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1 Notation and Basic Definitions

The language of arithmetical theories considered here is L = 〈+,×,≤, 0, 1〉 in which the symbols
are interpreted as usual in elementary mathematics. Robinson’s arithmetic is denoted by Q;
it is a finitely axiomatized basic theory of the function and predicate symbols in L. Peano’s
arithmetic PA is the first-order theory that extends Q by the induction schema for any L-formula
ϕ(x): ϕ(0) & ∀x(ϕ(x) → ϕ(x + 1)) → ∀xϕ(x). Fragments of PA are extensions of Q with the
induction schema restricted to a class of formulas. The most studied hierarchy of formulas is
defined as follows: let ∆0 be the class of bounded formulas. A formula is called bounded if its
every quantifier is bounded, i.e., is either of the form ∀x≤ t(. . .) or ∃ x≤ t(. . .) where t is a term;
they are read as ∀x(x≤ t → . . .) and ∃x(x≤ t ∧ . . .) respectively. It is easy to see that bounded
formulas are decidable. The theory I∆0, also called bounded arithmetic, is axiomatized by Q plus
the induction schema for bounded formulas.

The next level in the hierarchy are the classes of Σ1 and Π1 formulas which constitute bounded
formulas prefixed with, respectively, a block of existential, and universal quantifiers. So, for
example the formula ∃x∀y ≤ x(y 6= x ∧ ∃ z≤ x[y × z = x] → y = 2) is a Σ1-formula, and its
negation ∀x∃y≤x(y 6= x ∧ ∃ z≤ x[y × z = x] ∧ y 6= 2) is a Π1-formula. We note that Σ1-definable
properties are exactly the computationally verifiable ones, and Π1-definable properties are exactly
the computationally refutable ones. The classes Σm and Πm are defined inductively: Σn+1-formulas
are obtained from Πn-formulas by putting a block of existential quantifiers behind them, and
Πn+1-formulas are Σn-formulas prefixed with a block of universal quantifiers. The theory IΣn is
the extension of Q by the induction schema for Σn-formulas. Note that PA =

⋃
n≥0 IΣn.

The exponentiation function exp is defined by exp(x) = 2x; the formula Exp expresses its
totality (∀x∃y[y = exp(x)]). The inverse of exp is log. Let us recall that Exp is not provable
in I∆0; and sub-theories of I∆0 + Exp are called weak arithmetics. Between I∆0 and I∆0 + Exp
another hierarchy of theories is considered in the literature, which has close connections with
computational complexity. Let ω1(x) = xlog x; note that it dominates all the polynomials, and in
turn all the I∆0-provably total functions are dominated by polynomials. Let ωn+1 = exp(ωn(log x))
be defined inductively, and let Ωm express the totality of ωm. We have I∆0 + Ωn ⊆ I∆0 + Ωn+1 for
every n≥1. Finally, we recall that the super-exponential function is defined by Superexp(x) = 2x

x,
applying the exp function x times on x; 2x

0 = x and 2x
n+1 = exp(2x

n).
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2 Abstract of the Thesis

By Gödel’s celebrated incompleteness theorems, truth is not conservative over provability in theories
that contain sufficiently strong fragments of arithmetic. In other words, for any give reasonable
arithmetical theory T , there exists a true arithmetical sentence GT which is not provable in T .
Moreover, this formula GT can be chosen to be a Π1-formula; thus truth is not even Π1-conservative
over provability in general arithmetics. Needless to say, this GT may be provable in a stronger
theory (than T ). Thus, Π1-conservativity of a theory over its sufficiently strong sub-theories is an
interesting, and often difficult, question in mathematical logic. As a technical example, we can
mention that the hierarchy {IΣn}n of PA is Π1-separable; that is to say there are Π1-sentences An

such that IΣn+1 ` An but IΣn 6` An. Another example is the important open problem of the Π1-
conservativity of the fragments of bounded arithmetic: is I∆0 + Ωn+1 conservative over I∆0 + Ωn

for Π1-formulas?

A natural candidate for showing the Π1-unconservativity of T over its sub-theory S ⊂ T is the
consistency statement of S, Con(S); i.e., one would wish to show that T ` Con(S), and then use
Gödel’s Second Incompleteness Theorem to infer that S 6` Con(S). Let us recall that for Zermelo-
Frankel set theory ZFC we have ZFC ` Con(PA), though PA 6` Con(PA). Also, IΣn+1 ` Con(IΣn)
and IΣn 6` Con(IΣn) for all n ≥ 0. For weak arithmetics this candidate does not work for Π1-
separating I∆0 + Exp over I∆0: we have I∆0 + Exp 6` Con(I∆0) (and also I∆0 6` Con(I∆0)). In
1981, J. Paris and A. Wilkie [8] proposed cut-free consistency statement for this purpose; though
at that time it was not yet proved that I∆0 6` CFCon(I∆0), where CFCon stands for cut-free
consistency. However, it was known that I∆0 + Exp ` CFCon(I∆0). We note that the cost of
cut-elimination in proof theory is super-exponential, so in weak arithmetics cut-free provability
is not equivalent to the usual (Hilbert style) provability. Indeed, in those theories CFCon is a
stronger predicate than Con.

From another point of view, unprovability of cut-free consistency of weak arithmetics in them-
selves is an interesting generalization of Gödel’s Second Incompleteness Theorem. The original
proof of this theorem was presented for the usual (Hilbert) consistency predicate of theories that
contain primitive recursive arithmetic (or contain IΣ1 if the language is L). However, later on,
the theorem was proved for all r.e. extensions of Q. So, one direction of generalizing the theorem
was investigating the boundary cases: finding the weakest possible theories whose r.e. exten-
sions cannot prove their own consistency. Another direction could be weakening the consistency
predicate in addition to weakening the underlying theory. By 1985, another (I∆0 + Exp)-provable
Π1-sentence that is unprovable in I∆0 had been found; however the question of the unprovability
of cut-free consistency in theories weaker than I∆0 + Exp remained open (see Pudlák’s paper [9]
where he mentions the problem explicitly for Herbrand consistency in 1985). Let us recall that
Herbrand consistency of a theory is the propositional satisfiability of every (finite) set of its Skolem
instances. Herbrand consistency of a theory T is denoted by HCon(T ).

The first demonstration of the unprovability of cut-free consistency in weak arithmetics was
made by Z. Adamowicz who proved in an unpublished manuscript in 1999 (later appeared as
a technical report [1]) that the Tableau-consistency of I∆0 + Ω1 is not provable in itself. Later
on with P. Zbierski [2] she proved the theorem (Gödel’s Second Incompleteness Theorem) for
Herbrand consistency of I∆0 + Ω2, and in [3] she gave a model theoretic proof of it. Extending
these results for I∆0 was proposed to me as a topic for my PhD thesis by her.

By modifying the definition of Herbrand consistency, the model-theoretic proof of [3] was
generalized to I∆0 + Ω1 in Chapter 5 of the thesis (the result is not published anywhere else). Much
later, in [6] L.A. KoÃlodziejczyk extended her proof to show the unprovability of HCon(I∆0 + Ω2)
in I∆0 +

⋃
n Ωn. He could generalize this result for HCon(I∆0 + Ω1) with the condition that a
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function symbol for ω1 is added to L. The result in Chapter 5 is more general in a sense, as it
does not require expanding the langauge.

Also, it was shown in Chapter 3 that I∆0 6` HCon(I∆0) where the theory I∆0 is axiomatized
by a conventional axiomatization of I∆0 augmented with two I∆0-provable sentences. Chapter 4
proves I∆0 + Ω 6` HCon(I∆0 + Ω) where Ω expresses the totality of ω(x) = xlog log x; here the
conventional axiomatization of I∆0 is taken in the proof. The theory I∆0 + Ω lies between I∆0

and I∆0 + Ω1. In the end of [2] three questions were asked. In Chapter 5 the second question is
answered negatively, by elaborating a concrete counter-example (introduced in Chapter 2).

Independently, D. Willard [12] introduced an I∆0-provable Π1-formula V and showed that any
theory whose axioms contains Q + V cannot prove its own Tableaux consistency. He also showed
there that Tableaux consistency of I∆0 is not provable in itself; this proved the conjecture of
J. Paris & A. Wilkie mentioned above.

The main result of Chapter 3 is published in [10], and a talk on these results was presented
in the Logic Colloquium 2001 [11]. The thesis is referred to in e.g. [7],[4] (2003), [5] (2004), [13]
(2005), and [14] (2006).

Extensions and New Results

Other engagements have prevented me from polishing and publishing the results in their full
generality. Very recently (as of summer 2006) some new results which connect the results of
the dissertation to (weak - subnormal) modal logics have been obtained. As an application, our
old result I∆0 6` HCon(I∆0) can be used to derive the more natural unprovability statement
I∆0 6` HCon(I∆0) where the conventional axiomatization of I∆0 has been considered.

Hopefully, the old results with these recently found extensions and generalizations will be
submitted for publication in near future. Some talks based on these results, however, have been
delivered in several seminars.
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