Presented in

Vienna University of Technology

Unprovability of
Herbrand Consistency in weak Arithmetic

Sauced Salehi
Inst. of Math.
Polish Academy of Sciences and

Turku Center for Computer Sciences sacedecs.utu.fi

Godel's Second Incompleteness Theorem THC on (T) for strong enough T 's

- Diagonalization $T H G(\bar{\theta}) \leftrightarrow \theta$
$1 \quad T \vdash \varphi \Longrightarrow T \vdash \operatorname{Pr}_{T}(\bar{\varphi})$
$2 \quad T \vdash \operatorname{Pr}_{T}(\bar{\varphi}) \rightarrow \operatorname{Pr}_{T}\left(\overline{P_{T}(\varphi)}\right)$
3
(consistent)
Problem $T \vdash^{?}$ Cut-Free Con (T)
for $T \subsetneq I \Delta_{0}+E_{x p}$
formalized Σ_{1}-completeness Theorem

$$
T \vdash \varphi \rightarrow \operatorname{Pr}_{T}(\bar{\varphi}) \quad \text { for } \varphi \in \Sigma_{1}
$$

A weak formalized \sum_{1}-completeness

- $T \vdash \operatorname{Con}(T) \wedge \varphi \rightarrow \operatorname{Con}_{T}(\bar{\varphi})$ for $\varphi \in \Sigma_{1}$
- Diagonalijation ($T \geq P A^{-}$)
- Σ_{1}-complete $\left(T \geq P A^{-}\right)+$consistent
$\therefore T H \operatorname{Con}(T)$
Proof Let $\operatorname{con}_{T}(\overline{\neg \psi}) \equiv \psi\left(\epsilon \pi_{1}\right)$ if $T \vdash \operatorname{con}(T)$ then $T \vdash \neg \psi \rightarrow \operatorname{con}(\neg \psi)$

$$
\rightarrow \psi
$$

So $T H \psi$. Hence $N \neq \neg \operatorname{con}_{T}(\neg \psi)$
So $T \vdash \neg \operatorname{con}_{T}(\neg \psi)$
$T \vdash \neg \psi$

- ※

Cut rule: $\quad \frac{\varphi \rightarrow \psi \psi \rightarrow \eta}{\varphi \rightarrow \eta}$
Proof $\underset{\text { Sup Exp }}{y}$ cut Free Proof

$$
I \Delta_{0}+\text { Exp } H P r \equiv C F P r
$$

Pudlak $I \Delta_{0}+$ Exp HCFCon (I $\Delta_{0}+$ Exp $)$
Adamowicz $\quad I \Delta_{0}+\Omega_{1} H H \operatorname{Con}\left(I \Delta_{0}+\Omega_{1}\right)$

$$
\begin{equation*}
I D_{0}+\left(\Omega_{m}\right) \tag{m}
\end{equation*}
$$

Willard $Q+V H$ Tableaux $\operatorname{Con}(Q+V)$
$\checkmark \pi_{1}$-sentence
Here: for $I \Delta_{0}$

Herbrad Consistency

PNF $\quad \forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \cdots \forall x_{m} \exists y_{m} A\left(x_{1}, y_{1}, \cdots, x_{m}, y_{m}\right)$
Skolemization $\forall x_{1}-\forall x_{m} A\left(x_{1}, f_{1}\left(x_{1}\right), \cdots, x_{m}, f_{m}\left(x_{1}, \cdots, x_{m}\right)\right)$
Skolem instance $A\left(t_{1}, f_{1}\left(t_{1}\right), \cdots, t_{m}, f_{m}\left(t_{1}, \rightarrow t_{m}\right)\right)$
Herbrand's Theorem
A theory is consistent iff every finite set of its skolem instances is propositionally satisfiable.

Evaluation $p:$ a set of atomic formulae $\rightarrow\{0,1\}$

- $p[a=b]=1 \Rightarrow p[\varphi(a)]=p[\varphi(b)]$ atomic φ
- $p[a=a]=1$

T-evaluation satisfies all the available skolem instances of T.
\leadsto Evaluations on a set of terms

$$
\Lambda=a \text { set of terms }
$$

evaluation: atomic formulae with $\rightarrow\{0,1\}$

Herbrand Consistency (of T):
for any set of terms, there is an
T-evaluation on it.

Language of Arithmetic

$$
\langle 0,+, \cdot, \leq, S\rangle
$$

$$
\begin{aligned}
& x_{1}+x_{2}=x_{3} \\
& x_{1}-x_{2}=x_{3} \\
& x_{1} \leq x_{2} \\
& x_{2}=S\left(x_{1}\right) \\
& x_{1}=x_{2}
\end{aligned}
$$

There are $2|\Lambda|^{3}+3|\Lambda|^{2}$ atomic formulae constructed from the elements of $\Lambda \quad(|\Lambda|=\operatorname{card}(\Lambda))$
So, there are $2^{2|A|^{3}+3|n|^{2}}$ evaluations on Λ.
admissible set of terms (Λ) :
all (the intuitionally $2^{2|n|^{3}+3|n|^{2}}$ possible) evaluations are available
(modified) Herbrand Consistency of T :
for any admissible set of terms, there is an T-evaluation on it.

$$
\begin{aligned}
H \operatorname{Con}(T) & \equiv \forall x \underbrace{X(x)}_{0} \\
H \operatorname{con}^{*}(T) & \equiv \forall x \in \log ^{2} X(x) \\
x \in \log ^{2} & \equiv 2^{2^{x}} \text { exists }
\end{aligned}
$$

*

$$
\begin{gathered}
I \Delta_{0} \vdash H \operatorname{Con}(\overline{\overline{I \Delta}}) \wedge \exists x \in \log ^{2} \theta(x) \rightarrow \\
H \operatorname{Con}_{0}^{*}\left(\overline{\overline{I \Delta}}+\overline{\exists x \in \log ^{2} \theta(x)}\right) \\
\text { for } \theta \in \Delta_{0} . \\
\overline{\overline{I \Delta}}=a \text { certain (unusual) axiomatization } \\
\quad \text { of } I \Delta_{0}
\end{gathered}
$$

\leadsto Diagonalization \& Σ_{1}-completeness in I Δ_{0} :

$$
I \Delta_{0} H H \operatorname{Con}\left(\overline{\overline{I \Delta_{0}}}\right)=
$$

Proof Take $\psi \equiv H \operatorname{con}^{*}(\overline{\overline{I \Delta}}+\bar{\rightharpoonup}),\left(\epsilon \Pi_{\Pi_{1}}^{*}\right)$ if ID $+H \operatorname{con}(\overline{\overline{I \Delta}})$ then

$$
\begin{aligned}
I \Delta_{0}+\neg \psi & \rightarrow H \operatorname{con}^{*}(\overline{\overline{I \Delta}}+\overline{\neg \psi}) \\
& \rightarrow \psi
\end{aligned}
$$

So $I \Delta_{0}+\psi$ then $N F \rightarrow H \operatorname{Con}^{*}(\overline{\overline{I \Delta}}+\bar{\neg})$
so $I \Delta_{0} \vdash \neg H \operatorname{Con}^{*}\left(\overrightarrow{I \Delta_{0}}+\overline{7 \Psi}\right)$
or $I \Delta_{0} \vdash \neg \psi-\dot{x}$.

$$
T H^{?} H \operatorname{Con}(T) \text { if } T \underset{\left.\neq I \Delta_{0}\left(\text { and } T \supseteq P A^{-}\right)\right) ~}{\subset} \text {) }
$$

