Presented in

Vienna University of Technology

Unprovability of

Herbrand Consistency in Weak Arithmetics

Saeed Salehi

Inst. of Math.
Polish Academy of Sciences
and

Turku Center for Computer Sciences

saeed C. cs. utu.fi

Godel's Second Incompleteness Theorem

THCon(T) for strong enough T's

• Diagonalization $T+G(\bar{\theta}) \leftrightarrow \theta$

$$1 + \Psi \Rightarrow T + P_{T}(\bar{\varphi})$$

2
 THP_T($\overline{\varphi}$) \rightarrow P_T($\overline{P_{T}(\varphi)}$)

$$\stackrel{3}{=} T + P_{\tau}(\overline{\Psi}) \wedge P_{\tau}(\overline{\Psi} \rightarrow \overline{\Psi}) \rightarrow P_{\tau}(\overline{\Psi})$$
(Consistent)

Formalized Σ_1 -completeness Theorem $T \vdash \Psi \rightarrow P_T(\overline{\psi}) \quad \text{for } \Psi \in \Sigma_1$

A weak formalized I,-completeness

- · TH Con(T) NA -> Con (4) for 4+E,
- · Diagonalization (T2PA)
- E₁-complete (T≥PAT) + Consistent

:. TH 60n(T)

Proof let
$$Con_{T}(\overline{\neg \psi}) \equiv \psi (\in T_{1})$$

if $T \vdash Con(T)$ then $T \vdash \neg \psi \rightarrow Con_{T}(\overline{\neg \psi})$

So $T \vdash \psi$. Hence $N \models \neg Con_{T}(\overline{\neg \psi})$

So $T \vdash \neg Con_{T}(\overline{\neg \psi})$
 $T \vdash \neg \psi$

Cut rule: $\frac{4\rightarrow 4}{4\rightarrow 7}$

Proof Cut Free Proof Sup Exp

ID + Exp H Pr = CFPr

Pudlak ID+ Exp HCFCon(ID+Exp)

Adamowicz $I\Delta + S_1 + HCon(I\Delta + S_1)$ $I\Delta_0 + (\Omega_0)$ $(+S_m)$

Willard Q+V H Tableaux Con (Q+V)
V M-sentence

Here: for ID.

Herbrad Consistency

PNF By By By By A(xy, --, x,y)

Skolemization 42-42 A(2,f(3),-,2,f(2,-,2))

Skolem instance A (t,,f,(t,), -, t,,f(t,,-,t,))

Herbrand's Theorem

A theory is consistent iff every finite set of its skolem instances is propositionally satisfiable.

Evaluation p: a set of atomic formulae -> 20,13

- $p[a=b]=1 \Rightarrow p(\varphi(a))=p(\varphi(b))$ atomic φ
- p[a=a]=1

T-evaluation satisfies all the available Skolem instances of T.

evaluation: atomic formulae with -> {0,1} terms from 1

Herbrand Consistency (of T):

for any set of terms, there is an T-evaluation on it.

Language of Arithmetic

 $\langle 0, +, \cdot, \leq, S \rangle$ Predicate

 $x_1 + x_2 = x_3$ $x_1 \cdot x_2 = x_3$ $x_1 \le x_2$ $x_2 = x_3$ $x_1 = x_2$ $x_1 = x_2$

There are $2|\Lambda|^3 + 3|\Lambda|^2$ atomic formulae constructed from the elements of Λ ($|\Lambda| = Card(\Lambda)$)

So, there are $2^{2|\Lambda|^2 + 3|\Lambda|^2}$ evaluations on Λ .

admissible set of terms (1):

all (the intuitionally 2 2 1/13+3 1/12 possible)

evaluations are available

(modified) Herbrand Consistency of T:

for any admissible set of terms, there is an T-evaluation on it.

 $HCon(T) \equiv \forall x \chi(x)$ $\frac{}{\Delta_o}$ $HCon^*(T) \equiv \forall x \in \log^2 \chi(x)$ $x \in \log^2 \equiv 2^{2^2} \text{ exists}$

THEHCON(T) if TGIDO (and TZPAT)