Characterizing Families of Tree Languages by Syntactic Monoids

SaEEd SALEHI

http://staff.cs.utu.fi/staff/saeed/

$$
\mathcal{S}_{3} \varepsilon g \varepsilon d=2006
$$

Trees as Terms

Ranked alphabet Σ, Leaf alphabet X
Σ_{0} constants $/ \Sigma_{m} m$-ary functions
$T(\Sigma, X)=$ set of trees with
node labels from $\Sigma /$ leaf labels from $\Sigma_{0} \cup X$
$\mathrm{T}(\Sigma, X)$ is the smallest set satisfying

- $\Sigma_{0} \cup X \subseteq T(\Sigma, X)$, and
$t_{1}, \ldots, t_{m} \in \mathrm{~T}(\Sigma, X) \& f \in \Sigma_{m} \Rightarrow f\left(t_{1}, \cdots, t_{m}\right) \in \mathrm{T}(\Sigma, X)$.

Example

$$
\Sigma^{S}=\{\diamond / 2\}, X=\{x, y\}
$$

$$
x \diamond(y \diamond x)
$$

Example (Words as Trees)

$$
\Lambda=\Lambda_{1}=\{a / 1, b / 1, \ldots\}, Y=\{\epsilon\}
$$

$$
=b a a=a(a(b(\epsilon))) \in T(\Lambda, Y)
$$

Example (Ground Trees)

$$
\Gamma=\Gamma_{2} \cup \Gamma_{0}: \quad \Gamma_{2}=\{f, g\}, \quad \Gamma_{0}=\{a, b\}
$$

$$
=f(g(b, b), a) \in \mathrm{T}(\Gamma, \emptyset)=\mathrm{T}_{\Gamma}
$$

Contexts

Contexts $C(\Sigma, X):(\Sigma, X \cup\{\xi\})$-trees in which the new special symbol ξ appears exactly once.

$$
\text { Examples: } \quad \Gamma=\Gamma_{2} \cup \Gamma_{0}: \Gamma_{2}=\{f, g\}, \Gamma_{0}=\{a, b\}
$$

Trees and Contexts

For context p and term or context s, $p[s]$ results from p by putting s in place of ξ.
 and if $q=\overbrace{\xi}$ is another context, then $p[q]=$ is a context
as well. $\langle C(\Sigma, X), \circ\rangle$ is a monoid with $p \circ q=p[q]$

Tree Languages

Any $T \subseteq T(\Sigma, X)$ is a ΣX-tree language.
Two trees $t, s \in \mathrm{~T}(\Sigma, X)$ are congruent w.r.t T (synonymous in the language T) iff they appear in the same context (in T):
$t \sim^{T} s \Longleftrightarrow \forall P \in \mathrm{C}(\Sigma, X)\{P[t] \in T \leftrightarrow P[s] \in T\}$.
Also for contexts $P, Q \in \mathrm{C}(\Sigma, X)$, monoid T-congruence is
$P \approx^{T} Q$
$\forall R \in \mathrm{C}(\Sigma, X) \forall t \in \mathrm{~T}(\Sigma, X)\{\{[P[t]] \in T \leftrightarrow R[Q[t]] \in T\}$.
The syntactic monoid $\operatorname{SM}(T)$ of T is the monoid $\mathrm{C}(\Sigma, X) / \approx^{T}$. The tree language T is recognizable (regular) iff $\operatorname{SM}(T)$ is finite.

Example

$$
\Gamma=\Gamma_{2} \cup \Gamma_{0}: \quad \Gamma_{2}=\{f, g\}, \Gamma_{0}=\{a, b\}
$$

$T_{1}=\left\{t \in \mathrm{~T}_{\Gamma} \mid \operatorname{root}(t)=f\right\} \quad$ (1-Definite tree langauge)
$\operatorname{SM}\left(T_{1}\right)=\{\mathfrak{f}, \mathfrak{g}, 1\}: 1=$ identity $, \mathfrak{f} \circ \mathfrak{f}=\mathfrak{f} \circ \mathfrak{g}=\mathfrak{f}, \mathfrak{g} \circ \mathfrak{f}=\mathfrak{g} \circ \mathfrak{g}=\mathfrak{g}$.
$f=\{$ contexts with root $f\} ; g=\{$ contexts with root $g\} ; 1=\{\xi\}$.
$T_{2}=\left\{t \in \mathrm{~T}_{\Gamma} \mid\right.$ left-most leaf $\left.(t)=a\right\} \quad$ (non-definite)
$\operatorname{SM}\left(T_{2}\right)=\{\mathfrak{a}, \mathfrak{b}, 1\}: 1=$ identity, $\mathfrak{a} \circ \mathfrak{b}=\mathfrak{a} \circ \mathfrak{a}=\mathfrak{a}, \mathfrak{b} \circ \mathfrak{a}=\mathfrak{b} \circ \mathfrak{b}=\mathfrak{b}$.
$\mathfrak{a}=\{$ contexts with left-most leaf $a\} ; \quad$ Left-most leaf $\operatorname{left}(t)$:
$\mathfrak{b}=\{$ contexts with left-most leaf $b\} ; \bullet \operatorname{left}(c)=c, \quad c \in \Sigma_{0} \cup X$;
$1=\{$ contexts with left-most leaf $\xi\}$. • $\operatorname{left}\left(f\left(t_{1}, \ldots, t_{m}\right)\right)=\operatorname{left}\left(t_{1}\right)$.
$\operatorname{SM}\left(T_{1}\right) \cong \operatorname{SM}\left(T_{2}\right)$ are isomorphic!

Families of Tree Languages

For a fixed Σ, mapping $X \mapsto \mathscr{V}(X)$
$\mathscr{V}=\{\mathscr{V}(X)\}, \mathscr{V}(X)$ is a set of ΣX-tree languages for each X.

Generalized families of tree languages

$\mathscr{W}=\{\mathscr{W}(\Sigma, X)\}$, where $\mathscr{W}(\Sigma, X)$ is a set of ΣX-tree languages for each pair $\langle\Sigma, X\rangle$.

By considering syntactic monoids we loose track of the ranked alphabets; so generalized families of tree languages are what can be defined by varieties of monoids:
Variety of Finite Monoids $\mathbf{M} \mapsto\left\{\mathbf{M}^{t}(\Sigma, X)\right\}$

$$
\mathbf{M}^{t}(\Sigma, X)=\{T \subseteq \mathrm{~T}(\Sigma, X) \mid \operatorname{SM}(T) \in \mathbf{M}\} .
$$

Varieties of Tree Languages

A family $\{\mathscr{V}(X)\}$ of tree languages is a variety if for any $T, T^{\prime} \in \mathscr{V}(X)$

- $T \cap T^{\prime}, T \cup T^{\prime}, T^{\complement} \in \mathscr{V}(X) ;$
- for $P \in \mathrm{C}(\Sigma, X)$,

$$
P^{-1}(T)=\{t \in \mathrm{~T}(\Sigma, X) \mid P[t] \in T\} \in \mathscr{V}(X)
$$

- for morphism $\varphi: \mathrm{T}(\Sigma, Y) \rightarrow \mathrm{T}(\Sigma, X)$,

$$
T \varphi^{-1}=\{t \in \mathrm{~T}(\Sigma, Y) \mid t \varphi \in T\} \in \mathscr{V}(Y)
$$

A morphism $\varphi: \mathrm{T}(\Sigma, Y) \rightarrow \mathrm{T}(\Sigma, X)$ maps

- any $y \in Y$ to arbitrary $y \varphi \in \mathrm{~T}(\Sigma, X)$,
- $c \in \Sigma_{0}$ to $c \varphi=c$, and
- $f\left(t_{1}, \cdots, t_{m}\right) \varphi=f\left(t_{1} \varphi, \cdots, t_{m} \varphi\right)$.

Varieties of Finite Monoids

$M \preccurlyeq N$: M is a sub-monoid of a quotient of N
Variety of finite monoids \mathbf{M} : if $M_{1}, \ldots, M_{n} \in \mathbf{M}$ and $M \preccurlyeq M_{1} \times \cdots \times M_{n}$, then $M \in \mathbf{M}$.

- $\operatorname{SM}\left(T \cap T^{\prime}\right), \operatorname{SM}\left(T \cup T^{\prime}\right) \preccurlyeq \operatorname{SM}(T) \times \operatorname{SM}\left(T^{\prime}\right)$;
- $\operatorname{SM}\left(T^{\complement}\right) \cong \operatorname{SM}(T)$;
- $\operatorname{SM}\left(P^{-1}(T)\right), \operatorname{SM}\left(T \varphi^{-1}\right) \preccurlyeq \operatorname{SM}(T)$.

Tree Homomorphisms

Tree Homomorphism $\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X)$
new variables ξ_{1}, ξ_{2}, \ldots.
$-\varphi_{Y}: Y \rightarrow T(\Sigma, X)$
$-\varphi_{m}: \Omega_{m} \rightarrow \mathrm{~T}\left(\Sigma, X \cup\left\{\xi_{1}, \ldots, \xi_{m}\right\}\right)(m \geq 0)$

- $y \varphi=y \varphi \mathrm{Y}$;
- $c \varphi=\varphi_{0}(c)$;
- $f\left(t_{1}, \ldots, t_{m}\right) \varphi=\varphi_{m}(f) \llbracket \xi_{1} \leftarrow t_{1} \varphi, \ldots, \xi_{m} \leftarrow t_{m} \varphi \rrbracket$.

Regular Tree Homomorphism:
each ξ_{i} appears exactly once in $\varphi_{m}(f)$ for each $m \geq 0, f \in \Omega_{m}$.

Example

$$
\Gamma=\Gamma_{2} \cup \Gamma_{0}: \quad \Gamma_{2}=\{f, g\}, \Gamma_{0}=\{a, b\}
$$

Define $\psi: \mathrm{T}_{\Gamma} \rightarrow \mathrm{T}_{\Gamma}$ by
$-\psi_{2}(f)=f\left(a, f\left(\xi_{1}, \xi_{2}\right)\right), \quad \psi_{2}(g)=g\left(b, g\left(\xi_{1}, \xi_{2}\right)\right)$;

- $\psi_{0}(a)=g(b, b), \quad \psi_{0}(b)=b$.
ψ is a regular tree homomorphism; e.g.
$g(b, b) \psi=g(b, g(b, b)) ;$
$f(g(b, b), a) \psi=f(a, f(g(b, g(b, b)), g(b, b)))$.
Also, $T_{2} \psi^{-1}=T_{1}$.

$$
[\operatorname{left}(t \psi)=a \Longleftrightarrow \operatorname{root}(t)=f] .
$$

Regular Tree Homomorphisms

$\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X)$ can be extended to contexts
$\varphi_{*}: \mathrm{C}(\Omega, Y) \rightarrow \mathrm{C}(\Sigma, X)$ by putting $\varphi_{*}(\xi)=\xi$.

In the above example:
$g(b, \xi) \psi_{*}=g(b, g(b, \xi))$;
$f(a, \xi) \psi=f(a, f(g(b, b), \xi))$;
$g(f(a, \xi), b) \psi_{*}=g(b, g(f(a, f(g(b, b), \xi)), b))$.

Regular Tree Homomorphisms and Syntactic Monoids

$\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X) \quad \varphi_{*}: \mathrm{C}(\Omega, Y) \rightarrow \mathrm{C}(\Sigma, X)$
is full with respect to $T \subseteq T(\Sigma, X)$ if
for any $t \in \mathrm{~T}(\Sigma, X)$ and $P \in \mathrm{C}(\Sigma, X)$ there are $s \in \mathrm{~T}(\Omega, Y)$ and $Q \in \mathrm{C}(\Omega, Y)$ such that $s \varphi \sim^{T} t$ and $Q \varphi_{*} \approx^{T} P$.
In other words, φ and φ_{*} are surjective up to T.
For any such $\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X)$ and $T \subseteq \mathrm{~T}(\Sigma, X)$

- $\operatorname{SM}\left(T \varphi^{-1}\right) \preccurlyeq \operatorname{SM}(T)$.
- If φ is full w.r.t T, then $\operatorname{SM}\left(T \varphi^{-1}\right) \cong \operatorname{SM}(T)$.

A Variety Theorem for Monoids

A generalized family $\mathscr{W}=\{\mathscr{W}(\Sigma, X)\}$ is M -variety if for any $T, T^{\prime} \in \mathscr{W}(\Sigma, X)$

- $T \cap T^{\prime}, T \cup T^{\prime}, T^{\complement} \in \mathscr{W}(\Sigma, X) ;$
- for any $P \in \mathrm{C}(\Sigma, X), P^{-1}(T) \in \mathscr{W}(\Sigma, X)$;
- for any regular tree homomorphism $\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X)$, $T \varphi^{-1} \in \mathscr{W}(\Omega, Y)$;
- for any regular tree homomorphism $\varphi: \mathrm{T}(\Omega, Y) \rightarrow \mathrm{T}(\Sigma, X)$ full with respect to $U \subseteq T(\Sigma, X)$, if $U \varphi^{-1} \in \mathscr{W}(\Omega, Y)$ then $U \in \mathscr{W}(\Sigma, X) ;$
- for any unary $\Lambda=\Lambda_{1}$, if $Y \subseteq Y^{\prime}$ then $\mathscr{W}(\Lambda, Y) \subseteq \mathscr{W}\left(\Lambda, Y^{\prime}\right)$.

A Variety Theorem for Monoids

For any variety of finite monoids \mathbf{M}, the family $\mathbf{M}^{t}=\left\{\mathbf{M}^{t}(\Sigma, X)\right\}$ where $\mathbf{M}^{t}(\Sigma, X)=\{T \subseteq \mathrm{~T}(\Sigma, X) \mid \operatorname{SM}(T) \in \mathbf{M}\}$ is an \mathbf{M}-variety; and conversely, any M -variety \mathscr{W} is definable by monoids, i.e., there is a variety of finite monoids \mathbf{M} such that $\mathscr{W}=\mathbf{M}^{t}$.

Example

Semilattice Monoids: commutative and idempotent;

$$
\alpha, \beta \in\langle M, \cdot\rangle: \alpha \cdot \beta=\beta \cdot \alpha \quad \& \quad \alpha \cdot \alpha=\alpha .
$$

Semilattice Tree Languages: $T \subseteq T(\Sigma, X) \ni t, t^{\prime}$ $t \in T \& c(t)=c\left(t^{\prime}\right) \Rightarrow t^{\prime} \in T$;
$c(t)=\{$ set of symbols from $\Sigma \cup X$ appearing in $t\}$.
[Unions of $\left\{T\left(\Sigma^{\prime}, X^{\prime}\right)\right\}_{\left.\Sigma^{\prime} \subseteq \Sigma, X^{\prime} \subseteq X\right]}$

(non-)Example

1-Definite tree languages are finite unions of languages of the form $\{t \mid \operatorname{root}(t)=f\}$ for an $f \in \Sigma \cup X$.
(If $f \in \Sigma_{0} \cup X$ then $\{t \mid \operatorname{root}(t)=f\}=\{f\}$.)
The family Def_{1} of 1-definite tree languages is a generalized variety of tree languages, not definable by monoids (nor by semigroups).

(non-)Example

In our example we have $T_{2} \psi^{-1}=T_{1} \in \operatorname{Def}_{1}(\Gamma, \emptyset)$ and ψ is a regular tree homomorphism full w.r.t T_{2}, but $T_{2} \notin \operatorname{Def}_{1}(\Gamma, \emptyset)$.
$a \sim^{T_{2}} f(b, b) \psi ; \quad b \sim^{T_{2}} b \psi ;$
$\mathfrak{a} \approx^{T_{2}} f(b, \xi) \psi_{*} ; \mathfrak{b} \approx^{T_{2}} g(b, \xi) \psi_{*} ; \quad 1 \approx^{T_{2}} \xi \psi_{*}$.
Indeed T_{2} is not a definite tree language; but $\operatorname{SM}\left(T_{2}\right) \cong \operatorname{SM}\left(T_{1}\right)$ for a definite T_{1}.

This refutes a statement claimed in 1989.

風 Thank 期!

Saeed Salehi, Varieties of tree languages definable by syntactic monoids, Acta Cybernetica 17 (2005), 21-41.

Tatjana Petković \& Saeed Salehi, Positive varieties of tree languages, Theoretical Computer Science 347 (2005), 1-35.

