

Consistency when its “usual” axiomatization is taken.



Chapter 3

A Σ1-Completeness Theorem

Godel’s Second Incompleteness Theorem says that no machine can correctly

prove that it does not contradict itself. Roger Penrose argues that we humans

can intuitively see that our mathematics is free from contradictions. So we

cannot be machines.

Oliver Schulte

This Chapter is devoted to prove proposition 2.4.2, see also [13].

Godel’s original second incompleteness theorem states unprovability of (for-

malized) consistency of T in T , for sufficiently strong theories T . Being “suffi-

ciently strong” means being able to code sets, sequences, terms and some other

logical (syntaical) concepts, like provability and being able to prove their prop-

erties.

31
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Of those properties are:

1. T ` PrT (ϕ) ∧ PrT (ϕ → ψ) → PrT (ψ), and

2. T ` PrT (ϕ) → PrT (PrT (ϕ))

Usually the property 2 is proved by use of formalized Σ1-completeness

theorem: T ` ϕ → PrT (ϕ) for any Σ1-formula ϕ.

So how can one show Godel’s second incompleteness theorem for weak

arithmetics, which are not that strong to prove those properties?

One may have two options here (although, these are not the only ways, see

e.g. [2]):

1) try to find a model of T which does not satisfy Con(T ), or

2) try to show some weak forms of Σ1-completeness in T , which can prove

T 6` Con(T ) (by a similar argument of our main theorem’s proof.)

The first method is applied in [4] to show Q 6` Con(Q) for Robinson’s

arithmetic Q. And the second method is applied in [1] and [3].

Here we also use the second method: we prove a kind of formalized Σ1-

completeness theorem which is sufficiently powerful to show unprovabolity of

consistency. (c.f. [7] and [3].)

A weak form of Σ1-completeness theorem can be like:

T ` Con(T )∧∃xθ(x) → ConT (∃xθ(x)) for ∆0-formulae θ(x) (c.f. [1], [3] .)
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Our proposition 2.4.2 is a form of weak formalized Σ1-incompleteness theorem,

in which the witness x for θ(x) is small (restricted to the cut I defined below)

and the second consistency predicate is rather weak (that is HCon∗T instead

of HConT .)

We need some auxiliary definitions and lemmas.

3.1 Base Theory

Take A be the axiom system:

A1. ∀x∃y “y = S(x)”

A2. ∀x, y, z(“y = S(x)” ∧ “z = S(x)” → y = z)

A3. ∀x (x ≤ x)

A4. ∀x, y, z (x ≤ y ∧ y ≤ z → x ≤ z)

A5. ∀x (x ≤ 0 → x = 0)

A6. ∀x, y, z (“y = S(z)” ∧ x ≤ y → x ≤ z ∨ x = y)

A7. ∀x, y(“y = S(x)” → x ≤ y)

A8. ∀x “x + 0 = x”

A9. ∀x, y, z, u, v (“z = S(y)” ∧ “x + y = u” ∧ “v = S(u)” → “x + z = v”)

A10. ∀x “x · 0 = 0”
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A11. ∀x, y, z, u, v (“z = S(y)” ∧ “x · y = u” ∧ “u + x = v” → “x · z = v”)

A12. ∀x, y (“y = S(x)” → ¬y ≤ x)

As mentioned before, folklore axiomatizations of (different fragments of)

arithmetic, consists of the axioms of Q ([6], page 28) or the axioms of PA−

([8], page 16), let us call it “the base theory”, plus the induction axioms.

Here, our base theory A is slightly different from Q or PA−, (mainly) in

the axioms A5 and A6. These are replaced for the axioms Q3 and Q8 in [6]

or for Ax13, Ax14 and Ax18 in [8]. The reason for choosing A5 and A6 to the

above axioms is that we get a ∀1-axiomatized base theory (note that except of

A1, all other axioms of A are ∀1.) This will help to prove the next lemma.

Recall that f1,1
1 is the first 1-ary Skolem function symbol for the first axiom.

So, the Skolemized form of A1 is ∀x{f 1,1
1 (x) = S(x)}.

Fix the terms c0 = 0, and inductively cj+1 = f1,1
1 (cj), for j < i where

i ∈ log2 is given. (See lemma 2.3.1 in Chapter 2 for the existence of cj).

The term ci is represented as the i-th numeral in every A-evaluation p on

{c0, · · · , ci}: p[c0 = 0] = 1 and p[cj+1 = S(cj)] = 1, for j < i.

Lemma 3.1.1 (I∆0) Suppose for an i ∈ log2 with i ≥ 1, we have {c0, · · · , ci} ⊆

Λ for a set of terms Λ, and p is an A-evaluation on Λ, then

1) If p[a ≤ ci] = 1 for an a ∈ Λ, then there is an j ≤ i such that p[a = cj] = 1.

2) If γ is an open formula and γ(x1, · · · , xm) holds for x1 · · ·xm ≤ i, then
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p[γ(cx1 , · · · , cxm)] = 1.

Proof. 1) by induction on j, one can prove that if p[a ≤ cj] = 1 then

p[a = ck] = 1 for a k ≤ j: for j = 0 use A5, and for j + 1 use A6.

We note that the following bounded formula can express the statement for

those j’s:

∀a ∈ Λ∀u ≤ Ki2∃v ≤ Ki2∃k ≤ j{ϕ(j, u)∧ p[a ≤ u] = 1 −→ ϕ(k, v)∧ p[a =

v] = 1}. (Recall K and ϕ from lemma 2.3.1 in Chapter 2, page 21.)

2) Note that the assertion 2) can be expressed by the bounded formula:

∀x1 ≤ i · · · ∀xm ≤ i∀u1 ≤ Ki2 · · · ∀um ≤ Ki2{ϕ(x1, u1) ∧ · · · ∧ ϕ(xm, um) ∧

γ(x1, · · · , xm) −→ p[γ(u1, · · · , um)] = 1}.

First we prove it for the atomic or negated atomic formulae. For x1 ≤ x2

use induction on x2, for x2 = 0 by A3 and for x2 + 1 by A3, A4 and A7.

Similarly for x1 + x2 = x3 and x1 · x2 = x3 use induction on x2 and A8,

A9, A10 and A11. For ¬x1 = x2: if ¬x1 = x2 then either x1 + 1 ≤ x2 or

x2 + 1 ≤ x1, e.g. for x1 + 1 ≤ x2 we have p[cx1+1 ≤ cx2 ] = 1, now use A12. For

¬S(x1) = x2 use A2, and the cases ¬x1 + x2 = x3 and ¬x1 · x2 = x3 can be

derived from the previous cases. For ¬x1 ≤ x2: if ¬x1 ≤ x2 then x2 + 1 ≤ x1

so p[cx2+1 ≤ cx1 ] = 1, now use A4 and A12.

The induction cases for ∧,∨,→ are straightforward. (Note we have as-

sumed that the formula θ is in normal form: the negation appears only in

front of atomic formulas.) �
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3.2 Skolemization of x ∈ I

Recall Godel’s β-function:

β(a, b, i) = r if a = (q + 1)[(i + 1)b + 1] + r ∧ r ≤ (i + 1)b for some q.

Define the ordered pairs by 〈a, b〉 = a + 1
2(a + b + 1)(a + b).

Define the divisibility relation x | y by ∀q, r(y = q ·x + r∧ r < x → r = 0).

Let Ψ(x, i) = ∀a, b, c{〈〈a, b〉, c〉 = x → [a ≥ (i + 1)b + 1] ∧ [β(a, b, 0) =

2] ∧ [β(a, b, j + 1) = (β(a, b, j))2] ∧ [∀k < i((k + 1) | b)] ∧ [β(a, b, i) | b] ∧ [∀k <

i
(

(k + 1)b + 1 | c
)

]}.

Note that Ψ(x, i) can be written by a ∀1-formula.

The formula Ψ(x, i) states that x = 〈〈a, b〉, c〉 where 〈a, b〉 is a (β)-code

of a sequence whose length is at least i + 1, and its first term is 2 and

every term is the square of its preceding term. So such a sequence looks

like: 〈2, 22, 222 , · · · , 22i , . . .〉. The second component of x, c is a parame-

ter. The condition [∀k < i((k + 1) | b)] implies that for any u, v ≤ i,
(

(u + 1)b + 1, (v + 1)b + 1
)

= 1 when u 6= v. So by [∀k ≤ i((k + 1)b + 1 | c)] we

get [
∏

k≤i+1{kb + 1} | c] hence [c ≥
∏

k≤i+1{kb + 1}]. (Note that this informal

argument can not be formalized in I∆0 this way.)

By invs(u, v) we mean the (unique) element w ∈ {0, · · · , v − 1} such that

uw ≡(mode v) 1 (of course when such a w exists) and by ngt(u, v) the (unique)

element w ∈ {0, · · · , v − 1} such that u + w ≡(mode v) 0.
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For given n, x1, · · · , xn, let b = max{x1, · · · , xn}.n! and bj = jb + 1 for

1 ≤ j ≤ n; then b1, · · · , bn are pairwise co-prime.

Let a1 = x1, and

ak+1 = ak + (
∏

1≤j≤k bj) · invs(
∏

1≤j≤k bj, bk+1) · [xk+1 + ngt(ak, bk+1)],

for all k, where 1 ≤ k < n.

For a = an we have a ≡(mode bj) xj for all 1 ≤ j ≤ n.

The above ordered pair 〈a, b〉 is a β-code of the sequence 〈x1, · · · , xn〉.

Lemma 3.2.1 I∆0 ` ∀x, i∃y(Ψ(x, i) → Ψ(y, i + 1))

Proof. Suppose Ψ(x, i) holds, and x = 〈〈a, b〉, c〉.

Let b′ = b2 · (i + 1), then by ∀k ≤ i(k | b) we get ∀k ≤ i + 1(k | b′); also

since 22i | b then 22i+1 = (22i)2 | b2 | b′.

So
(

ub′ + 1, vb′ + 1
)

= 1 for any u, v ≤ i + 2 which u 6= v.

Let dj = minu≤c{∀k ≤ j
(

∃v ≤ u[u = v · ((k + 1)b + 1)]
)

}, for any j ≤ i.

(Note that dj is ∆0-definable.)

It can be shown that dj+1 = dj ·
(

(j + 2)b + 1
)

, for j < i.

By induction on j ≤ i it can be shown that bj ≤ dj, so bi exists. (Again note

that the formula bj ≤ dj is bounded w.r.t b, j and c.) Also (i+1)j+1 ≤ 22i ≤ a

for j ≤ i.

Let ej = bj+1 · (i + 1)j+1, for j ≤ i. (Note that ej ≤ c · a and dj ≤ c.)
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By induction on j ≤ i we show that:

∃x ≤ c2 · a {“x ≤ ej · dj” ∧ ∀k ≤ j
(

(k + 1)b′ + 1 | x
)

},

in which “x ≤ ej · dj” can be expressed by a bounded formula. We note

that ej and dj are ∆0-definable w.r.t j. We note that all the quantifiers of the

explicit form of the above formula can be bounded by “c2 · a”.

For j = 0, let x = b′ + 1, then x ≤ e0 · d0 and b′ + 1 | x.

For j + 1, if x ≤ ej · dj is such that ∀k ≤ j
(

(k + 1)b′ + 1 | x
)

, let y =

x ·
(

(j + 2)b′ + 1
)

, then y ≤ djej
(

(j + 2)b′ + 1
)

= djej
(

(j + 2)b2(i + 1) + 1
)

≤

djej
(

(j + 2)b + 1
)(

b(i + 1)
)

= dj((j + 2)b + 1
)

ej
(

b(i + 1)
)

= dj+1ej+1. Also

∀k ≤ j + 1
(

(k + 1)b′ + 1 | y
)

.

Hence we showed that ∀j ≤ i∃x ≤ ejdj∀k ≤ j
(

(k + 1)b′ + 1 | x
)

. Denote

the corresponding x to j by lj (so ∀k ≤ j
(

(k + 1)b′ + 1 | lj
)

.)

Take c′ = li ·
(

(i + 2)b′ + 1
)

.

Let a0 = 2, and

ak+1 = ak + lk · inv(lk, (k + 1)b′ + 1) · [22k+1 + ngt(ak, (k + 1)b′ + 1)], for

k ≤ i.

And a′ = ai+1. It can be shown that ∀j ≤ i β(a′, b′, j) = β(a, b, j) and

β(a′, b′, i + 1) = β(a, b, i)2.

So with y = 〈〈a′, b′〉, c′〉 we have Ψ(y, i + 1). �
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Define the cut I as: x ∈ I ⇐⇒ ∃zΨ(z, x).

Denote the open part of Ψ by Ψ, so Ψ(z, x) = ∀uΨ(z, x,u), in which

u = (u1, · · · , uk) for a natural k.

To get the B asserted in the proposition, we add the following axioms to A:

B1. Ψ(〈〈5, 2〉, 3〉, 0)

B2. ∀x∀i∃y(Ψ(x, i) → Ψ(y, i + 1))

The axiom B1 says that the number 〈〈5, 2〉, 3〉 is a β-code for the sequence 〈2〉

(as it can be seen 5 ≡mod (2+1) 2 and 3 = 2 + 1.)

And the axiom B2 is the I∆0-derivable statement i ∈ I → i + 1 ∈ I.

To be more precise we write the axiom B2 in the prenex normal form:

B2′. ∀x∀i∃y∃u∀v(Ψ(x, i,u) → Ψ(y, i + 1,v)).

Its Skolemized form is

∀x, i, j, v1, · · · , vk

(

j = S(i)∧Ψ(x, i, f2,14
2 (x, i), · · · , f 1+k,14

2 (x, i)) → Ψ(f 1,14
2 (x, i), j, v1, · · · , vk)

)

.

Recall from Chapter 2 that f i,j
l is fixed to be the i-th, l-ary Skolem function

symbol of the j-th axiom of a theory T , by which the predicate HConT (x)

had been defined. Here the first 12 axioms of B are the axioms of A, the

number 13 is B1 and the axiom number 14 is B2. So the function symbols

f 1,14
1 , f 2,14

1 , · · · , fk+1,14
1 are taken to be the Skolem function symbols of B2.

Fix the terms z0 = c699, and inductively zj+1 = f1,14
2 (zj, cj), for j < i,
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where i ∈ log2 is given.

Let L′′ = {0, f 1,1
1 , f 1,14

2 }, and take the bounded formula defining terms

in this language as TermL′′ . The following argument describes the bounded

formula φ(j, x) which defines “x = zj” (see [6] page 313):

- either (j = 0 and x = c699), or

- TermL′′(x), and

– x begins with f1,14
2 , and

— every y such that SubWB(y, x)&TermL′′(y), either

- does not contain any f 1,14
2 and is a ck for a k ≤ j, or

- contains a f 1,14
2 and is of the form f1,14

2 (s, ck) for a k ≤ j such that

- the number of f1,14
2 ’s appearing in y is k + 1, and either

- (s is c699 and k = 0), or

– TermL′′(s) and s begins with f 1,14
2 .

And for 1 ≤ l ≤ k, fix ul
j = f1+l

2 (zj, cj), where j ≤ i.

It is easy to see that ul
j can be defined by bounded formula w.r.t l and j.

The term zi is represented as a (β)-code of the sequence 〈2, 22, · · · , 22i〉

in any B-evaluation on {c0, · · · , ci, z0, · · · , zi} (note that 699 = 〈〈5, 2〉, 3〉 and

〈5, 2〉 is a β-code for 〈2〉.)

The terms ul
j are auxiliary (to prove lemma 3.2.3.)
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Similar to lemma 2.3.1 in Chapter 2 we can prove:

Lemma 3.2.2 For i ∈ log2 with i ≥ 1, there is a sequence X with length i

such that ∀j ≤ iφ(j, (X)j) and X ≤ A8i3 for a fixed A ∈ N.

In other words the sequence 〈z0, · · · , zi〉 exists and has a code ≤ A8i3.

Proof. Recall the m and K from the proof of lemma 2.3.1 in Chapter 2,

page 21.

We had cj+1 ≤ m · cj.

Let n = 645 · code(f1,14
2 ) · code(“(”) · code(“)”), so

zj+1 ≤ n · zj · cj, and by reverse induction on l ≤ j,

zj+1 ≤ nl+1 ·m1+···+l · zj−l · [cj−l]l, so

zj+1 ≤ nj+1 ·m1+···+j · z0 · [c0]j, or

zj ≤ Aj2 for A = n ·m · (z0) ·K.

(Note that all the parameters in the induction formula are bounded by

(n ·m · (z0) ·K)i2 which exists, since i ∈ log2.)

So, ∀j ≤ i∃u ≤ Aj2φ(j, u), hence by 2) in page 18, we have the existence

of an X such that X ≤ (Ai2 + 2)4i ∧ {lh(X) = i ∧ ∀j ≤ i φ(j, (X)j)}. �

We note that an Skolem instance of B2 is like

∗) Ψ(zj, cj, u1
j , · · · , uk

j ) → Ψ(zj+1, cj+1, x1, · · · , xk),
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for arbitrary variables x1, · · · , xk.

Lemma 3.2.3 (I∆0) Suppose for i ≥ 699 such that i ∈ log2, we have {c0, · · · , ci, z0, · · · , zi}∪

{ul
j | j ≤ i, 1 ≤ l ≤ k} ⊆ Λ, then for any B-evaluation p on Λ, p satisfies all

the available Skolem instances of Ψ(zj, cj), for any j ≤ i.

(The intuitive meaning is that “i ∈ I” holds for i ∈ log2 in any B-evaluation.)

Proof. First we note that the assertion can be expressed by a bounded

formula:

∀j ≤ i∃u, v ≤ Ai2∀x1, · · · , xk ∈ Λ{φ(j, u)∧ϕ(j, v)∧p[Ψ(u, v, x1, · · · , xk)] = 1}.

By induction on j ≤ i:

For j = 0 by B1.

For j + 1: by induction hypothesis p satisfies all the available Skolem in-

stances of Ψ(zj, cj), so in particular p satisfies Ψ(zj, cj, u1
j , · · · , uk

j ) then by

the above instance ∗), p must satisfy Ψ(zj+1, cj+1, v1, · · · , vk) for all v1, · · · , vk;

that is all the available Skolem instances of Ψ(zj+1, cj+1). �

3.3 The Proof

Now we are close to the proof of the proposition, let α be a theory whose

set of axioms contains the set B, and take a model M |= I∆0 such that

M |= HCon(α) and M |= i ∈ I∧θ(i) for an i ∈ M . Take a set of terms Λ such
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that F (Λ) exists and is in I(M), then we find an admissible set of terms Λ′, on

which there is an α-evaluation (denoted by q) by the assumption HCon(α),

and this α-evaluation induces another (α∪{∃x ∈ I θ(x)})-evaluation (denoted

by p) on Λ. This shows that M |= HCon∗α(∃x ∈ I θ(x)).

We can take i and Λ to be non-standard, since if one of them is standard

the proposition (with almost the same proof) can be justified.

Write θ(x) = ∀x1 ≤ γ1∃y1 ≤ β1 · · · ∀xm ≤ γm∃ym ≤ βmθ(x, x1, y1, · · · , xm, ym).

We note that θ(x) is a bounded formula in our language. So, each γj or

βj (for j ≤ m) is either x or a variable appeared beforehand. Thus γ1 has

to be x, and β1 is either x or x1, similarly γ2 is from {x, x1, y1} and β2 from

{x, x1, y1, x2} and so on1.

There are ∆0-definable (partial) functions on M , g1, · · · , gm (we may assume,

gj : [0, i]j → M) such that for all a1, · · · , am ∈ M ,

M |= a1 ≤ γ′1 → [g1(a1) ≤ β′1 ∧ · · · [am ≤ γ′m → [gm(a1, . . . , am) ≤ β′m ∧

θ(i, a1, g1(a1), · · · , gm(a1, . . . , am))]] . . .],

in which (γ′j, β
′
j; j ≤ m) is the image of (γj, βj; j ≤ m) under the substi-

tution {x 7→ i, xj 7→ aj, yj 7→ gj(a1, · · · aj); j ≤ m}.

Consider the formula

∃x ∈ I θ(x) ≡

∃x∃z∀x1 ≤ γ1∃y1 ≤ β1 · · · ∀xm ≤ γm∃ym ≤ βm∀u{Ψ(z, x,u)∧θ(x, x1, y1, · · · , xm, ym)}.
1For example θ(x) = ∀x1 ≤ x∃y1 ≤ x1∀x2 ≤ y1∃y2 ≤ xθ(x, x1, y1, x2, y2)
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Write its Skolemized form as:

∀x1 · · · ∀xm∀u{Ψ(f2
0 , f 1

0 ,u) ∧ x≤γ′′1 → [f1
1 (x1) ≤ β′′1 ∧ · · · [xm ≤ γ′′m →

[f1
m(x1, . . . , xm) ≤ β′′m ∧ θ(f1

0 , x1, f 1
1 (x1), · · · , xm, f1

m(x1, . . . , xm))]] · · · ]},

in which (γ′′j , β′′j ; j ≤ m) is the image of (γj, βj; j ≤ m) under the substi-

tution {x 7→ f 1
0 , yj 7→ f 1

j (x1, · · ·xj); j ≤ m}.

Recall from Chapter 2 that the function symbols f i
l is supposed to be

the i-th, l-ary Skolem function symbol for the formula y in the definition of

HConT (y). Here y = ∃x ∈ I θ(x), so we use the symbols f 1
0 , f 2

0 , f1
1 , · · · , f 1

m to

Skolemize this formula. Note that we are aiming to show HCon∗T (∃x ∈ I θ(x)).

Define the operationMove on terms be defined by the term-rewriting rules:

- f1
0 7→ ci

- f 2
0 7→ zi

- f 1
1 (cj) 7→ cg1(j)

...

- f 1
m(cj1 , · · · , cjm) 7→ cgm(j1,··· ,jm)

That is the term f 1
0 is mapped (under Move) to ci, and f2

0 is mapped to zi

and for any 1 ≤ t ≤ m the term f 1
t (cj1 , · · · , cjt) is mapped to cgt(j1,··· ,jt).

The accurate definition can be written by a bounded formula by applying
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proposition 3.36, page 314 of [6].

The extension of the operationMove to (all) other terms, has the following

properties:

i) Move(c) is c, if c is a constant symbol other than f 1
0 or f2

0 .

ii) Move(c) ci if c = f 1
0 and is zi if c = f2

0 .

iii) Movef(t1, · · · , tk)) is f(Move(t1), · · · ,Move(tk)) in which f is a func-

tion symbol other than f1
l for 1 ≤ l ≤ m.

iv) Move(f 1
l )(t1, · · · , tl) is f 1

l (Move(t1), · · · ,Move(tl)) if one of t1, · · · , tl is

not in {c0, · · · , ci}.

v) Move(f 1
l )(t1, · · · , tl) is cgl(j1,··· ,jl) if 1 ≤ l ≤ m and t1 = cj1 , · · · , tl = cjl

with j1, · · · , jl ≤ i.

The definition of Move is motivated from the proof of the fact that the

evaluation p defined below, is an α ∪ {∃x ∈ I θ(x)}-evaluation (see below.)

The operation Move changes the roles of f1
0 and f2

0 to ci and zi, so that

p satisfies the available Skolem instances of Ψ(f 2
0 , f 1

0 ) (since any α-evaluation

satisfies the available Skolem instances of Ψ(zi, ci), see lemma 3.2.3) and chang-

ing f 1
t (cj1 , · · · , cjt) to cgt(j1,··· ,jt) implies that p satisfies the available Skolem in-

stances of θ(f1
0 ) (since any α-evaluation satisfies the available Skolem instances

of θ(ci), see lemma 3.1.1.)

Lemma 3.3.1 There is a set Λ1 (in M) such that
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∀t{t ∈ Λ1 ↔ ∃w ∈ Λ
(

t = Move(w)
)

}.

In other words, Λ1 = Move(Λ) exists.

Proof. A trivial corollary of lemma 3.2.2 is that

cj, zj ≤ Aj2 for any j ≤ i.

Hence by 5) in page 18, for any term t which (2Ai2)log(t) exists, Move(t)

exists and is ≤ (2Ai2)log(t); moreover Move(t) ≤ 2Λ ·Ai2Λ, when t ∈ Λ. (Note

that i, Λ ∈ log2.)

Now since
(

2Λ ·Ai2Λ + 2
)|Λ|

exists, and we have ∀x ∈ Λ∃y ≤ 2Λ ·Ai2Λ{y =

Move(x)}, we can use II) in page 19 with the bounded formula ϕ(x, y) = x ∈

Λ → y = Move(x), to infer the existence of Move(Λ). �

There is a natural B ∈ N such that for all j ≤ i and l ≤ k cj, zj, ul
j ≤ Bj2 .

This can be implied from lemmas 2.3.1 and 3.2.2.

Hence we can construct the set {ul
j | j ≤ i, 1 ≤ l ≤ k} (its code can be

≤ (Bi2 + 2)4ik) with a very similar proof of lemmas 2.3.1 and 3.2.2.

Let Λ′ = Move(Λ) ∪ {c0, · · · , ci, z0, · · · , zi} ∪ {ul
j | j ≤ i, 1 ≤ l ≤ k}.

Lemma 3.3.2 The set Λ′ is admissible.

Proof. We have already shown that

(code of) Move(Λ) ≤ (2Λ ·Ai2Λ + 2)|Λ| ≤ 4Λ2Ai2Λ2 , and
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(code of) {c0, · · · , ci, z0, · · · , zi}∪{ul
j | j ≤ i, 1 ≤ l ≤ k} ≤ (Bi2+2)4(k+2)i ≤

24(k+2)iB4i3(k+2).

Hence (code of) Λ′ ≤ 64 · 4Λ2Ai2Λ224(k+2)iB4i3(k+2), by III) in page 19.

Let s = max{i, Λ}. So we can write

Λ′ ≤ Cs4 for a natural number C(= 64 · 4 ·A · 24(k+2) ·B4(k+2)).

Also note that |Λ′| ≤ |Λ|+ (k + 2)i ≤ (k + 3)s, hence

F (Λ′) ≤ (Cs4)(k+3)4s4 = C(k+3)4s8 ≤ 22s .

Now, since s ∈ log2 the lemma is proved. �

Hence by the assumption HCon(α) there is an α-evaluation q on Λ′. Define

the evaluation p on Λ by

p[ϕ(a1, · · · , al)] = q[ϕ(Move(a1), · · · ,Move(al))] for any atomic ϕ.

It can be shown that the above equality holds for open formulae ϕ as well.

We show that p satisfies all the available Skolem instances of {∃x ∈ I θ(x)}∪α

in Λ:

1) p is an α-evaluation, since q is so and the operation Move has nothing to

do with the Skolem functions of α.

For the Skolem instance φ(t1, f
1,j
1 (t1), · · · , tk, f

1,j
k (t1, . . . , tk)) of an axiom of α:

p[φ(t1, f
1,j
1 (t1), · · · , tk, f

1,j
k (t1, . . . , tk))] =
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q[φ(Move(t1),Move(f1,j
1 (t1)), · · · ,Move(tk),Move(f 1,j

k (t1, . . . , tk)))] =

q[φ(Move(t1), f
1,j
1 (Move(t1)), · · · ,Move(tk), f

1,j
k (Move(t1, . . . , tk)))] = 1.

2) p satisfies all the available Skoelm instances of ∃x ∈ I θ(x) in Λ:

2.1) p[Ψ(f 2
0 , f1

0 , t1, · · · , tk)] = q[Ψ(Move(f 2
0 ),Move(f 1

0 ),Move(t1), · · · ,Move(tk))] =

q[Ψ(zi, ci,Move(t1), · · · ,Move(tk))] = 1

since by lemma 3.2.3, q satisfies all the available Skolem instances of Ψ(zi, ci)

then the latter equality holds.

2.2) by lemma 3.1.1 for any term t and any k ≤ i, if p[t ≤ ck] = 1 then

p[t = cj] = 1 for some j ≤ k. So for evaluating θ(x) it is enough to consider

Skolem instances like θ̄(f1
0 , cj1 , f

1
1 (cj1), · · · , cjm , f1

m(cj1 , . . . , cjm)):

p[θ̄(f 1
0 , cj1 , f

1
1 (cj1), · · · , cjm , f 1

m(cj1 , . . . , cjm))] =

q[θ̄(Move(f1
0 ),Move(cj1),Move(f 1

1 (cj1)), · · · ,Move(cjm),Move(f 1
m(cj1 , . . . , cjm)))] =

q[θ̄(ci, cj1 , cg1(j1), · · · , cjm , cgm(j1,...,jm))] = 1

the latter equality holds by M |= θ̄(i, j1, g1(j1), · · · , jm, gm(j1, . . . , jm)) and

lemma 3.1.1.

This completes the proof of the proposition.



Chapter 4

A Proper Subtheory of I∆0 + Ω1

The proof of Gdel’s Incompleteness Theorem is so simple, and so sneaky, that

it is almost embarassing to relate ...

Rucker, Infinity and the Mind

Here we prove proposition 2.4.5.

The crucial part is lemma 4.2.3, for proving which we use some new tech-

niques. In Chapter 3, this had been overcome by accepting two theorems of

I∆0 as axioms, but since here we use the so-called usual axiomatization of

I∆0 + Ω, finding x,y (see below) is somehow tricky. (In Chapter 3, they were

specified by the Skolem terms of the new axioms.)

Another trick is in showing that q satisfies the available Skolem instances

of Φ(x,y, ci), which was illustrated in Example 2, Chapter 2.

49
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4.1 Skolemizing I∆0 + Ω

Let Φ(x, y, i) = ∀j < i{x ≥ (i + 1)y + 1 ∧ β(x, y, 0) = 2 ∧ β(x, y, j + 1) =

(β(x, y, j))2}.

We note that the formula β(x, y, 0) = 2 can be written in our language as

a ∀1-sentence:

∀u1, u2, q, q′, y′, t, r[u1 = S(0) ∧ u2 = S(u1) ∧ q′ = S(q) ∧ y′ = S(y) ∧ t =

q′ · y′ ∧ x = t + r ∧ r ≤ y −→ r = u2],

and we can write β(x, y, j + 1) = (β(x, y, j))2 as:

∀j′, j′′, t1, t′1, t2, t′2, s1, s2, q1, q′1, q2, q′2, r1, r2[j′ = S(j) ∧ j′′ = S(j′) ∧ t1 = j′ · y ∧

t2 = j′′ ·y∧ t′1 = S(t1)∧ t′2 = S(t2)∧ q′1 = S(q1)∧ q′2 = S(q2)∧ s1 = t′1 · q′1∧ s2 =

t′2 · q′2 ∧ x = s1 + r1 ∧ x = s2 + r2 ∧ r1 ≤ t1 ∧ r2 ≤ t2 −→ r2 = r1 · r1].

The formula Φ(x, y, i) states that (x, y) is a (β)-code of a sequence whose

length is at least i + 1, and its first term is 2 and every term is the square of

its preceding term, c.f. Chapter 3.

Define the cut I as: x ∈ I ⇐⇒ ∃v∃wΦ(v, w, x).

(Note that this is equivalent to the corresponding definition in Chapter 3

in the theory I∆0 + Ω, however we will not use this fact.)

For technical reasons we write the normal form of Φ(x, y, i) as:

∀j < i∀u1, u2, q, q′, y′, t, r, q′′, t′, j′, j′′, t1, t′1, t2, t
′
2, s1, s2, q1, q′1, q2, q′2, r1, r2, q′′1 , q

′′
2 , s

′
1, s

′
2{u1 =

S(0)∧u2 = S(u1)∧ q′ = S(q)∧ y′ = S(y)∧ t = y′ · q∧x = t+ r∧ r ≤ y∧ [q′′ =
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S(q′) ∧ t′ = t + q′] ∧ j′ = S(j) ∧ j′′ = S(j′) ∧ t1 = j′ · y ∧ t2 = j′′ · y ∧ t′1 =

S(t1) ∧ t′2 = S(t2) ∧ q′1 = S(q1) ∧ q′2 = S(q2) ∧ s1 = t′1 · q′1 ∧ s2 = t′2 · q′2 ∧ [q′′1 =

S(q′1) ∧ q′′2 = S(q′2) ∧ s′1 = s1 + t′1 ∧ s′2 = t2 + t′2] ∧ x = s1 + r1 ∧ r1 ≤ t1 ∧ x =

s2 + r2 ∧ r2 ≤ t2 −→ r = u2 ∧ r2 = r1 · r1}.

The open part of this rather long formula presents that:

• u1 = 1 and u2 = 2.

• if x = (y + 1)(q + 1) + r and r ≤ y then r = u2(= 2).

(The term y + 1 is represented by y′ and y′ · q is represented by t.)

• if x = ((j + 1)y + 1)(q1 + 1) + r1 with r1 ≤ (j + 1)y and

x = ((j + 2)y + 1)(q2 + 1) + r2 with r2 ≤ (j + 2)y, then r2 = r2
1.

(The term (j +1)y is represented by t1 and (j +2)y by t2, also the variable

s1 represents (t1 + 1)(q1 + 1) and s2 represents (t2 + 1)(q2 + 1).)

The terms in brackets ([ ]) are unnecessary to mention in the formula, but

by having them we guarantee the existence of the terms S(q′), t+y, S(q′1), s1 +

t′1, S(q′2), s2 + t′2 which will be used in the proof of lemma 4.2.3 (c.f. Example

2, Chapter 2.)

Denote the open part of Φ by Φ, so Φ(v, w, x) = ∀uΦ(v, w, x,u), in which

u = (u1, · · · , uk), for a natural k.

An upper bound for a β-code of 〈2, 22, 222 , · · · , 22i〉 can be like:

b = i!22i ≤ (22i)2,
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a ≤ i ·
∏

1≤j≤i(jb + 1) · (22i + ib + 1) ≤ (22i)6 · 2i2i ≤ [ω(22i)]7. (c.f. Chapter 3.)

So we can show:

Lemma 4.1.1 I∆0 + Ω ` ∀z, i
(

z ≥ 22i → ∃u, vΦ(u, v, i)
)

Proof. Take i and z such that z ≥ 22i . Let v = i! · 22i (note that it exists

since i! · 22i ≤ (22i)2 ≤ z2.)

It is easy to see that (kv + 1, lv + 1) = 1 for any k, l ≤ i + 1 which k 6= l.

We note that vi exists
(

vi ≤ (i!)i · 2i2i ≤ 22i · ω(22i) ≤ z · ω(z)
)

hence vj

exists for all j ≤ i. Also ij exists for j ≤ i.

Let dj = 2j · ij · vj. By induction on j ≤ i it can be shown that:

∃x ≤ z3ω(z)[x ≤ dj ∧ ∀k < j{(k + 1)v + 1 | x}]

For j = 0 it is trivial, for j + 1, take an x such that x ≤ dj and ∀k <

j{(k+1)v+1 | x}, let y = x ·((j+1)v+1), then y ≤ x ·2 ·j ·v ≤ dj(2iv) = dj+1

and ∀k < j + 1{(k + 1)v + 1 | x}.

Call the corresponding x to j, lj (so, ∀k < j{(k + 1)v + 1 | lj}.)

Now, let a0 = 2, and inductively

ak+1 = ak + lk · inv(lk, (k + 1)b′ + 1) · [22k+1 + ngt(ak, (k + 1)b′ + 1)],

for k < i.

And finally u = ai. It can be seen that Φ(u, v, i) holds. �

We note that the order of axioms in (any) axiomatization, from the Her-
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brand Consistency viewpoint, is not essentially important. (The only differ-

ence it would make is changing of the Skolem function symbols, recall that the

function symbols f i,j
k were kept for the j-th axiom.)

Here our axiomatization will consist of A1 − A12 (introduced in Chapter

3) plus the axioms A13 − A25 below, companied with some of the induction

axioms by which ∗,∗∗ and ∗ ∗ ∗ below can be proven.

Let the 13-th axiom of I∆0 + Ω be

A13. ∀x∃y(y = x2)

Fix the terms Z0 = c4, and inductively Zj+1 = f1,13
1 (Zj), for j ≤ i, where

i ∈ log2 is given.

Similar to what have been prived in Chapters 2 and 3, it can be shown

that the terms Zj can be defined by bounded formulae, and (the code of) the

set containing Zj for j ≤ i exists.

And fix the axioms

A14. ∀x, y∃z“z = x + y”

A15. ∀x, y(x ≤ y ∧ y ≤ x → x = y)

A16. ∀x, y(x ≤ y ∨ y ≤ x)

Let x < y abbreviate x ≤ y ∧ ¬y ≤ x.

A17. ∀x, y, z(x < y → x + z < y + z)

A18. ∀x, y, z(x ≤ y → x · z ≤ y · z)
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A19. ∀x, y, x′(x′ = S(x) ∧ x < y → x′ ≤ y)

A20. ∀x, y(x + y = y + x)

A21. ∀x, y(x + y = x + z → y = z)

A22. ∀x, y(x · y = y · x)

A23. ∀x, y, u, v(“x + y = u” ∧ “x + y = v” → u = v)

A24. ∀x, y, u, v(“x · y = u” ∧ “x · y = v” → u = v)

A25. ∀x, y∃z“z = x · y”

For finding a sufficiently strong fragment of I∆0 + Ω, we note that the

followings are provable in I∆0:

∗ BME(φ) (Bounded Maximal Element)

∀i, z
(

∃x ≤ iφ(x, z) → ∃y ≤ i
(

φ(y, z) ∧ ∀z ≤ i(z > y → ¬φ(z, z))
)

)

,

for bounded φ.

We are interested in the particular case φ(x, u) = 22x ≤ u.

∗∗ DIV (Division theorem and its uniqueness)

∀x, y∃q, r(x = q · y + r ∧ r < y)

∀x, y, q, q′, r, r′
(

x = q ·y+r∧r < y∧x = q′ ·y+r′∧r′ < y → q = q′∧r = r′
)

∗ ∗ ∗ ∀x(x ≤ x2)

Let D be a finite fragment of I∆0 +Ω containing A+A13−A25 such that

the lemmas (3.1.1, 4.1.1) as well as BME(22x ≤ y) and DIV, also ∗ ∗ ∗ can be
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proven in D.

4.2 The Proof

Let α be a theory extending D, and take a model M |= I∆0 + Ω such that

M |= HCon(α) and M |= i ∈ I∧θ(i) for an i ∈ M . Take a set of terms Λ such

that F (Λ) exists and is in I(M), then we find an admissible set of terms Λ′ on

which, by the assumption HCon(α), there is an α-evaluation that induces an

(α ∪ {∃x ∈ I θ(x)})-evaluation on Λ. This shows M |= HCon∗α(∃x ∈ I θ(x)).

Take θ, θ and the functions g1, · · · , gm as in Chapter 3.

Consider the formula

∃x ∈ I θ(x) ≡

∃x∃a, b∀x1 ≤ α1∃y1 ≤ β1 · · · ∀xm ≤ αm∃ym ≤ βm∀u{Φ(a, b, x,u)∧θ(x, x1, y1, · · · , xm, ym)}.

Write its Skolemized form as:

∀x1 · · · ∀xm∀u{Φ(f2
0 , f 3

0 , f 1
0 ,u) ∧ x ≤ α′′1 → [f 1

1 (x1) ≤ β′′1 ∧· · · [xm ≤ α′′m →

[f 1
m(x1, . . . , xm) ≤ β′′m ∧ θ(f1

0 , x1, f 1
1 (x1), · · · , xm, f1

m(x1, . . . , xm))]] · · · ]},

in which (α′′j , β
′′
j ; j ≤ m) is the image of (αj, βj; j ≤ m) under the substi-

tution {x 7→ f 1
0 , yj 7→ f 1

j (x1, · · ·xj); j ≤ m}.

Assume α = {T1, · · · , Tn}, with the Skolem function symbols {f l,j
k | 1 ≤

j, l ≤ n & k ≤ n}.

Let S0
i = {c0, · · · , ci, Z0, · · · , Zi}, and inductively



CHAPTER 4. A PROPER SUBTHEORY OF I∆0 + Ω1 56

Su+1
i = Su

i ∪ {f
l,j
k (a1, · · · , aj) | 1 ≤ j, l ≤ n & k ≤ n; a1, · · · , aj ∈ Su

i }.

We note that w ∈ Su
i can be written by a bounded formula (w.r.t u,i and

w.) We can write this by a bounded formula Γ(w, i, u): (see page 313 of [6]

for the notation)

Term(w) ∧ ∀y ≤ w{SubWB(y, w) → ∃j ≤ i
(

ϕ(j, y) ∨ φ(j, y)
)

∨ ∃p1, · · · , pn ≤

y∃j′, k′, l′ ≤ n[y = f l′,j′
k′ (p1, · · · , pk′)∧SubWB(p1, w)∧· · ·∧SubWB(pn, w)]} &

& ∀u ⊆p w
(

∃j1 ≤ i
(

ϕ(j1, u)∨φ(j1, u)
)

→ ∃z ⊆p w{∃j2 ≤ i
(

ϕ(j2, z)∨φ(j2, z)
)

∧

u ⊆p z∧∃X ⊆ w[lh(X) ≤ u∧(X)0 = w0∧∀x(x ∈ X → ∃j, k, l ≤ n(x = f l,j
k ))∧

∃r1, · · · , rn ≤ w
(

(X)lh(X)−1(r1, · · · , z, · · · ) ⊆p w
)

∧ ∀j < lh(X)∃p1, · · · , pn ≤

w∃q1, · · · , qn ≤ w{(X)j(q1, · · · , (X)j+1(p1, . . .), · · · ) ⊆p w}]}
)

.

(We note that x ⊆p y and x ⊆ y are bounded formulae, see [6] page 312.)

The first two lines of this formula says that w is a (closed) term constructed

from {c0, · · · , ci, z0, · · · zi} (instead of variables.) And the second part guaran-

tees that w ∈ Su
i : the subsequence X is a sequence of Skolem function symbols

such that (X)j(q1, · · · , (X)j+1(p1, . . .), · · · ) ⊆p w, so starting with z[= cj2∨zj2 ],

we can write

w = (X)0(· · · , (X)lh(x)−2(· · · , (X)lh(X)−1(r1, · · · , z · · · ), · · · ), · · · ).

So, the term w is constructed from z by closing it up to the lh(X)-th fold,

note that lh(X) ≤ u. If we can find such a z for every u ⊆p w then we can

infer that w ∈ Su
i . (Its construction fold is at most u.)

For terms v, w define the operation Movev,w on terms be defined by the
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term-rewriting rules:

- f1
0 7→ ci

- f2
0 7→ v

- f3
0 7→ w

- f1
1 (cj) 7→ cg1(j)

...

- f 1
m(cj1 , · · · , cjm) 7→ cgm(j1,··· ,jm)

That is the term f 1
0 is mapped (under Movev,w) to ci, the constant f2

0 is

mapped to v and f 3
0 to w, also for any 1 ≤ t ≤ m the term f 1

t (cj1 , · · · , cjt) is

mapped to cgt(j1,··· ,jt).

The accurate definition can be written similarly to that of Move in Chapter

3. (In a similar way, the definition of Moveu,v can be extended to all other

terms.)

The operation Movev,w is very similar to Move in Chapter 3, with the

difference that we do not know (yet) which terms v, w should be fixed for

playing the role of “the β-code of the sequence 〈Z0, Z1, · · · , Zi〉”. They (x,y)

are found in lemma 4.2.3 below.

Similar to Chapter 3, we note that t = Movev,w(u) can be written by a

bounded formula w.r.t. t,u,v and w.

We assume both (code of) Λ and i are non-standard, the other cases are
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discussed at the end.

Lemma 4.2.1 1) For u ≤ 1
n+1 log2 i, the set Su

i exists (in M .) That is

∃Σ ∀x(x ∈ Σ ↔ Γ(x, i, u)).

2) For any v, w ∈ Su
i where u ≤ 1

n+1 log2(min{Λ, i}), there is a set Λ1 (in

M) such that ∀t{t ∈ Λ1 ↔ ∃x ∈ Λ[t = Movev,w(x)]}.

In other words,Movev,w(Λ) = Λ1 exists, when v, w ∈ Su
i for u ≤ 1

n+1 log2(min{Λ, i}).

3) Moreover with the hypothesis of 2) there exists a set Bj
i with the property

that ∀x{x ∈ Bj
i ↔ ∃v, w, t[Γ(v, i, j) ∧ Γ(w, i, j) ∧ t ∈ Λ“x = Movev,w(t)”]}.

(Informally speaking, Bj
i =

⋃

v,w∈Sj
i
Movev,w(Λ).)

Proof. 1) By an argument similar to lemma 2.3.1 in Chapter 2 and the

proof of lemma 3.3.2 in Chapter 4, it can be shown that there is a natural D

such that cj, Zj, Uj ≤ Dj2 for any j ≥ 1, with j ≤ i.

Let L = 64n ·code(fn,n
n )·code(“(”)·code(“)”). (We may assume that code(fn,n

n )

is the maximum of {code(f l,j
k | 1 ≤ j, l ≤ n & k ≤ n)}.)

And C(j, i) = 26n3( (n+1)j−1
n )(2i)(n+1)j

(LjDi2nj)2n3( (n+1)j−1
n )(2i)(n+1)j

, for j ≤ u.

Note that since u ≤ 1
n+1 log2(min{Λ, i}), the value C(u, i) exists.

By induction on j ≤ u it can be shown that

∃Σ ≤ C(u, i)[Σ ≤ C(j, i) ∧ ∀x{x ∈ Σ ↔ Γ(x, i, j)}].

(We note that all the quantifiers of the explicit form of the above formula

can be bounded by C(u, i).)
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We briefly sketch the induction step: intuitively (informally) the number

of x’s satisfying Γ(x, j + 1, i) are ≤ n3|Sj
i |+ n3|Sj

i |+ n3|Sj
i |2 + · · ·+ n3|Sj

i |n ≤

n3|Sj
i |n+1, and also those x’s are ≤ L · [max(Sj

i )]
n.

If we add more information about Sj
i to the induction hypothesis, namely

max(Sj
i ) ≤ Lj · (Di2)nj , and |Sj

i | ≤ n3( (n+1)j−1
n )(2i)(n+1)j , then we conclude the

existence of Sj+1
i as follows:

Put Aj
i =

n−times ∪
︷ ︸︸ ︷

Sj
i ∪ Sj

i × Sj
i ∪ · · · ∪ Sj

i × . . .× Sj
i

︸ ︷︷ ︸

n−times

.

We have 〈x1, · · · , xm〉 ≤ (2m + 1)u2m + 1, for x1, · · · , xm ≤ u (m ∈ N).

So, max(Aj
i ) ≤ (2m + 2)

(

max(Sj
i )

)2m

≤ (2m + 2)(LjDi2nj)2m .

Now let the bounded formula ϕ(x, y) be
∨

m≤n[∃x1, · · · , xm{x = 〈x1, · · · , xm〉∧
∧

k≤m Γ(xk, i, j)} → (Γ(y, i, j) ∨
∨

1≤l,s≤n,t≤n y = f l,s
t (x1, · · · , xm))].

[The intentional meaning of ϕ(x, y) is x ∈ Aj
i → y ∈ Sj+1

i .]

So, we have ∀w ≤ (2m + 2)(LjDi2nj)2m∃v ≤ L · [Lj · (Di2)nj ]nϕ(w, v).

Hence the existence of Sj+1
i follows from II) in page 19; and by I) in the

same page, we can write:

Sj+1
i ≤ (26(max(Sj+1

i ))2)|S
j+1
i | ≤ (26(L · [max(Sj

i )]
n)2)n3|Sj

i |
n+1 ≤ C(j+1, i).

2) For v, w ∈ Su
i and y ∈ Λ, (max(Su

i ))c log(t) ≤ (LuDi2nu)cΛ exists, so

Movev,w(t) exists by 5) in page 18.

Since also ((LuDi2nu)cΛ + 2)|Λ| exists [ here the fact u ≤ 1
n+1 log2(min{Λ, i})

is used ] then by II) in page 19, Movev,w(Λ) exists.
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3) In the upper bound (LuDi2nu)cΛ for Movev,w(t) given above, v and w do

not appear. So, this bound is uniform on Su
i . Hence we have

∀v, w ∈ Sj
i ∀t ∈ Λ∃x ≤ (LuDi2nu)cΛ[x = Movev,w(t)].

Now, with an argument very similar to that of 1) by using II) page 19,

we can conclude the existence of Bj
i having the property ∀x{x ∈ Bj

i ↔

∃v, w, t[v, w ∈ Sj
i ∧ t ∈ Λ“x = Movev,w(t)”]}.

Also by I) page 19, we can have an upper bound for its code:

Bj
i ≤ 4 · 28|Bj

i | · (max(Bj
i ))

2|Bj
i | ≤ 4 · 28|Λ||Su

i |2 · (LuDi2nu)2cΛ|Λ||Su
i |2 ≤

≤ 4 · 28Λ(n3( (n+1)u−1
n )(2i)(n+1)u )2(LuDi2nu)2cΛ2(n3( (n+1)u−1

n )(2i)(n+1)u )2 . �

Lemma 4.2.2 For non-standard i and (the code of) Λ, there is a non-standard

j such that Sj
i ∪ B

j
i is admissible.

Proof. Take a non-standard j ≤ 1
n+1 log2(min{Λ, i}). So, by III) in page

19, we have Sj
i ∪ B

j
i ≤ 64 · Sj

i · B
j
i ≤

≤ 64 · C(j, i) · 4 · 28Λ(n3( (n+1)j−1
n )(2i)(n+1)j )2(LjDi2nj)2cΛ2(n3( (n+1)j−1

n )(2i)(n+1)j )2 .

It can be seen that the F of the right-hand-side of the above inequality exists,

for any j with j ≤ 1
n+1 log2(min{Λ, i}). �

Let Λ′ = Sj
i ∪ B

j
i for a non-standard j ≤ 1

n+1 log2(min{Λ, i}) (see the

previous lemma.)
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Hence by the assumption HCon(α) (since Λ′ is admissible) there is an

α-evaluation q on Λ′.

In particular q is defined on K ′ =
⋃

k∈N Sk
i .

Define the equivalence relation ∼ on K ′ by x ∼ y ⇐⇒ q[x = y] = 1,

and let K = {[a] | a ∈ K ′}.

It turns out that K |= α with the interpretation induced from q (by the

definition K |= φ(a1, · · · , al) if M |= “q[φ(a1, · · · , al)] = 1”, c.f. Chapter 2.)

Lemma 4.2.3 There are x,y ∈ K ′ such that K |= Φ([x], [y], [ci]) and the

evaluation q satisfies all available Skolem instances of Φ(x,y, ci) in Λ′.

Proof. (c.f. proof of lemma 4.5 in [1]). Let k be the maximum l ∈ K

such that K |= l ≤ [ci] ∧ 22l ≤ [Zi] (by BME(22x ≤ y) such a k exists).

So the sequence 〈2, 22, · · · , 22k〉 has a β-code in K. (By the lemma 4.1.1,

K |= “a β − code of 〈22, 222 , · · · , 222k

〉” ≤ {ω([Zi])}7.)

We show K |= k = [ci].

Suppose 〈a, b〉 is a β-code of the above sequence in K. Write a = [x] and

b = [y] for x,y ∈ Sn0
i for a natural n0.

By lemma 2.2.1, since α ` ∀x, y∃s, r
(

x > y → x = y(s + 1) + r ∧ r < y
)

,

we have M |= ∀j ≤ i∃s, r“q[x = (s + 1)(ycj+1 + 1) + r ∧ r ≤ ycj+1] = 1”.

Let the corresponding s, r for j be qj, rj.

(That is M |= “q[x = (qj + 1)(ycj+1 + 1) + rj ∧ rj ≤ ycj+1] = 1”.)
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Moreover since a′, b′ ∈ Sn0
i and cj+1 ∈ S1

i for j ≤ i, then qj, rj can be chosen

such that qj, rj ∈ Sn0+n1
i for a natural n1 (given by lemma 2.2.1. Note that by

A14 and A15, if c, d ∈ Sl
i then c + d, c · d ∈ Sl+1

i .)

Hence 〈qj, rj ; j ≤ i〉 is ∆0-definable in M .

So q[x = (qj + 1)(ycj+1 + 1) + rj ∧ rj ≤ ycj+1] = 1, and then

K |= a = ([qj] + 1)(b[cj+1] + 1) + [rj] ∧ [rj] ≤ b[cj+1].

By induction on j ≤ k (in M) we show M |= “q[rj = Zj] = 1”:

For j = 0, since K |= [Z0] = c2 = [r0] (by the uniqueness of the division

theorem) then q[r0 = c2 = Z0] = 1.

For j + 1, we have K |= [Zj+1] = ([Zj])2, by the definition of Z ′s, and

since by the induction hypothesis q[rj = Zj] = 1 then K |= [rj] = [Zj] so

K |= [Zj+1] = ([Zj])2 = ([rj])2 = [rj+1], hence q[Zj+1 = rj+1] = 1.

In particular K |= [rk] = [Zk], we also note that K |= 22k = [rk] by the

definition of rk.

Now if K |= k < [ci], then K |= k + 1 ≤ [ci], so

K |= 22k+1 = (22k)2 = ([rk])2 = ([Zk])2 = [Zk+1] ≤ [Zi], contradiction by

the choice of k.

(We note that G ` ∀x(x ≤ x2).)

So K |= k = [ci] and K |= Φ([x], [y], [ci]).

Let q′k = f 1,1
1 (qk).
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Thus q satisfies

q′k = S(qk) ∧ x = q′k · S(S(ck) · y) + rk ∧ rk ≤ S(ck) · y

and rk+1 = rk · rk, for any k < i.

So for showing that q satisfies Φ([x], [y], [ci]) it is enough to show that for

any terms Q,Q′, Q′′, R, T, T ′, S, S ′ in Λ′:

if q satisfies Q′ = S(Q) ∧ Q′′ = S(Q′) ∧ T = ck+1 · y ∧ T ′ = S(T ) ∧ S =

Q′ · T ′ ∧ x = S + R ∧R ≤ T ∧ S ′ = S + T ′ then q[Q′ = qk ∧R = rk] = 1.

(We note that the conjunction of all that formulae means x = ((ck + 1)y +

1)(Q + 1) + R ∧R ≤ (ck + 1)y.)

Or in other words q satisfies the uniqueness in the division theorem, since

q already makes x = qk((ck + 1)y + 1) + rk+1 ∧ rk ≤ (ck + 1)y true.

[In this part of the proof, like in the Example 2 of Chapter2, we use the

existence of the terms Q′′, f 1,1
1 (q′k)(= S(q′k)), S ′ and q′k · T ′ + T ′.]

If q[q′k = Q′] = 0 then either q[f 1,1
1 (q′k) ≤ Q′] = 1 or q[Q′′ ≤ q′k] = 1 by A19

(note that f 1,1
1 (q′k) ∈ K ′)

case 1) q[Q′′ ≤ q′k] = 1,

we have q[T < T ′] = 1 by A7 and A12, so q[R < T ′] = 1 by A4 and A12 ,

hence q[x < S ′] = 1 by A17, also q[S′ = Q′′ ·T ′] = 1 by A11, q[S′ ≤ q′k ·T ′] = 1

by A8, and q[q′k · T ′ ≤ x] = 1 by A18 and A22, so q[x < x] = 1 by A4, and

this is contradiction by A3.
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case 2) q[f1,1
1 (q′k) ≤ Q′] = 1,

similarly q[rk < T ′] = 1, so q satisfies x < q′k · T ′ + T ′ = T ′ · f 1,1
1 (q′k) ≤

Q′ · T ′ ≤ Q′ · T ′ + R = x, which leads to contradiction.

So, q[q′k = Q′] = 1 hence q[rk = R] = 1. �

Fixing the terms x,y as in the above lemma, define the evaluation p on Λ

by p[ϕ(a1, · · · , al)] = q[ϕ(Movex,y(a1), · · · ,Movex,y(al))] for any atomic ϕ.

It can be shown that the above equality holds for open formulae ϕ as well.

We show that p satisfies all the available Skolem instances of α∪{∃x ∈ I θ(x)}

in Λ:

1) p is an α-evaluation, since q is so and the operation Move has nothing to

do with the Skolem functions of α.

For the Skoelm instance φ(t1, f
1,j
1 (t1), · · · , tk, f

1,j
k (t1, . . . , tk)) of the j-th

axiom of α, p[φ(t1, f
1,j
1 (t1), · · · , tk, f

1,j
k (t1, . . . , tk))] =

q[φ(Movex,y(t1),Movex,y(f1,j
1 (t1)), · · · ,Movex,y(tk),Movex,y(f1,j

k (t1, . . . , tk)))] =

q[φ(Movex,y(t1), f
1,j
1 (Movex,y(t1)), · · · ,Movex,y(tk), f

1,j
k (Movex,y(t1, . . . , tk)))] = 1.

2) p satisfies all the available Skoelm instances of ∃x ∈ I θ(x) in Λ:

2.1) p[Φ(f 2
0 , f 3

0 , f 1
0 , t1, · · · , tk)] =

q[Φ(Movex,y(f 2
0 ),Movex,y(f3

0 ),Movex,y(f1
0 ),Movex,y(t1), · · · ,Movex,y(tk))] =

q[Φ(x,y, ci,Movex,y(t1), · · · ,Movex,y(tk))] = 1
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since by lemma 4.2.3, q satisfies all the available Skolem instances of Φ(x,y, ci)

in Movex,y(Λ) then the latter equality holds.

2.2) by lemma 3.1.1 for any term t and any k ≤ i, if p[t ≤ ck] = 1 then

p[t = cj] = 1 for some j ≤ k. So for evaluating θ(x) it is enough to consider

Skolem instances like θ̄(f 1
0 , cj1 , f

1
1 (cj1), · · · , cjm , f 1

m(cj1 , . . . , cjm)):

p[θ̄(f 1
0 , cj1 , f

1
1 (cj1), · · · , cjm , f 1

m(cj1 , . . . , cjm))] =

q[θ̄(Movex,y(f1
0 ),Movex,y(cj1),Movex,y(f 1

1 (cj1)), · · · ,Movex,y(cjm),Movex,y(f1
m(cj1 , . . . , cjm)))] =

q[θ̄(ci, cj1 , cg1(j1), · · · , cjm , cgm(j1,...,jm))] = 1

the latter equality holds by M |= θ̄(i, j1, g1(j1), · · · , jm, gm(j1, . . . , jm)) and

lemma 3.1.1.

The assumption “(the code of) Λ and i are non-standard” is used (only)

in Lemma 4.2.2. If one of them is standard (and the other one non-standard)

then a very similar argument
(

with the j ≤ 1
n+1 log2(max{Λ, i})

)

can show

admissibility of Λ′ = Sj
i ∪ B

j
i .

If both Λ and i are standard, we note that in the standard model N, the

proposition HCon(α) ∧ ∃x ∈ I θ(x) → HCon∗α(“∃x ∈ I θ(x)”) is satisfied,

and in a non-standard model (say M) any non-standard j ∈ log3(M) does the

job (i.e. Sj
i ∪ B

j
i is admissible.)

This, proves the proposition.



Chapter 5

Relations to Earlier Results

And [Godel’s Second Incompleteness Theorem] has been taken to imply that

you’ll never entirely understand yourself, since your mind, like any other

closed system, can only be sure of what it knows about itself by relying on

what it knows about itself.

Jones and Wilson, An Incomplete Education

5.1 A Solution to Adamowicz & Zbierski’s Pro-

belm

Adamowicz and Zbierski [1] code Skolem terms in a completely different way

(see [1]) and define evaluations on special set of terms, sets like [0, li) = {a | a <

li} for an i ∈ log3, where li is a I∆0-definable function on (its domain) the cut

66
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log2. And Herbrand Consistency of a theory T is defined as:

“For any i ∈ log3 there is an T -evaluation on [0, li)”.

There, code of an evaluation on [0, li) is roughly bonded by 22l3i +3l2i , and

since li ≤ 22i then, in presence of Ω2, 22l3i +3l2i exists for i ∈ log3, so all the

possible evaluations on [0, li) are available.

Satisfaction of a formula by an evaluation is defined by an entirely model-

theoretic way (denoted by p � φ.) Every set like [0, li) is a Skolem hull of a

theory T and evaluations are estimations of a (potential) Herbrand model.

In [1] the authors ask:

Assume p 6� ϕ for a T -evaluation p on [0, li). Does there exist an evaluation

q on [0, lj), where j < i, such that q � ¬ϕ?

Now we give a negative answer by Example 1.

First we note that, for any i and p an evaluation on [0, li):

– for ∀1-formula ∀xA(x), p � ∀xA(x) iff for all a < li−1, p[A(a)] = 1; and

– for ∃1-formula ∃xB(x), p � ∃xB(x) iff there is a b < lm+2 such that

p[B(b)] = 1, where m is the code of ∃xB(x).

Take an arbitrary i ∈ log3 and define the evaluation p on Ei by {φ | p[φ] =

1} = {F (x, y) | x < li−1 and y = Sk,1
1 (x) for a k ≤ i} ∪ {G(x, y) | x <

li−1 and y = Sk,2
1 (x) for a k ≤ i} ∪ {R(x) | x < li−2} ∪ {S(x) | li−1 ≤ x < li}.

Let ϕ = ∀xR(x), so p is an E-evaluation such that p 6� ϕ.
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Let n be the code of ¬ϕ = ∃x¬R(x), we claim that for any j ≥ n+4 there

is no E-evaluation on [0, lj) which forces (satisfies) ϕ .

Assume q is an E-evaluation on [0, lj) such that q � ¬ϕ, so there is a

b < ln+2 such that q[R(b)] = 0, then since Sj,1
1 (b) < ln+3 < lj we have

q[F (b, Sj,1
1 (b))] = 1 by A1, then q[R(b) ∨ S(Sj,1

1 (b))] = 1 by A3, and so by

the assumption we get q[S(Sj,1
1 (b))] = 1, also Sj,2

1 (Sj,1
1 (b)) < ln+4 ≤ lj, then by

A2 we have q[G(Sj,1
1 (b), Sj,2

1 (Sj,1
1 (b)))] = 1, so q[S(Sj,1

1 (b))] = 0 by A4, and this

is a contradiction. So there is no such a q.

This, for n+4 ≤ j < i, gives a negative answer to Adamowicz and Zbierski’s

question. We note that the question is interesting (and makes sense) when i

and j are taken to be non-standard.

5.2 A Generalization of Adamowicz’s Theo-

rem

In the rest of this Chapter, we show Godel’s Second Incompleteness Theorem

for Herbrand Consistency of I∆0 + Ω1, by use of Adamowicz’s theorem.

In [2] Adamowicz has shown that:

Proposition 5.2.1 There is a bounded formula θ0(x) such that

I∆0 + Ω1 + ∃x ∈ log2θ0(x) is consistent,
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but I∆0 + Ω1 + ∃x ∈ log3θ0(x) is inconsistent.

So we can get the following corollary

Corollary 5.2.2 There is a finite fragment of I∆0+Ω1, say G1, and a bounded

formula θ0(x) such that for any finite theory α ⊆ I∆0 + Ω1 extending G1,

α + ∃x ∈ log3θ0(x) is inconsistent,

but α + ∃x ∈ log2θ0(x) is consistent.

We prove the following:

Proposition 5.2.3 There is a fragment of I∆0 +Ω1, say G, such that for any

finite theory α extending G, and for any bounded formula θ(x),

if α + ∃x ∈ log2θ(x) + HCon(α) is consistent,

then α + ∃x ∈ log3θ(x) is consistent too.

Then, similar to [2] we get

Theorem 5.2.4 There is a finite fragment G ∪G1 of I∆0 + Ω1 such that for

any finite theory α ⊆ I∆0 + Ω1 extending G ∪G1, we have α 6` HCon(α).

Proof. If α + ∃x ∈ log2θ0(x) + HCon(α) were consistent, then α + ∃x ∈

log3θ0(x) would be consistent by theorem 5.2.3, but this is contradiction by

corollary 5.2.2. So α + ∃x ∈ log2θ0(x) + HCon(α) is inconsistent, and since
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α + ∃x ∈ log2θ0(x) is consistent then α + ∃x ∈ log2θ0(x) +¬Hcon(α) must be

consistent, in particular α + ¬HCon(α) is consistent. �

This marvelous proof was originated by Adamowicz [2], who proved I∆0 +

Ω2 6` HCon(I∆0 +Ω2) by model-theoretic methods without basing on Godel’s

diagomalization lemma.

5.2.1 Skolemizing x ∈ log3

Let Ψ1(z, i) = ∀x ≤ z∀y ≤ z∀j < i{〈x, y〉 = z → x ≥ (i + 1)y + 1∧

∧β(x, y, 0) = 4 ∧ β(x, y, j + 1) = ω1(β(x, y, j))}.

The formula Ψ1(z, i) states that z is a (β)-code of a sequence whose length

is at least i+1, and its first term is 4 and every term is the ω1 of its preceding

term. So such a sequence looks like: 〈22, 222 , 2222 , · · · , 222i

, . . .〉. (c.f. Chapter

3.)

We can define the cut log3 as: x ∈ log3 ⇐⇒ ∃zΨ1(z, x).

An upper bound for a β-code of 〈22, 222 , 2222 , · · · , 222i

〉 can be like:

b = i!222i

≤ 22i222i

,

a ≤ i ·
∏

1≤j≤i(jb + 1) · (222i

+ ib + 1) ≤ 2i · 22i · (222i

)i · 3 · 222i

≤ 2i · 22i · 3 ·

222i

· 222i+1

= 2i · 22i · 3 · 222i

· ω1(222i

),

so z = 〈a, b〉 ≤ (ω1(222i

))7. (c.f. Chapter 4.)

Similar to lemma 4.1.1 in Chapter 4, it can be shown that:
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Lemma 5.2.5 I∆0 + Ω1 ` ∀z, i
(

z ≥ 222i

→ ∃xΨ1(x, i)
)

Assume the next axioms of I∆0 + Ω1 (in addition to A) are:

A′13. ∀x∃y(y = ω1(x))

A′14. ∀x, y∃z“z = x + y”

A′15. ∀x, y∃z“z = x · y”

The formula y = ω1(x) is bounded, suppose it has the form

∀x1 ≤ α1∃y1 ≤ β1 · · · ∀xm ≤ αm∃ym ≤ βmθ(x, y, x1, y1, · · · , xm, ym).

So the normalized form of A′13 is

∀x∃y∀x1 ≤ α1∃y1 ≤ β1 · · · ∀xm ≤ αm∃ym ≤ βmθ(x, y, x1, y1, · · · , xm, ym).

Fix the terms w0 = c4 and wj+1 = f 1,13
1 (wj), for j ≤ i, where i ∈ log2 is

given.

Existence of (the codes of) those terms and the set containing them can be

shown in a similar way that is shown in Chapter 2.

Recall that f1,13
1 is the function symbol for A13, so the intended interpre-

tation of wj is, informally speaking, wj+1 = ω1(wj).

Let G be a finite fragment of I∆0 + Ω1 containing A + A′13 such that

lemmas 3.1.1, and 5.2.5 as well as BME(222x

≤ y) and DIV (also the statement

∀x{x ≤ ω1(x)}) can be proven in G. (c.f. Chapter 4.)
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5.2.2 The Proof

Let α be a finite subtheory of I∆0+Ω1 extending G, and take a (non-standard)

model M |= α + HCon(α) + i ∈ log2 ∧ θ(i) where i ∈ M (we can assume i is

non-standard, as for the standard case the result is obvious.)

We will construct a model K |= α + ∃x ∈ log3θ(x).

Without loss of generality we can assume α = {T1, · · · , Tn}, with the

Skolem function symbols {fk,i
j | 1 ≤ i, j, k ≤ n}.

Let S0
i = {c0, · · · , ci, w0, · · · , wi}, and inductively

Su+1
i = Su

i ∪ {f
k,i
j (a1, · · · , aj) | 1 ≤ i, j, k ≤ n; a1, · · · , aj ∈ Su

i }. (c.f.

Chapter4.)

The next lemma was actually proved in Chapter 4:

Lemma 5.2.6 For non-standard i, there is a non-standard w such that Sw
i is

admissible.

So there is an α-evaluation p on Sw
i , for a w whose existence is proved in

the previous lemma, in particular p is defined on K ′ =
⋃

k∈N Sk
i .

Define the equivalence relation ∼ on K ′ by x ∼ y ⇐⇒ p[x = y] = 1,

and denote its equivalence classes by [a] = {b | a ∼ b}.

Let K = {[a] | a ∈ K ′}. Put the L-structure on K by

K |= φ([a1], · · · , [al]) iff M |= “p[φ(a1, · · · , al] = 1”,
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for atomic φ (and l ≤ 3.)

This is well-defined and the above equivalence holds for open φ as well.

Moreover if p satisfies all the available Skolem instances of ϕ in Λ′ for an

arbitrary ϕ, then K |= ϕ. Hence we know that K |= α (see Chapter 2.)

Also by lemma 3.1.1 we have K |= θ([ci]).

Lemma 5.2.7 K |= ∃zΨ1(z, [ci]).

Proof. Let k be the maximum l ∈ K such that K |= l ≤ [ci] ∧ 222l

≤ [wi]

(by BME(222x

≤ y) such a k exists). So the sequence 〈22, 222 , · · · , 222k

〉 has a

β-code in K. (By the lemma 5.2.5, K |= “a β − code of 〈22, 222 , · · · , 222k

〉” ≤

{ω1([wi])}7.)

We show K |= k = [ci].

Suppose 〈a, b〉 is a β-code of the above sequence in K. Write a = [a′] and

b = [b′] for a′, b′ ∈ Sn0
i for a natural n0.

By lemma 2.2.1, since α ` ∀x, y∃q, r
(

x = yq + r ∧ r < y
)

, we have

M |= ∀j ≤ i∃q, r“p[a′ = q(b′cj+1 + 1) + r ∧ r ≤ b′cj+1] = 1”.

Let the corresponding q, r to j be qj, rj.

Moreover since a′, b′ ∈ Sn0
i and cj+1 ∈ S1

i for j ≤ i, then qj, rj can be chosen

such that qj, rj ∈ Sn0+n1
i for a natural n1 (given by lemma 2.2.1. Note that by

A′14 and A′15, if c, d ∈ Sl
i then c + d, c · d ∈ Sl+1

i .)
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Hence 〈qj, rj ; j ≤ i〉 is ∆0-definable in M .

So p[a′ = qj(b′cj+1 + 1) + rj ∧ rj ≤ b′cj+1] = 1, and then

K |= a = [qj](b[cj+1] + 1) + [rj] ∧ [rj] ≤ b[cj+1].

By induction on j ≤ k (in M) we show M |= “p[rj = wj] = 1”:

For j = 0, since K |= [w0] = c4 = [r0] (by the uniqueness of the division

theorem) then p[r0 = c4 = w0] = 1.

For j + 1, we have K |= [wj+1] = ω1([wj]), by the definition of ws, and

since by the induction hypothesis p[rj = wj] = 1 then K |= [rj] = [wj] so

K |= [wj+1] = ω1([wj]) = ω1([rj]) = [rj+1], hence p[wj+1 = rj+1] = 1.

In particular K |= [rk] = [wk], we also note that K |= 222k

= [rk] by the

definition of rk.

Now if K |= k < [ci], then K |= k + 1 ≤ [ci], so

K |= 222k+1

= ω1(222k

) = ω1([rk]) = ω1([wk]) = [wk+1] ≤ [wi], contradiction

by the choice of k. (We note that G ` ∀x
{

x ≤ ω1(x)
}

.)

Thus K |= k = [ci] and K |= Ψ1(〈a, b〉, [ci]). �

So K |= [ci] ∈ log3 ∧ θ([ci]) or K |= ∃x ∈ log3θ(x). This finishes the proof

of the theorem since α + ∃x ∈ log3θ(x), having a model K, is consistent.
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