Characterizing Families of Tree Languages by Syntactic Monoids

SAEED SALEHI

http://staff.cs.utu.fi/staff/saeed/

$$\mathcal{S}_3$$
eged \Longrightarrow 2006

Saeed Salehi: Characterizing Families of Tree Languages by Syntactic Monoids, Szeged 2006

Trees as Terms

Ranked alphabet Σ , Leaf alphabet X Σ_0 constants / Σ_m *m*-ary functions $T(\Sigma, X) =$ set of trees with node labels from Σ / leaf labels from $\Sigma_0 \cup X$

 $T(\Sigma, X)$ is the smallest set satisfying

►
$$\Sigma_0 \cup X \subseteq T(\Sigma, X)$$
, and
► $t_1, \ldots, t_m \in T(\Sigma, X) \& f \in \Sigma_m \Rightarrow f(t_1, \cdots, t_m) \in T(\Sigma, X)$.

Example

c

- 0

Example (Words as Trees)

а

 ϵ

$$\Lambda = \Lambda_1 = \{a/1, b/1, \ldots\}, Y = \{\epsilon\}$$

$$a$$

$$a$$

$$b$$

$$b$$

$$b$$

Saeed Salehi: Characterizing Families of Tree Languages by Syntactic Monoids, Szeged 2006

Example (Ground Trees)

$$\Gamma = \Gamma_2 \cup \Gamma_0: \quad \Gamma_2 = \{f, g\}, \ \Gamma_0 = \{a, b\}$$

Contexts

Contexts $C(\Sigma, X)$: $(\Sigma, X \cup \{\xi\})$ -trees in which the new special symbol ξ appears exactly once.

Examples:
$$\Gamma = \Gamma_2 \cup \Gamma_0$$
: $\Gamma_2 = \{f, g\}, \ \Gamma_0 = \{a, b\}$

Trees and Contexts

For context p and term or context s, p[s] results from p by putting s in place of ξ . Write $p = \overbrace{p}{\xi}$. If \overbrace{t} is a tree, then $p[t] = \overbrace{p}{t}$ is a tree also, and if $q = \overbrace{\xi}{q}$ is another context, then $p[q] = \overbrace{\xi}{p}$ is a context as well.

$$\Big\langle \mathit{C}(\Sigma,X),\circ\Big
angle$$
 is a monoid with $p\circ q=p[q]$

Tree Languages

Any $T \subseteq T(\Sigma, X)$ is a ΣX -tree language.

Two trees $t, s \in T(\Sigma, X)$ are congruent w.r.t T (synonymous in the language T) iff they appear in the same context (in T): $t \sim^{T} s \iff \forall P \in C(\Sigma, X) \{\!\!\{P[t] \in T \leftrightarrow P[s] \in T\}\!\!\}.$

Also for contexts $P, Q \in C(\Sigma, X)$, monoid T-congruence is $P \approx^T Q \iff$ $\forall R \in C(\Sigma, X) \ \forall t \in T(\Sigma, X) \ \{\!\!\{R[P[t]] \in T \leftrightarrow R[Q[t]] \in T\}\!\!\}.$

The syntactic monoid SM(T) of T is the monoid $C(\Sigma, X)/\approx^{T}$. The tree language T is recognizable (regular) iff SM(T) is finite.

Example

$$\Gamma = \Gamma_2 \cup \Gamma_0$$
: $\Gamma_2 = \{f, g\}, \ \Gamma_0 = \{a, b\}$

 $T_1 = \{t \in T_{\Gamma} \mid \text{root}(t) = f\} \quad (1\text{-Definite tree langauge})$ $SM(T_1) = \{f, g, 1\}: 1 = identity, f \circ f = f \circ g = f, g \circ f = g \circ g = g.$ $f = \{\text{contexts with root } f\}; g = \{\text{contexts with root } g\}; 1 = \{\xi\}.$

$$\begin{split} T_2 &= \{t \in \mathrm{T}_{\Gamma} \mid \text{left-most leaf}(t) = a\} \quad (\text{non-definite}) \\ \mathrm{SM}(T_2) &= \{\mathfrak{a}, \mathfrak{b}, 1\}: \ 1 = \textit{identity}, \ \mathfrak{a} \circ \mathfrak{b} = \mathfrak{a} \circ \mathfrak{a} = \mathfrak{a}, \ \mathfrak{b} \circ \mathfrak{a} = \mathfrak{b} \circ \mathfrak{b} = \mathfrak{b}, \\ \mathfrak{a} &= \{\text{contexts with left-most leaf }a\}; \quad \text{Left-most leaf left}(t): \\ \mathfrak{b} &= \{\text{contexts with left-most leaf }b\}; \quad \mathfrak{oleft}(c) = c, \quad c \in \Sigma_0 \cup X; \\ 1 &= \{\text{contexts with left-most leaf }\xi\}. \quad \mathfrak{oleft}(f(t_1, \dots, t_m)) = \mathfrak{left}(t_1). \end{split}$$

 $SM(T_1) \cong SM(T_2)$ are isomorphic !

Families of Tree Languages

For a fixed Σ , mapping $X \mapsto \mathscr{V}(X)$ $\mathscr{V} = \{\mathscr{V}(X)\}, \ \mathscr{V}(X)$ is a set of ΣX -tree languages for each X.

Generalized families of tree languages

 $\mathscr{W} = \{\mathscr{W}(\Sigma, X)\}$, where $\mathscr{W}(\Sigma, X)$ is a set of ΣX -tree languages for each pair $\langle \Sigma, X \rangle$.

By considering syntactic monoids we loose track of the ranked alphabets; so generalized families of tree languages are what can be defined by varieties of monoids:

Variety of Finite Monoids $\mathbf{M} \mapsto {\mathbf{M}^t(\Sigma, X)}$

 $\mathsf{M}^{t}(\Sigma, X) = \{ T \subseteq \operatorname{T}(\Sigma, X) \mid \operatorname{SM}(T) \in \mathsf{M} \}.$

Varieties of Tree Languages

A family $\{\mathscr{V}(X)\}$ of tree languages is a variety if for any $T, T' \in \mathscr{V}(X)$

• $T \cap T', T \cup T', T^{\complement} \in \mathscr{V}(X);$

► for
$$P \in C(\Sigma, X)$$
,
 $P^{-1}(T) = \{t \in T(\Sigma, X) \mid P[t] \in T\} \in \mathscr{V}(X);$

► for morphism
$$\varphi$$
 : T(Σ , Y) \rightarrow T(Σ , X),
 $T\varphi^{-1} = \{t \in T(\Sigma, Y) \mid t\varphi \in T\} \in \mathscr{V}(Y).$

A morphism
$$\varphi : T(\Sigma, Y) \to T(\Sigma, X)$$
 maps

- any
$$y \in Y$$
 to arbitrary $y arphi \in \mathrm{T}(\Sigma, X)$,

-
$$c\in \Sigma_0$$
 to $carphi=c$, and

-
$$f(t_1, \cdots, t_m)\varphi = f(t_1\varphi, \cdots, t_m\varphi).$$

Varieties of Finite Monoids

 $M \preccurlyeq N$: M is a sub-monoid of a quotient of NVariety of finite monoids \mathbf{M} : if $M_1, \ldots, M_n \in \mathbf{M}$ and $M \preccurlyeq M_1 \times \cdots \times M_n$, then $M \in \mathbf{M}$.

- ▶ $\operatorname{SM}(T \cap T'), \operatorname{SM}(T \cup T') \preccurlyeq \operatorname{SM}(T) \times \operatorname{SM}(T');$
- ► $SM(T^{\complement}) \cong SM(T);$
- ▶ $SM(P^{-1}(T)), SM(T\varphi^{-1}) \preccurlyeq SM(T).$

Tree Homomorphisms

Tree Homomorphism $\varphi : \mathrm{T}(\Omega, Y) \to \mathrm{T}(\Sigma, X)$

new variables
$$\xi_1, \xi_2, \dots$$

- $\varphi_Y : Y \to T(\Sigma, X)$
- $\varphi_m : \Omega_m \to T(\Sigma, X \cup \{\xi_1, \dots, \xi_m\}) \quad (m \ge 0)$
• $y\varphi = y\varphi_Y;$
• $c\varphi = \varphi_0(c);$
• $f(t_1, \dots, t_m)\varphi = \varphi_m(f) \llbracket \xi_1 \leftarrow t_1\varphi, \dots, \xi_m \leftarrow t_m\varphi \rrbracket.$

Regular Tree Homomorphism:

each ξ_i appears exactly once in $\varphi_m(f)$ for each $m \ge 0$, $f \in \Omega_m$.

Example

$$\Gamma = \Gamma_2 \cup \Gamma_0: \quad \Gamma_2 = \{f, g\}, \ \Gamma_0 = \{a, b\}$$

$$\begin{array}{ll} \text{Define } \psi: \mathrm{T}_{\Gamma} \to \mathrm{T}_{\Gamma} \text{ by} \\ -\psi_{2}(f) = f(a, f(\xi_{1}, \xi_{2})), & \psi_{2}(g) = g(b, g(\xi_{1}, \xi_{2})); \\ -\psi_{0}(a) = g(b, b), & \psi_{0}(b) = b. \end{array}$$

$$\begin{split} \psi \text{ is a regular tree homomorphism; e.g.} \\ g(b,b)\psi &= g(b,g(b,b)); \\ f(g(b,b),a)\psi &= f(a,f(g(b,g(b,b)),g(b,b))). \\ \text{Also, } T_2\psi^{-1} &= T_1. \qquad \Big[\texttt{left}(t\psi) = a \iff \texttt{root}(t) = f \Big]. \end{split}$$

Regular Tree Homomorphisms

 $\varphi : \mathrm{T}(\Omega, Y) \to \mathrm{T}(\Sigma, X)$ can be extended to contexts $\varphi_* : \mathrm{C}(\Omega, Y) \to \mathrm{C}(\Sigma, X)$ by putting $\varphi_*(\xi) = \xi$.

In the above example:

 $g(b,\xi)\psi_* = g(b,g(b,\xi));$ $f(a,\xi)\psi = f(a,f(g(b,b),\xi));$ $g(f(a,\xi),b)\psi_* = g(b,g(f(a,f(g(b,b),\xi)),b)).$

Regular Tree Homomorphisms and Syntactic Monoids

$$\begin{split} \varphi &: \mathrm{T}(\Omega, Y) \to \mathrm{T}(\Sigma, X) \quad \varphi_* : \mathrm{C}(\Omega, Y) \to \mathrm{C}(\Sigma, X) \\ \text{is full with respect to } T \subseteq \mathrm{T}(\Sigma, X) \text{ if} \\ \text{for any } t \in \mathrm{T}(\Sigma, X) \text{ and } P \in \mathrm{C}(\Sigma, X) \text{ there are} \\ s \in \mathrm{T}(\Omega, Y) \text{ and } Q \in \mathrm{C}(\Omega, Y) \text{ such that} \\ s\varphi \sim^T t \quad \text{and} \quad Q\varphi_* \approx^T P. \end{split}$$

In other words, φ and φ_* are surjective up to T.

For any such $\varphi : T(\Omega, Y) \to T(\Sigma, X)$ and $T \subseteq T(\Sigma, X)$

►
$$SM(T\varphi^{-1}) \preccurlyeq SM(T).$$

• If φ is full w.r.t T, then $SM(T\varphi^{-1}) \cong SM(T)$.

A Variety Theorem for Monoids

A generalized family $\mathscr{W} = \{\mathscr{W}(\Sigma, X)\}$ is M-variety if for any $T, T' \in \mathscr{W}(\Sigma, X)$

- $T \cap T', T \cup T', T^{\complement} \in \mathscr{W}(\Sigma, X);$
- ► for any $P \in \mathrm{C}(\Sigma, X)$, $P^{-1}(T) \in \mathscr{W}(\Sigma, X)$;
- ► for any regular tree homomorphism $\varphi : T(\Omega, Y) \to T(\Sigma, X)$, $T\varphi^{-1} \in \mathscr{W}(\Omega, Y)$;
- ► for any regular tree homomorphism $\varphi : T(\Omega, Y) \to T(\Sigma, X)$ full with respect to $U \subseteq T(\Sigma, X)$, if $U\varphi^{-1} \in \mathscr{W}(\Omega, Y)$ then $U \in \mathscr{W}(\Sigma, X)$;

• for any unary $\Lambda = \Lambda_1$, if $Y \subseteq Y'$ then $\mathscr{W}(\Lambda, Y) \subseteq \mathscr{W}(\Lambda, Y')$.

A Variety Theorem for Monoids

For any variety of finite monoids \mathbf{M} , the family $\mathbf{M}^t = {\mathbf{M}^t(\Sigma, X)}$ where $\mathbf{M}^t(\Sigma, X) = {T \subseteq T(\Sigma, X) | SM(T) \in \mathbf{M}}$ is an M-variety;

and conversely, any M-variety \mathscr{W} is definable by monoids, i.e., there is a variety of finite monoids **M** such that $\mathscr{W} = \mathbf{M}^t$.

Example

Semilattice Monoids: commutative and idempotent;

(non-)Example

1-Definite tree languages are finite unions of languages of the form $\{t \mid \text{root}(t) = f\}$ for an $f \in \Sigma \cup X$. (If $f \in \Sigma_0 \cup X$ then $\{t \mid \text{root}(t) = f\} = \{f\}$.)

The family Def_1 of 1-definite tree languages is a generalized variety of tree languages, not definable by monoids (nor by semigroups).

(non-)Example

In our example we have $T_2\psi^{-1} = T_1 \in \text{Def}_1(\Gamma, \emptyset)$ and ψ is a regular tree homomorphism full w.r.t T_2 , but $T_2 \notin \text{Def}_1(\Gamma, \emptyset)$.

$$\begin{array}{ll} \mathbf{a} \sim^{T_2} f(b,b)\psi; & b \sim^{T_2} b\psi; \\ \mathfrak{a} \approx^{T_2} f(b,\xi)\psi_*; & \mathfrak{b} \approx^{T_2} g(b,\xi)\psi_*; & \mathbf{1} \approx^{T_2} \xi\psi_*. \end{array}$$

Indeed T_2 is not a definite tree language; but $SM(T_2) \cong SM(T_1)$ for a definite T_1 .

This refutes a statement claimed in 1989.

SAEED SALEHI, Varieties of tree languages definable by syntactic monoids, *Acta Cybernetica* **17** (2005), 21–41.

TATJANA PETKOVIĆ & SAEED SALEHI, Positive varieties of tree languages, *Theoretical Computer Science* **347** (2005), 1–35.