

A model-theoretic proof of an incompleteness theorem

Saeed Salehi

Turku Center for Computer Science Lemminkäisenkatu 14 A FIN-20520 Turku

saeed@cs.utu.fi

Abstract

The fragment of Peano Arithmetic with bounded induction is denoted by $I\Delta_0$. The functions ω_m , $m \ge 0$, are defined by $\omega_0(x) = x^2$, and $\omega_{m+1}(x) = 2^{\omega_m(\log x)}$, and the axiom Ω_m expresses the totality of ω_m . For a theory T, Hcon(T) denotes the Herbrand Consistency of T, see [1,2,3].

For theories $T \supseteq I\Delta_0$, the question $T \vdash^?$ Hcon(T)had been of interest for some time, see [1,2,3,4,5]. Here, a model-theoretic proof of $I\Delta_0 + \Omega_m \not\vdash$ Hcon $(I\Delta_0 + \Omega_m)$ for $m \ge 2$ presented in [1] is modified for $I\Delta_0 + \Omega_1$, so we get a modeltheoretic proof of $I\Delta_0 + \Omega_1 \not\vdash$ Hcon $(I\Delta_0 + \Omega_1)$. The cut \log^m consists of the elements x whose m-th exponential power, $\exp^m(x)$, exists.

Theorem 1.1 of [1] states that for any natural n, m, there is a bounded formula $\theta(x)$ such that

(A) $I\Delta_0 + \Omega_n + \exists x \in \log^m \theta(x)$ is consistent, while $I\Delta_0 + \Omega_n + \exists x \in \log^{m+1} \theta(x)$ is not.

A formula Hcon(T) is introduced in [1] that expresses the Herbrand Consistency of a theory T, and satisfies the following for $m \ge 2$:

(**B**) For any bounded formula $\theta(x)$, if $I\Delta_0 + \Omega_m + \exists x \in \log^{m+1}\theta(x) + \operatorname{Hcon}(I\Delta_0 + \Omega_m)$ is consistent, then so is $I\Delta_0 + \Omega_m + \exists x \in \log^{m+2}\theta(x).$ The proof of $I\Delta_0 + \Omega_m \not\vdash \text{Hcon}(I\Delta_0 + \Omega_m)$ for $m \ge 2$, in [1], is as follows:

By (A), there is a bounded $\theta(x)$ such that

 $I\Delta_0 + \Omega_m + \exists x \in \log^{m+1}\theta(x)$ is consistent, while $I\Delta_0 + \Omega_m + \exists x \in \log^{m+2}\theta(x)$ is not.

Then

 $I\Delta_0 + \Omega_m + \exists x \in \log^{m+1} \theta(x) + \operatorname{Hcon}(I\Delta_0 + \Omega_m)$ is inconsistent, since otherwise by (**B**), $I\Delta_0 + \Omega_m + \exists x \in \log^{m+2} \theta(x)$ should have been consistent, contradiction.

By consistency of $I\Delta_0 + \Omega_m + \exists x \in \log^{m+1} \theta(x)$, it follows that $I\Delta_0 + \Omega_m \not\vdash \text{Hcon}(I\Delta_0 + \Omega_m)$. Q.E.D A new formula Hcon(T) expressing the Herbrand Consistency of a theory T can be constructed in such a way that (**B**) holds for the theory $I\Delta_0 + \Omega_1$.

That is, for any bounded formula $\theta(x)$, if $I\Delta_0 + \Omega_1 + \exists x \in \log^2 \theta(x) + \operatorname{Hcon}(I\Delta_0 + \Omega_1)$ is consistent, then so is $I\Delta_0 + \Omega_1 + \exists x \in \log^3 \theta(x)$.

This supplies the necessary tools for a modeltheoretic proof of $I\Delta_0 + \Omega_1 \not\vdash \text{Hcon}(I\Delta_0 + \Omega_1)$.

• Further works

Moreover, a formalized version of (**B**) can be proved (cf. [2,4]). Let the formula $Hcon^{\log^2}(T)$ denote the Herbrand Consistency of a theory T relativized to the cut \log^2 . The following implication is provable in $I\Delta_0 + \Omega_1$ for every bounded $\theta(x)$:

$$\left(\mathsf{Hcon}(I\Delta_0 + \Omega_1) \land \exists x \in \log^2 \theta(x) \right) \longrightarrow$$
$$\mathsf{Hcon}^{\log^2}(I\Delta_0 + \Omega_1 + \exists x \in \log^3 \theta(x)).$$

The reader is invited to consult [4] for the historical remarks and technical details.

•<u>References</u>

[1] Adamowicz Z., Herbrand consistency and bounded arithmetic, Fund. Math. 171 (2002), 279–292, MR1898644.

[2] Adamowicz Z. & Zbierski P., On Herbrand consistency in weak arithmetic, Arch. Math.
Logic 40 (2001), 399–413, MR185489.

[3] Hájek P. & Pudlák P., *Metamathematics of first-order arithmetic*, Springer-Verlag, 1998.

[4] Salehi S., Herbrand consistency in arithmetics with bounded induction, Ph.D. thesis, Inst. Math. Polish Acad. Sci. (2002), 78 pp. http://staff.cs.utu.fi/staff/saeed/thesis.pdf

[5] Willard Dan E., *How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic Q*, J. Symbolic Logic **67** (2002), 465–496, MR1889562.

7